
Chapter 2
General Anisotropic Elasticity

Abstract This Chapter is an introduction to general anisotropic elasticity, i.e. to the
elasticity of 3D anisotropic bodies. The main classical topics of the matter are treated
in detail: starting from the Hooke’s law for anisotropic bodies, the two principal
notations of Voigt and Kelvin are introduced and the reasons for the use of the
last one are argued. Then, after an explanation of the mechanical meaning of the
anisotropic elastic constants, the key topic of elastic symmetries is treated in detail.
The technical elastic constants are then introduced aswell as the elastic bounds for the
components of the elastic tensor and for the technical constants. After an observation
on the decomposition of the strain energy for anisotropic bodies, the Chapter ends
with the determination of the symmetry planes, the curvilinear anisotropy and some
examples of typical anisotropic materials.

2.1 The Hooke’s Law for Anisotropic Bodies

Be Ω a body acted upon by body forces f and by surface tractions t on its frontier
∂Ω whose outward unit normal is n. We consider a small arbitrary variation δu of
the displacement field on Ω , compatible with the given boundary conditions and
satisfying the kinematical conditions (1.25). The total mechanical work dW done by
the applied forces can be transformed as follows

dW =
∫

Ω

f · δu dω +
∫

∂Ω

t · δu ds =
∫

Ω

f · δu dω +
∫

∂Ω

σn · δu ds =
∫

Ω

f · δu dω +
∫

∂Ω

σ δu · n ds =
∫

Ω

[f · δu + div(σ δu)] dω =
∫

Ω

[(f + divσ ) · δu + σ · ∇δu] dω =
∫

Ω

σ · δε dω

(2.1)
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20 2 General Anisotropic Elasticity

In establishing Eq. (2.1) we have used successively the Cauchy’s stress theorem
(1.26), the symmetry of σ , the Gauss theorem, two standard results for tensor and
vector fields1 and the motion equation (1.27).

The quantity
δV = σ · δε = σi jδεi j , (2.2)

represents the variation of the internal energy of the body per unit of volume produced
by a small variation of the strain state.

Following the energetic approach of Green (1839), we define as elastic a body
for which the total variation �V of the internal energy due to a finite transformation
from a state A to a state B is independent from the integration path. In particular,
�V must then be null for any transformation where A=B:

�V =
∫ B

A
δV = VB − VA. (2.3)

Hence, for an elastic body δV must be the exact differential dV of a scalar function
V (ε), the strain energy density or elastic potential2:

V = V (ε) : dV = ∂V

∂εi j
dεi j . (2.4)

In such a case, Eq. (2.2) must be rewritten as

dV = σ · dε = σi j dεi j , (2.5)

so that we get the Green’s formula

σi j = ∂V

∂εi j
. (2.6)

1Namely, we have used the identity

div(L�v) = divL · v + L · ∇v,

with L a second-rank tensor field and v a vector field, see (Gurtin 1981, p. 30), and the fact that,
∀L : L = L�,

L · ∇v + ∇�v
2

= 1

2
(L · ∇v + L · ∇v�) = 1

2
(L · ∇v + L� · ∇v�) = L · ∇v,

because of the property of tensor scalar product:

A · B = Ai j Bi j = A� · B�.

.2The existence of such a function can be established upon physical arguments, using the first law
of thermodynamics for adiabatic transformations or the second law for the isothermal ones, (Love
1944, p. 94).
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We now postulate that in the initial state, i.e. when the body is not acted upon by
forces, ε = O and σ = O, i.e. the body is unstrained and unstressed in its initial
state. Then, developing V (ε) in a Taylor series about ε = O we get

V (ε) = V (ε = O) + ∂V

∂εi j

∣∣∣∣
ε=O

εi j + 1

2

∂2V

∂εi j∂εkl

∣∣∣∣
ε=O

εi jεkl + . . . (2.7)

Choosing arbitrarily V (ε = O) = 0, always possible for a potential, and limiting
the development to the first non null term, which is correct for small strains, gives

V = 1

2

∂2V

∂εi j∂εkl

∣∣∣∣
ε=O

εi jεkl; (2.8)

the second derivatives in the above equation are linear operators depending upon
four indexes; they are the components of a fourth-rank tensor E,

Ei jkl := ∂2V

∂εi j∂εkl

∣∣∣∣
ε=O

, (2.9)

the (stiffness) elasticity tensor, so that

V = 1

2
Ei jklεi jεkl = 1

2
ε · Eε. (2.10)

Collecting all the parameters describing the elastic response of the material, E is
the operator that describes the elastic response of the continuum. It has 81 Cartesian
components, the elastic moduli Ei jkl . Nevertheless, the number of independent elastic
moduli is far less than 81. In fact, first of all, by the Schwarz theorem we get

Ei jkl = ∂2V

∂εkl∂εi j
= ∂2V

∂εi j∂εkl
= Ekli j ; (2.11)

the above 15 relations are known as major symmetries and reduce the number of
independent Cartesian components of E from 81 to 66.

Now, if we apply the Green’s formula (2.6) to Eq. (2.10) we get

σi j = Ei jklεkl → σ = Eε. (2.12)

This is the Hooke’s law (1660), establishing a linear relation between stress and
strain.3 This linearity is a direct consequence of the quadratic structure of V and of
the Green’s formula; though initially formulated for isotropic bodies, it is the basic

3An alternative, classical, approach to elasticity is to postulate the Hooke’s law and the existence of
V ; once obtained theGreen’s formula, using the Schwarz theoremgives again themajor symmetries,
while theminor ones are still given by the symmetry of ε andσ . Then, the expression of V is obtained
integrating dV :
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law of elasticity also for the more general case of anisotropic continua. Using now
the Hooke’s law, we obtain another reduction of the number of independent elastic
moduli due to the symmetry of σ and ε:

σi j = σ j i and εi j = ε j i ⇒ Ei jkl = E jikl = Ei jlk = E jilk ∀i, j, k, l ∈ {1, 2, 3}.
(2.13)

The above 45 relations among the components of E are called the minor symmetries
and reduce the number of independent elastic moduli to only 21. This is the highest
number of independent moduli that an elastic material can have. In such a case, the
material is completely anisotropic or triclinic. Further reductions of the number of
independent moduli can be obtained only if special conditions, not universal but
depending upon the material type, are introduced. Such conditions are called elastic
symmetries, and indicate the invariance of some elasticmoduli under some geometric
transformations. Injecting the Hooke’s law into the expression (2.10) of V we get
also

V = 1

2
σ · ε. (2.14)

Let us now consider the inverse of the Hooke’s law:

ε = Zσ, Z = E
−1, (2.15)

with Z the compliance elasticity tensor; introducing this last equation for ε into
(2.10) gives

V = 1

2
σ · Zσ , (2.16)

an expression called stress energy density in the literature.
A last remark: in this section, the word symmetry has been used for denoting the

equivalence of the positions of an index for two or more components of the elasticity
tensor; to make the distinction with the concept of elastic symmetry, the expression
tensor or index symmetry could be used. Anyway, the reader should be aware of the
fact that the same word, symmetry, can have two rather different meanings in our
context.

2.1.1 The Voigt’s Notation

The general, tensorial, expression of the Hooke’s law needs the use of quantities with
four indexes,

(Footnote 3 continued)

dV = σ · dε = Eε · dε = Ei jklεkl dεi j → V = 1

2
Ei jklεi j εkl = 1

2
ε · Eε.
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σi j = Ei jklεkl, (2.17)

which can be somewhat cumbersome and heavy. That is why some simplified nota-
tions have been proposed. In particular, they allow for a matrix representation of
(2.17); these formalisms switch the algebra from that of a fourth-rank tensor to that
of a 6×6 square symmetric matrix.

The most well known of the matrix formalisms for anisotropic elasticity is that of
Voigt (1910): the stress and strain tensors are written as follows:

{σ } =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1 = σ11

σ2 = σ22

σ3 = σ33

σ4 = σ23

σ5 = σ31

σ6 = σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, {ε} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1 = ε11
ε2 = ε22
ε3 = ε33
ε4 = 2ε23
ε5 = 2ε31
ε6 = 2ε12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.18)

Equation (2.18) shows the relations and order established for the indexes by the
Voigt’s notation:

11 → 1, 22 → 2, 33 → 3, 23 → 4, 31 → 5, 12 → 6. (2.19)

The introduction of the coefficient 2 for the terms ε4, ε5 and ε6 is needed for taking
into account for the symmetry of σ and ε in the Hooke’s law. This fact imposes some
accuracy in the use of the Voigt’s notation, because the algebras for tensors σ and ε

are not completely the same, namely for their transformation upon axes rotation and
tensor inversion.

TheVoigt’s notation transforms hence second rank symmetric tensors into column
vectors; correspondingly, the fourth-rank elasticity tensor is transformed into a 6×6
symmetric square matrix, the symmetry of such a matrix corresponding to the major
symmetries of E. According to the index transformation rule (2.19), the matrix form
of the Hooke’s law with the Voigt’s notation is

{σ } = [C] {ε} →

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.20)

The name [C] is usually preferred to E to make a clear distinction between the
tensor and matrix representation (for the same reason, we will name differently the
compliance tensor andmatrix). Thanks to the introduction of coefficients 2 in (2.18)2,
there is a perfect coincidence between the Ei jkl and the C pq ; it is sufficient to remind
rule (2.19) to make correspond to each pair of indexes i j and kl in Ei jkl the correct
p and q in C pq ; for instance, E2312 = C46, E1322 = C52 and so on.
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Let us now consider the inverse of the Hooke’s law (2.15), that we will write in
the Voigt’s notation as

{ε} = [S] {σ } →

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 S14 S15 S16
S12 S22 S23 S24 S25 S26
S13 S23 S33 S34 S35 S36
S14 S24 S34 S44 S45 S46
S15 S25 S35 S45 S55 S56
S16 S26 S36 S46 S56 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.21)

Unlike the case of the stiffness matrix [C], not all the components of [S] are equal
to the corresponding ones of Z. This is a consequence of the introduction of the
factors 2 in (2.18)2 and the correct transformation is

[
Si j

] =
[

Z ppqq 2Z pprs

2Z pprs 4Z pqrs

]
→

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 = Z1111 S12 = Z1122 S13 = Z1133 S14 = 2Z1123 S15 = 2Z1131 S16 = 2Z1112

S22 = Z2222 S23 = Z2233 S24 = 2Z2223 S25 = 2Z2231 S26 = 2Z2212

S33 = Z3333 S34 = 2Z3323 S35 = 2Z3331 S36 = 2Z3312

S44 = 4Z2323 S45 = 4Z2331 S46 = 4Z2312

sym S55 = 4Z3131 S56 = 4Z3112

S66 = 4Z1212

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(2.22)

The above equations show that passing to the Voigt’s notation implies a different
algebra for stiffness and compliance, as anticipated above. Mathematically, matrices
[C] and [S] do not represent some second order tensors in R6. Practically, the use of
the Voigt’s notation needs some carefulness, not only in the differences between [C]
and [S], but also in the transformation of these matrices produced by axes rotation.

2.1.2 The Kelvin’s Notation

The Kelvin’s notation (by somebody named Mandel’s notation) was proposed by
W. Thomson, baron of Kelvin, as early as 1856 (Kelvin 1856, 1878), but, probably
because making use of irrational quantities, it has not known an as large success as
the Voigt’s notation. Nevertheless, rather recently a new attention has been brought
by scientists on it, mainly for its algebraic properties: the Kelvin’s notation has not
the drawbacks of the Voigt’s one, as it will be shown below.

The Kelvin’s notation is different from the Voigt’s one in that the coefficients
2 affecting ε, Eq. (2.18), are equally distributed over σ and ε, in such a way their
product still amounts to 2:
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{σ } =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1 = σ11

σ2 = σ22

σ3 = σ33

σ4 = √
2σ23

σ5 = √
2σ31

σ6 = √
2σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, {ε} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1 = ε11
ε2 = ε22
ε3 = ε33

ε4 = √
2ε23

ε5 = √
2ε31

ε6 = √
2ε12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.23)

In this way, Eqs. (2.20) and (2.21) still hold but there is no difference between σ and
ε in the transition from the tensor to the matrix representation; in particular, the way
the components of [C] and [S] are deduced from the corresponding ones of E and
Z, are exactly the same (no summation over dummy indexes):

[
Ci j

] =
[

E ppqq

√
2E pprs√

2E pprs 2E pqrs

]
,

[
Si j

] =
[

Z ppqq

√
2Z pprs√

2Z pprs 2Z pqrs

]
. (2.24)

The above symbolic relations can be easily translated in the detailed expressions of
Ci j and Si j , applying a scheme quite similar to that detailed in Eq. (2.22).

Merhabadi and Cowin (1990), have shown that the Kelvin’s notation gives a
representation of elasticity by matrices, [C] and [S], representing second-rank sym-
metric tensors in R

6, which is not the case with the Voigt’s notation. Hence, the
Kelvin’s notation transfers the algebra of elasticity from fourth-rank tensors in R

3,
to second-rank tensors inR6. This fact has some advantages, for instance the rotation
of matrices [C] and [S] is made in the same way, unlike with the Voigt’s notation.
For these reasons, the Kelvin’s notation is preferred in this text.

2.1.3 The Mechanical Meaning of the Anisotropic Elastic
Constants

In the most general case of a triclinic material, the number of independent elastic
moduli is as great as 21; it is important to understand the mechanical meaning of
these parameters, because, unlike in the case of an isotropic material, some unusual,
strange mechanical effects can arise in anisotropy. To discover these effects and
connect them to particular elastic parameters, it is worth to use the compliances, i.e.
the components of [S] or Z.

Let us consider a cube of a triclinic material, submitted to the only traction σ1, see
Fig. 2.1. In such a case, Eq. (2.21) gives εk = Sk1σ1 ∀k = 1, . . . , 6 (or, equivalently,
εi j = Zi j11σ11 ∀i, j = 1, 2, 3).

So, while in an isotropic solid only the terms ε1, corresponding to the direct
stretching effect, and ε2 = ε3, corresponding to the Poisson’s effect, i.e. the defor-
mation in a plane orthogonal to the direction of the normal stress, are not null for a
uniaxial traction, in a completely anisotropic body all the components of ε are not
null: a normal stress produces also shearing strains. The coupling effects are hence
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Fig. 2.1 Anisotropic
stretched cube

not restricted to the only Poisson’s effect, due to the terms Si j , i, j = 1, 2, 3, i 	= j :
in the anisotropic case, there is also a coupling between normal stress and shear
strain, due to terms Skl, k = 4, 5, 6, l = 1, 2, 3. In addition, generally speaking
S12 	= S23 	= S31, so that the Poisson’s effect is different in the orthogonal directions,
i.e. ε2 	= ε3. In the same way, usually S4k 	= S5k 	= S6k, k = 1, 2, 3, so that also for
the shearing stresses it is ε4 	= ε5 	= ε6. Finally, the anisotropic cube does not only
change its volume under the unique action of a traction, like in isotropic bodies, but
it changes also its form: it becomes a prism with no orthogonal faces.

Let us now consider the same cube submitted to a unique shear stress, say
σ5; Eq. (2.21) gives then εk = Sk5σ5 ∀k = 1, . . . , 6 (or, equivalently, εi j =
Zi j31σ31 ∀i, j = 1, 2, 3). This time, we can observe a coupling between shear
stresses and extension strains, due to the terms Slk, k = 4, 5, 6, l = 1, 2, 3 and also
a coupling between a shear stress and the shearing strains in orthogonal planes, due to
the terms Si j , i, j = 4, 5, 6, i 	= j . This last effect is called theChentsov’s effect: it is
completely analogous to the Poisson’s effect, but it concerns shear stresses and strains
in the place of tractions and extensions. Also in this case, the couplings shear stress-
extensions and the Chentsov’s effect are not necessarily the same in all the planes,
because generally speaking Sl4 	= Sl5 	= Sl6, l = 1, 2, 3 and S45 	= S56 	= S64. It
is then apparent that, submitted to simple shear stress, the cube changes not only its
shape, but also its volume, unlike in the case of isotropic bodies.

Finally, the compliancematrix can be subdivided into parts in charge of a particular
effect, like in Fig. 2.2. It is immediately recognized that a similar partition is possible
also for the stiffness matrix [C].

couplings extension strains-
shear stresses

direct effect of shear stresses

direct effect of normal stresses

.

6

5

4

3

2

1

665646362616

565545352515

464544342414

363534332313

262524232212

161514131211

6

5

4

3

2

1

=

SSSSSS
SSSSSS
SSSSSS
SSSSSS
SSSSSS
SSSSSS

Fig. 2.2 Partition of the compliance matrix by mechanical effects
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2.2 Elastic Symmetries

2.2.1 Taking into Account for Elastic Symmetries

Recalling what said in Sect. 1.1, when some kind of symmetry in the behavior is
present, then some equivalent directions exist, whereon the behavior is the same.
The figure formed with these directions is a symmetrical figure allowing all the
covering operations of a certain group.

Just because the behavior is the same along equivalent directions, the forms of the
elasticity matrix [C]4 and of the strain energy are the same in two frames related by
a covering operations. This gives some relations among the components of [C], e.g.
some of them are null.5 Let us sketch the procedure for obtaining such relations:

• the expressions of the strain energy in two framesR andR ′ related by a covering
operation are6

V = 1

2
{ε}�[C]{ε}, V ′ = 1

2
{ε′}�[C]{ε′}; (2.25)

• the strain tensor {ε′} can be written in the frame R:

{ε′} = [R]{ε}, (2.26)

with [R] the orthogonal matrix corresponding to the covering operation, i.e. to the
symmetry of the material;

• injecting Eq. (2.26) into V ′, Eq. (2.25), and putting V = V ′, gives the equation

{ε}�[C]{ε} = ([R]{ε})� [C][R]{ε} ∀{ε}; (2.27)

• this unique scalar equation gives all the relations that must be true for the compo-
nents of [C] exactly because it is independent from the strain state, i.e. because it
is true ∀{ε}.
Now, the question is: which is the orthogonal matrix [R] corresponding to a given

covering operation? This will be the matter of the following Sections.
Before, just a last remark: the procedure sketched above is not the only one; in

fact, in place of working with the strain energy, one could directly state that [C],

4The use of [C] is here preferred to that of E because it facilitates calculations; of course, the results
found for components Ci j are immediately valid also for the E pqrs , see Eqs. (2.22) and (2.24).
5The same is true for the stress energy; in such a case one can obtain relations among the components
of [S] that are exactly the same ones found for [C].
6We denote here by a prime a component in B′ or also, for the sake of shortness though with a
slight abuse of notation, a vector or tensor whose components are intended to be given in B′.
B = {e1, e2, e3} andB′ = {e′

1, e
′
2, e

′
3} are two orthonormal bases of the vector space of translations

V associated with the ordinary euclidean space E , and they are associated with the frames R =
{o;B} and R′ = {o′;B′} respectively, o, o′ ∈ E .

http://dx.doi.org/10.1007/978-981-10-5439-6_1
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or [S], does not change when passing from R to R ′. This approach is practically
equivalent to the previous one, but it gives six scalar equations. For instance, for [C]
we have:

{σ } = [C]{ε}, and {σ ′} = [C]{ε′} → [R]{σ } = [C][R]{ε} →
{σ } = [R]�[C][R]{ε} ⇒ [C] = [R]�[C][R]. (2.28)

2.2.2 Rotation of Axes

Let us consider two orthonormal bases B = {e1, e2, e3} and B′ = {e′
1, e

′
2, e

′
3} and

let us suppose that these two bases are related by the orthogonal tensor U.7

We define U as the tensor such that

ei = Ue′
i ⇒ e′

i = U�ei ; (2.29)

with this definition, it is easy to show that

U =
⎡
⎣ e′

1
e′
2
e′
3

⎤
⎦ , (2.30)

i.e. the matrix representing U in the basisB′ has for rows the Cartesian components
of the vectors of B′, components expressed in the base B. Algebraically, these
components are the director cosines of the angles between two corresponding axes
inB and B′.

Using the above equations, the components in B′ of a tensor of any rank r can
be expressed as a linear combination of its components inB, the coefficients of the
combination being products of r components of U. In fact, considering that

ei = Ue′
i = Upq(e′

p ⊗ e′
q)e

′
i = Upqδqie′

p = Upie′
p, (2.31)

then, for a vector (r = 1) it is

w = wiei = wiUkie′
k ⇒ w′

k = Uki wi , (2.32)

for a second-rank tensor (r = 2) it is

L = Li jei ⊗ e j = Li jUmie′
m ⊗ Unje′

n = UmiUnj Li je′
m ⊗ e′

n ⇒
L ′

mn = UmiUnj Li j
(2.33)

7U is not necessarily a proper rotation, because reflections are possible too.
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and finally for a fourth-rank tensor (r = 4) it is8

E = Ei jklei ⊗ e j ⊗ ek ⊗ el = Ei jklUmie′
m ⊗ Unje′

n ⊗ Upke′
p ⊗ Uqle′

q =
UmiUnjUpkUql Ei jkle′

m ⊗ e′
n ⊗ e′

p ⊗ e′
q ⇒ E ′

mnpq = UmiUnjUpkUql Ei jkl .

(2.34)
GivenA,B ∈ Lin, the conjugation product A�B is the fourth-rank tensor defined

by the operation
(A � B)C := ACB� ∀C ∈ Lin. (2.35)

It is worth to remark that Eq. (2.35) implies that for the vectors of a basis it is

(ei ⊗ e j ) � (ek ⊗ el) = ei ⊗ ek ⊗ e j ⊗ el , (2.36)

which gives
(A � B)i jkl = Aik B jl . (2.37)

Once defined the transpose A� of a fourth-rank tensor A as the unique tensor such
that

L · (AM) = M · (A�L) ∀L,M ∈ Lin, (2.38)

it is immediate to show that

(A ⊗ B)� = B ⊗ A,

(A � B)� = A� � B�.
(2.39)

Like for tensors in Lin, also a tensorA ∈ Lin is said to be symmetric ⇐⇒ A = A
�.

It is simple to check that

A = A
� ⇒ A�

i jkl = Akli j , (2.40)

i.e., the major symmetries of the elastic tensors E and Z actually coincide with the
definition of symmetric tensor in Lin.

For an orthogonal second-rank tensor U, we define its orthogonal conjugator U
as

U := U � U; (2.41)

it is not difficult to show that just as U preserves scalar products of elements in V ,
its associated orthogonal conjugator U preserves scalar products in Lin:

UA · UB = A · B ∀A,B ∈ Lin. (2.42)

8∀A,B andL ∈Lin,A⊗B is the fourth-rank tensor defined by the operation (A⊗B)L := (B ·L)A.
Applying this rule to the dyads of a basis, we get a fundamental result: (ei ⊗e j ⊗ek ⊗el)(ep ⊗eq ) =
(ek ⊗ el ) · (ep ⊗ eq )(ei ⊗ e j ) = δkpδlq (ei ⊗ e j ).
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In other words, U is an orthogonal tensor in Lin (Podio-Guidugli 2000, p. 55).
Introducing the identity of Lin,

I = I � I ⇒ I = Ii jkl(ei ⊗ e j ⊗ ek ⊗ el) = δikδ jl(ei ⊗ e j ⊗ ek ⊗ el), (2.43)

it is easy to recognize that also for rotations in Lin

UU
� = U

�
U = I. (2.44)

Be n ∈ V a unit vector and let us suppose that n is orthogonal to a symmetry
plane. Then

U := I − 2n ⊗ n, U = U�, U = U � U = U
�, (2.45)

is the orthogonal tensor describing the symmetry in the plane whose normal is n. In
fact,

Un = −n

Um = m ∀m ∈ V : m · n = 0, |m| = 1.
(2.46)

Thanks to these last definitions, it is possible to give a compact form to results
(2.32), (2.33) and (2.34):

w′ = Uw,

L′ = ULU� = (U � U)L = UL,

E
′ = (U � U)E(U � U)� = UEU

�.

(2.47)

Using Eq. (2.23) and the result of Eq. (2.37), we can now obtain the matrix [R]
that corresponds, in the Kelvin’s notation, to tensor U; the calculations are rather
tedious and a little bit long, but the final result is (Mehrabadi and Cowin 1990),

[R] =

⎡
⎢⎢⎢⎢⎢⎣

U2
11 U2

12 U2
13

√
2U12U13

√
2U13U11

√
2U11U12

U2
21 U2

22 U2
23

√
2U22U23

√
2U23U21

√
2U21U22

U2
31 U2

32 U2
33

√
2U32U33

√
2U33U31

√
2U31U32√

2U21U31
√
2U22U32

√
2U23U33 U23U32 + U22U33 U33U21 + U31U23 U31U22 + U32U21√

2U31U11
√
2U32U12

√
2U33U13 U32U13 + U33U12 U31U13 + U33U11 U31U12 + U32U11√

2U11U21
√
2U12U22

√
2U13U23 U12U23 + U13U22 U11U23 + U13U21 U11U22 + U12U21

⎤
⎥⎥⎥⎥⎥⎦

.

(2.48)

The above matrix [R] allows for the change of basis of any second-rank tensor in the
Kelvin’s notation. In particular for σ and ε:

{σ ′} = [R]{σ }, {ε′} = [R]{ε}. (2.49)

It can be checked that, when U is an orthogonal tensor, then

[R][R]� = [R]�[R] = [I ], (2.50)
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i.e., [R] is an orthogonal matrix in R6; this is not the case with the Voigt’s notation.
Hence, [R] represents, in the given basis, an orthogonal tensor of Lin over a manifold
of dimension six.

It is impossible to put the result of Eq. (2.34) in matrix form, because also in the
Kelvin’s notation it depends upon four indexes; nevertheless, it is of course possible
to express all the components of such an operator, but actually in the most general
case these components have so extremely complicate and long expressions that it is
practically impossible to write down all of them, so they are omitted here.

2.2.3 A Tensorial Characterization of Elastic Symmetries

The results of the previous section give us the possibility of characterizing in an
elegant tensorial form the existence of elastic symmetries in a solid (Podio-Guidugli
2000, p. 56).

Let us suppose that a material has a given elastic symmetry and that the two
basesB andB′ correspond to equivalent directions with respect to the symmetry of
concern. Physically, this means that it is not possible to detect the change fromB to
B′ by experiments measuring stresses, because the behavior is exactly the same in
the two cases: E = E

′. Then, applying Eq. (2.47)2 to σ and ε,

σ ′ = Uσ , ε′ = Uε, (2.51)

and the Hooke’s law, Eq. (2.12), we get, because E = E
′,

σ ′ = Eε′ → Uσ = EUε → UEε = EUε ⇒ UE = EU. (2.52)

Hence, an orthogonal transformationU is in the elastic symmetry group of the mate-
rial if and only if E and U commute, U being the orthogonal conjugator of U.

The result of Eq. (2.52) constitutes also a way for determining the number and
type of independent elastic moduli, i.e. the distinct components of E; this is the way
sketched, with reference to matrix [C], in the last paragraph of Sect. 2.2.1, Eq. (2.28);
however, as said thereon, the energetic approach is preferred in this text.

2.2.4 Triclinic Bodies

A triclinic body has no material symmetries, so Eq. (2.27) cannot be written. As a
consequence, it is not possible to reduce the number of independent elastic compo-
nents, that remains fixed to 21. Matrix [C] appears hence as
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[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.53)

2.2.5 Monoclinic Bodies

The only symmetry of a monoclinic body is a reflection in a plane. Without loss in
generality, we can suppose x3 = 0 to be the symmetry plane. In such a case it is, see
Eqs. (2.45) and (2.48),

U =
⎡
⎣ 1 0 0
0 1 0
0 0 −1

⎤
⎦ ⇒ [R] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.54)

that applied to Eq. (2.27) gives the condition

C14ε1ε4 + C24ε2ε4 + C34ε3ε4 + C15ε1ε5+
C25ε2ε5 + C35ε3ε5 + C46ε4ε6 + C56ε5ε6 = 0,

(2.55)

which is satisfied ∀ε ⇐⇒

C14 = C24 = C34 = C15 = C25 = C35 = C46 = C56 = 0. (2.56)

Hence, a monoclinic body depends upon only 13 distinct elastic moduli:

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0
sym C55 0

C66

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.57)
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2.2.6 Orthotropic Bodies

Let us now add another plane of symmetry orthogonal to the previous one, say the
plane x2 = 0. Following the same procedure, we get successively:

U =
⎡
⎣ 1 0 0
0 −1 0
0 0 1

⎤
⎦ ⇒ [R] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.58)

(C14ε1 + C24ε2 + C34ε3 + C45ε5)ε4+
(C16ε1 + C26ε2 + C36ε3 + C56ε5)ε6 = 0 ∀ε ⇐⇒
C14 = C24 = C34 = C45 = C16 = C26 = C36 = C56 = 0.

(2.59)

So, the existence of the second plane of symmetry has added the four supplementary
conditions

C16 = C26 = C36 = C45 = 0 (2.60)

to the previous eight ones, reducing hence to only 9 the number of distinct elastic
moduli. Let us now suppose the existence of a third plane of symmetry, orthogonal
to the previous ones, the plane x1 = 0. With the same procedure, we get:

U =
⎡
⎣−1 0 0

0 1 0
0 0 1

⎤
⎦ ⇒ [R] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.61)

(C15ε1 + C25ε2 + C35ε3 + C45ε4)ε5+
(C16ε1 + C26ε2 + C36ε3 + C46ε4)ε6 = 0 ∀ε ⇐⇒
C15 = C25 = C35 = C45 = C16 = C26 = C36 = C46 = 0.

(2.62)

Rather surprisingly, this new symmetry condition does not give any supplementary
condition to those in (2.56) and (2.60). Because the procedure does not depend upon
the order of the symmetries, as it is immediately recognized, the only consequence
is that the existence of two orthogonal planes of elastic symmetry is physically
impossible: only the presence of one or threemutually orthogonal planes of symmetry
is admissible. A material having three planes of symmetry is called orthotropic. The
class of orthotropicmaterials is very important, because a lot ofmaterials or structures
belong to it. An orthotropic material depends hence upon 9 distinct elastic moduli
and its matrix [C] looks like
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[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

sym C55 0
C66

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.63)

2.2.7 Axially Symmetric Bodies

We have seen in Sect. 1.4.2 that there are only four possible cases of axial symmetries
for crystals: the 2-, 3-, 4- and 6-fold axis of symmetry. In elasticity, there is another
possibility, that will be examined in the next Section. Let us then consider the above
four cases, in the order, taking as symmetry axis, without loss in generality, the axis
x3.

Let us begin with a 2-fold axis of symmetry; the covering operation corresponds
hence to a rotation of π about x3. In such a case, we have

U =
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦ ⇒ [R] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.64)

and we can observe that the matrix [R] is the same of the monoclinic case, Eq. (2.54).
Hence, a 2-fold axis of symmetry coincides with a plane of symmetry.

For a 3-fold axis of symmetry, the covering operation corresponds to a rotation
of 2π/3 about x3, which gives

U =
⎡
⎢⎣

− 1
2

√
3
2 0

−
√
3
2 − 1

2 0

0 0 1

⎤
⎥⎦ ⇒ [R] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4

3
4 0 0 0 −

√
3
8

3
4

1
4 0 0 0

√
3
8

0 0 1 0 0 0

0 0 0 − 1
2 −

√
3
2 0

0 0 0
√
3
2 − 1

2 0√
3
8 −

√
3
8 0 0 0 − 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

(2.65)

in this case, condition (2.27) is very long and omitted here, but finally it gives 14
conditions on the components of [C]:

http://dx.doi.org/10.1007/978-981-10-5439-6_1
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C16 = C26 = C34 = C35 = C36 = C45 = 0,
C22 = C11, C55 = C44, C23 = C13, C24 = −C14,

C25 = −C15, C56 = √
2C14, C46 = √

2C15, C66 = C11 − C12.

(2.66)

So, there are only 7 distinct elastic moduli:

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 0
C11 C13 −C14 −C15 0

C33 0 0 0
C44 0 −√

2C15

sym C44

√
2C14

C11 − C12

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.67)

For a 4-fold axis of symmetry, the covering operation corresponds to a rotation
of π/2 about x3, which gives

U =
⎡
⎣ 0 1 0

−1 0 0
0 0 1

⎤
⎦ ⇒ [R] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

; (2.68)

we omit also in this case the long expression of Eq. (2.27), but the final result are 14
conditions different from the (2.66):

C14 = C24 = C34 = C15 = C25 = C35 = C45 = C36 = C46 = C56 = 0,
C22 = C11, C55 = C44, C23 = C13, C26 = −C16,

(2.69)

leaving an elasticmatrix [C] still depending upon only 7 distinctmoduli, but different
from the previous case, Eq. (2.67):

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16

C11 C13 0 0 −C16

C33 0 0 0
C44 0 0

sym C44 0
C66

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.70)

The last case is that of a 6-fold axis of symmetry, with as covering operation a
rotation of π/3 about x3, which gives
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U =
⎡
⎢⎣

1
2

√
3
2 0

−
√
3
2

1
2 0

0 0 1

⎤
⎥⎦ ⇒ [R] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4

3
4 0 0 0

√
3
8

3
4

1
4 0 0 0 −

√
3
8

0 0 1 0 0 0

0 0 0 1
2 −

√
3
2 0

0 0 0
√
3
2

1
2 0

−
√

3
8

√
3
8 0 0 0 − 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

(2.71)

condition (2.27), omitted because too long, gives in this case 16 conditions:

C14 = C24 = C34 = C15 = C25 = C35 =
C45 = C16 = C26 = C36 = C46 = C56 = 0,
C22 = C11, C55 = C44, C23 = C13, C66 = C11 − C12,

(2.72)

for a final elastic matrix [C] depending upon only 5 moduli:

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
C44 0 0

sym C44 0
C11 − C12

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.73)

2.2.8 Transversely Isotropic Bodies

Let us now consider the case of a material with an axis of cylindrical symmetry, i.e.
an axis of symmetry where the covering operation is a rotation by any angle θ ; such a
material is called transversely isotropic, and many materials belong to this class, like
for instance wood, fiber reinforced composites, laminated steel and so on. Also in
this case we can proceed in the usual way. Denoting, for shortening the expressions,
c = cos θ, s = sin θ , we get:

U =
⎡
⎣ c s 0

−s c 0
0 0 1

⎤
⎦ ⇒ [R] =

⎡
⎢⎢⎢⎢⎢⎢⎣

c2 s2 0 0 0
√
2cs

s2 c2 0 0 0 −√
2cs

0 0 1 0 0 0
0 0 0 c −s 0
0 0 0 s c 0

−√
2cs

√
2cs 0 0 0 c2 − s2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.74)

In this case we obtain exactly the same 16 conditions (2.72); this means that, elas-
tically, the 6-fold axis of symmetry is strictly identical to an axis of cylindrical
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symmetry. Hence, two such materials cannot be distinguished using only the results
of tests on stress or strain. This must not surprise, because this fact is in perfect accor-
dance with the Neumann’s principle, as the 6-fold axis of symmetry is contained in
the more general case of cylindrical symmetry.

Finally, Eq. (2.73) represents also the elastic matrix of a transversely isotropic
material, who has 5 distinct elastic moduli.

2.2.9 Isotropic Bodies

Iostropy is the complete symmetry: all the directions are equivalent. The conditions
of isotropy could be find following the usual procedure, imposing that Eq. (2.27) is
valid for any orthogonal transformation [R]. However, this general approach, that
can be followed using for instance the Euler angles for expressing a generic [R],
results to be very cumbersome and computationally heavy.

A more direct approach is the following one: for a transversely isotropic body,
all the directions orthogonal to the axis of symmetry, say x3, are equivalent. In other
words, fixing the axes of x1 and x2 is completely arbitrary. Let us then suppose that,
besides the equivalence of all the directions in the plane perpendicular to x3, also
x1 and x3 are equivalent. We then impose to a material described by a transversely
isotropic elastic matrix, Eq. (2.73), this further equivalence, which is described by

U =
⎡
⎣0 0 1
0 1 0
1 0 0

⎤
⎦ ⇒ [R] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.75)

This gives three new conditions:

C13 = C12, C33 = C11, C44 = C66, (2.76)

which reduce the number of distinct elastic constants from 5 to only 2:

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C11 − C12 0 0

sym C11 − C12 0
C11 − C12

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.77)

Because x1 is any direction, all the directions of the space are equivalent; this can
be proved showing that the elastic matrix (2.77) is insensitive to any change of basis
leaving x2 unchanged, i.e.
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U =
⎡
⎣ c 0 s

0 1 0
−s 0 c

⎤
⎦ ⇒ [R] =

⎡
⎢⎢⎢⎢⎢⎢⎣

c2 0 s2 0
√
2cs 0

0 1 0 0 0 0
s2 0 c2 0 −√

2cs 0
0 0 0 c 0 −s

−√
2cs 0

√
2cs 0 c2 − s2 0

0 0 0 s 0 c

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.78)

which gives as only condition C44 = C11 −C12, a condition already contained in the
previous ones, Eq. (2.72) and (2.76). This proves that nothing is added to the previous
conditions and hence that all the directions in any meridian plane are equivalent, i.e.
that the body is isotropic.

There is another, more elegant and direct way to prove that an isotropic body
depends upon only two distinct moduli: because of isotropy, the elastic response is
insensitive to a change of frame, so the elastic moduli of an isotropic material cannot
be frame-dependent. This means that for an isotropic material, V cannot depend
upon the εi j , that are frame-dependent quantities, but rather on the invariants of ε.9

As a consequence, being V a quadratic function of the εi j , its general expression is
of the type

V = 1

2
c1 I 21 + c2 I2, (2.79)

with10

I1 = trε = εi i , I2 = tr2ε − trε2

2
= εi i εi i − εi j ε j i

2
. (2.80)

The third order invariant of ε, i.e. det ε, cannot enter in the expression of V ,
because it is a cubic function of the εi j , while V must be a quadratic function of the
εi j . Then,

V = 1

2
[(c1 + c2)εi i εi i − c2 εi j ε j i ], (2.81)

so that11

σi i = ∂V

∂εi i
= (c1 + c2)εi i − c2 εi i ,

σi j = ∂V

∂εi j
= −c2 ε j i = −c2 εi j .

(2.82)

9The elastic potential V is, as any other quantity derived by a scalar product, an invariant, i.e. it is not
frame-dependent. Hence, because [C] for an isotropic material is frame independent, the expression
of V cannot depend upon frame-dependent quantities, the εi j , but only upon frame-independent
functions of the εi j : the invariants of ε.
10ε2 = εε = εi j ei ⊗ e j εhkeh ⊗ ek = εi j εhk e j · eh(ei ⊗ ek) = εi j εhk δ jh(ei ⊗ ek) → trε2 =
εi j εhk δ jh tr(ei ⊗ ek) = εi j εhk δ jhδik = εi j ε j i .
11Following a commonpractice,when an index is underlined, it is not a dummy index: no summation
over it.
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For instance:

σ11 = ∂V

∂ε11
= (c1 + c2)(ε11 + ε22 + ε33) − c2 ε11,

σ12 = ∂V

∂ε12
= −c2 ε12 etc.

(2.83)

We see hence that in the case of isotropic materials, only two constants are sufficient
to characterize the elastic behavior.

2.2.10 Some Remarks About Elastic Symmetries

Some remarks can be done about the results found in the previous Sections. First of
all, the results given, in all the cases, for [C] are completely valid also for [S]; this is
not the case with the Voigt’s notation, where for some symmetries, not each Si j has
the same expression of the corresponding Ci j .

A mechanically important remark is the fact that typically some coupling compo-
nents disappear in a symmetry basis. The case of orthotropic bodies is emblematic:
in the orthotropic frame, the skyline of [C] is exactly the same of an isotropic body
and the only coupling is the Poisson’s effect. Nevertheless, this is no longer true
in any other basis: in a generic basis, all the anisotropic materials, regardless of
their symmetries, behave like a triclinic body, i.e. they have all the coupling terms
(generally speaking, their elastic matrix is complete, none of its terms vanishes).

The only exception to this fact is isotropy; in fact, for an isotropic body thematrices
[C] and [S] are completely invariant, i.e. their only two distinct moduli are tensor
invariants and the only possible coupling is the Poisson’s effect. This is the obvious
consequence of the fact that all the directions of the space are equivalent. Physically,
the fact that the least number of independent elastic constants is two means that in
a stressed elastic body there are, in general, at least two distinct and independent
deformation effects.

2.2.11 Elasticity of Crystals and Elastic Syngonies

Crystals have an elastic behavior that belongs to one of the cases above or is a
combination of these cases. Examining their cases, allows us for entirely defining the
ten elastic syngonies introduced in Sect. 1.4.2. In particular, referring to the Voigt’s
classification, Table1.1, it is12:

12We recall that the following classification is based upon the definition of elastic syngony as a
class of materials sharing the same number and type of independent elastic moduli, see Sect. 1.4.2.

http://dx.doi.org/10.1007/978-981-10-5439-6_1
http://dx.doi.org/10.1007/978-981-10-5439-6_1
http://dx.doi.org/10.1007/978-981-10-5439-6_1
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1. classes 1 and 2 belong to the triclinic case, with 21 constants; their matrix [C] is
like in Eq. (2.53) and this crystal syngony corresponds with the triclinic elastic
syngony;

2. classes 3, 4 and 5 belong to the monoclinic case, with 13 constants; their matrix
[C] is like in Eq. (2.57) and this crystal syngony corresponds with themonoclinic
elastic syngony;

3. classes 6, 7 and 8 of the orthorhombic syngony belong to the orthotropic case,
with 9 constants; their matrix [C] is like in Eq. (2.63) and the orthorhombic
syngony corresponds hence entirely with the orthotropic elastic syngony;

4. classes 12 and13of the trigonal syngonybelong to the3-fold rotational symmetry
case, with 7 constants; they have a matrix [C] as in Eq. (2.67) and they constitute
the trigonal elastic syngony with 7 constants;

5. classes 17, 18 and 20 of the tetragonal syngony belong to the 4-fold rotational
symmetry case, with 7 constants; their matrix is like in Eq. (2.70) and they
constitute the tetragonal elastic syngony with 7 constants;

6. classes 9, 10 and 11 of the trigonal syngony are a combination of the 3-fold rota-
tional symmetry and the monoclinic symmetry cases: if the plane of symmetry
is the plane x1 = 0, then the usual procedure applied to the matrix (2.67) gives
C15 = 0, and matrix (2.67) becomes

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 0 0
C11 C13 −C14 0 0

C33 0 0 0
C44 0 0

sym C44

√
2C14

C11 − C12

⎤
⎥⎥⎥⎥⎥⎥⎦

; (2.84)

if it is x2 = 0 the plane of symmetry, then it is C14 = 0 and matrix (2.67)
becomes

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 C15 0
C11 C13 0 −C15 0

C33 0 0 0
C44 0 −√

2C15

sym C44 0
C11 − C12

⎤
⎥⎥⎥⎥⎥⎥⎦

; (2.85)

these cases constitute the trigonal elastic syngony with 6 constants;
7. classes 14, 15, 16 and 19 of the tetragonal syngony are a particular case of the

orthotropic symmetry: they have identical elastic properties along the axis x1
and x2, which gives the three supplementary conditions C22 = C11, C23 =
C13, C55 = C44, so reducing matrix (2.63) to
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[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
C44 0 0

sym C44 0
C66

⎤
⎥⎥⎥⎥⎥⎥⎦

; (2.86)

these cases constitute the tetragonal elastic syngony with 6 constants;
8. classes of the hexagonal syngony, from the 21 to the 27, belong to the 6-fold

rotational symmetry, with 5 constants; together with transversely isotropic mate-
rials, that do not exist as crystals, they form the axe-symmetric elastic syngony,
with [C] as in Eq. (2.73);

9. classes of the cubic syngony, from the 28 to the 32, are a particular case of
the orthotropic symmetry: they have identical properties along the three axes,
which gives the six supplementary conditions C33 = C22 = C11, C23 = C13 =
C12, C66 = C55 = C44, so reducing matrix (2.63) to

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C44 0 0

sym C44 0
C44

⎤
⎥⎥⎥⎥⎥⎥⎦

; (2.87)

the cubic crystal syngony corresponds entirely with the cubic elastic syngony;
10. the last elastic syngony is the isotropic elastic syngony; of course, no crystal

syngonies belong to this case; nevertheless, a huge number of materials have
an isotropic behavior. Though the texts on crystals and anisotropy usually for-
get to consider the isotropic case, this one actually exists and for the sake of
completeness we prefer here to consider it as an elastic syngony; the isotropic
matrix (2.77) can be obtained as a particular case of the cubic one, (2.87), when
C44 = C11 − C12.

2.3 The Technical Constants of Elasticity

In practical applications, engineers usually prefer to replace the use of the elastic stiff-
ness matrix components by the so-called technical elasticity constants or engineer
moduli.

Technical constants quantify an effect, a direct or a coupling one, whose mechan-
ical meaning is immediate and that can be easily identified and measured in simple
laboratory tests, like for instance unidirectional tensile tests.

Of course, the set of technical constants must be equivalent to the set of indepen-
dent elastic moduli, which means, on one side, that the number of technical constants
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and distinct elastic moduli must be the same, i.e. 21, and that the technical constants
must represent all the mechanical effects in a stressed body.

Though replacing the components of the stiffness elastic matrix [C], the technical
constants are defined as functions of the Si j . Unlike the elastic moduli, only 6 tech-
nical constants are moduli: they measure a direct effect i.e. they correspond to terms
on the diagonal of [C], and are homogenous to a stress. The remaining 15 technical
constants are coefficients: they are dimensionless quantities because constructed as
the ratio between two strain components and they measure a coupling effect, i.e. they
correspond to terms out of the diagonal of [C]. Let us introduce all of them.

2.3.1 The Young’s Moduli

The three Young’s moduli generalize to anisotropy the analogous isotropic modulus
and are defined in a similar way:

Ei := σi

εi
, i = 1, 2, 3, σi 	= 0, σ j = 0 for j 	= i, j = 1, . . . , 6. (2.88)

As a consequence, from Eq. (2.21) we get the relations (no summation over dummy
indexes)

Sii = Ziiii = 1

Ei
, i = 1, 2, 3. (2.89)

The mechanical meaning of the Young’s moduli is self-evident: each one of them
measures the extension stiffness along the direction of one of the frame axes, i.e.
the stress to be applied in the direction xi to stretch the same direction with a strain
equal to unity. Generally speaking, the three Young’s moduli are different, i.e. in
anisotropy the directions of the space have different stiffnesses.

2.3.2 Shear Moduli

Also in this case, the three shear moduli generalize to anisotropy the isotropic concept
of shear modulus13:

Gi j := σk

2εk
, i, j = 1, 2, 3, i 	= j, k = 4, 5, 6, σk 	= 0, σh = 0 for h 	= k, h = 1, . . . , 6.

(2.90)

13The reader should consider that the definition of the shear moduli normally found in the literature
is

Gi j := σi j

γi j
,

where γi j is the so-called technical shear strain, γi j := 2εi j . The above equation in the Kelvin’s
notation just corresponds to Eq. (2.90).
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To be remarked that in the literature there is a strange discrepancy in the nomenclature
of the Gi j s: in fact, the Kelvin notation is used for σk and εk but in Gi j the indexes are
those indicating the directions. The correspondences between k and i j are of course
those indicated by Eq. (2.19). As a consequence, from Eqs. (2.21) and (2.24) we get
the relations (no summation over dummy indexes)

2Skk = 4Zi ji j = 1

Gi j
, i, j = 1, 2, 3, i 	= j, k = 4, 5, 6. (2.91)

The mechanical meaning of the shear moduli is completely analogous to that of the
Young’s moduli, but it concerns shear stress and strain, and the same remarks can be
done.

2.3.3 Poisson’s Coefficients

The definition of the Poisson’s coefficients or ratios in anisotropy is quite similar to
that given for isotropic bodies:

νi j := −ε j

εi
, i, j = 1, 2, 3, σi 	= 0, σh = 0 for h 	= i, h = 1, . . . , 6. (2.92)

Like for shear moduli, also in this case the nomenclature makes use, in the same
formula, of the Kelvin’s notation along with the classical tensorial one.

From the Young’s moduli definition, Eq. (2.88), we get

ε j = −νi jεi = −νi j
σi

Ei
, i, j = 1, 2, 3. (2.93)

Through Eq. (2.21) this gives (no summation over dummy indexes)

Sji = Z j jii = −νi j

Ei
⇒ νi j = − Sji

Sii
, i, j = 1, 2, 3. (2.94)

Finally, the symmetry of matrix [S], consequence of the major symmetries of Z,
gives the reciprocity relations

νi j

Ei
= ν j i

E j
, i, j = 1, 2, 3, (2.95)

which reduce the number of distinct Poisson’s coefficients from 6 to only 3.
Some remarks about the Poisson’s coefficients: they measure the Poisson’s effect,

i.e. the deformation in a direction transversal to that of the normal stress. Because,
generally speaking, the three Poisson’s coefficients are different, the Poisson’s effect
is different in the different directions. Also, due to the dependence upon the frame
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orientation, Eq. (2.34), it is possible that in some directions νi j ≤ 0, i.e. directions
with null or negative Poisson’s coefficients are quite possible in anisotropic elasticity.
To end, it is worth to remark that some authors exchange the place of suffixes i and
j in the definition of νi j .

2.3.4 Chentsov’s Coefficients

The Chentsov’s coefficients μi j,kl play the same role of the Poisson’s coefficients
with respect to shear stress and strain. They are defined as follows:

μi j,kl := εi j

εkl
, i, j, k, l = 1, 2, 3, i 	= j, k 	= l,

σkl 	= 0, σpq = 0 for pq 	= kl, p, q = 1, 2, 3.
(2.96)

Hence, coefficient μi j,kl measures the Chentsov’s effect in the plane i j due to the
shear stress σkl , i.e. the ratio between the shear strain components εi j and εkl . By the
definition of the Gi j s, Eq. (2.90), it follows that (no summation over dummy indexes)

εi j = μi j,klεkl = μi j,kl
σkl

2Gkl
i, j, k, l = 1, 2, 3, (2.97)

and through Eqs. (2.21) and (2.24) we get

2Spq = 4Zi jkl = μi j,kl

Gkl
⇒ μi j,kl = Spq

Sqq
, i, j, k, l = 1, 2, 3, p, q = 4, 5, 6,

(2.98)
with p that corresponds to the couple i j and q to kl according to the scheme (2.19).
The symmetry of [S] gives the reciprocity relations

μi j,kl

Gkl
= μkl,i j

Gi j
, (2.99)

that, along with the minor symmetries of σ and ε reduce to only three the number
of distinct Chentsov’s coefficients. Finally, the remarks done for the νi j s can be
rephrased verbatim for the μi j,kls.

2.3.5 Coefficients of Mutual Influence of the First Type

These coefficients characterize the normal strain εi i due to the shear σ jk (no summa-
tion over dummy indexes):
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ηi, jk := εi i

2ε jk
i, j, k = 1, 2, 3, j 	= k, σ jk 	= 0, σpq = 0 for pq 	= jk, p, q = 1, 2, 3.

(2.100)
By the definition of the Gi j s, Eq. (2.90), it follows that

εi i = 2ηi, jkε jk = ηi, jk
σ jk

G jk
, (2.101)

and through Eqs. (2.21) and (2.24) we get

√
2Sip = 2Zii jk = ηi, jk

G jk
⇒ ηi, jk = Sip√

2Spp

, i, j, k = 1, 2, 3, p = 4, 5, 6,

(2.102)
with p that corresponds to the couple jk according to the scheme (2.19). For the
symmetry of σ and ε, the exchange of suffixes j and k has no effects, so the number
of distinct coefficients is only 9.

2.3.6 Coefficients of Mutual Influence of the Second Type

These coefficients characterize the shear strain εi j due to the normal stress σkk (no
summation over dummy indexes):

ηi j,k := 2εi j

εkk
i, j, k = 1, 2, 3, i 	= j, σkk 	= 0, σpq = 0 for pq 	= kk, p, q = 1, 2, 3.

(2.103)
By the definition of the Ei s, Eq. (2.88), it follows that

2εi j = ηi j,kεkk = ηi j,k
σkk

Ek
, (2.104)

and through Eqs. (2.21) and (2.24) we get

√
2Spk = 2Zi jkk = ηi j,k

Ek
⇒ ηi j,k = √

2
Spk

Skk
, i, j, k = 1, 2, 3, p = 4, 5, 6,

(2.105)
with p that corresponds to the couple i j according to the scheme (2.19). Like for the
coefficients of the first type, the symmetries of σ and ε reduce the number of distinct
coefficients of the second type to only 9.

The coefficients of the second type are not independent from those of the first
type; in fact, the symmetry of [S] gives immediately the reciprocity relations

ηi j,k

Ek
= ηk,i j

Gi j
, i, j, k = 1, 2, 3. (2.106)
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So the use of the coefficients of the first or of the second type is arbitrary and
equally valid. Also for the coefficients of the first and second type can be repeated
almost verbatim the remarks done about the other coefficients.

2.3.7 Some Remarks About the Technical Constants

The relations between a technical constant and the corresponding component of Z,
given in the previous Sections, are valid regardless of the notation used, i.e. they
are the same also with the Voigt’s notation. On the contrary, the relations with the
components Si j depends upon the notation, and those found above are not completely
identical with the Voigt’s notation, see for instance (Jones 1999, p. 79).

It is possible, of course, to express also the components of [C] as functions of
the technical constants; this necessitates the inversion of [S] and in the most general
case it gives so complicate and long expressions that it is impossible to write them.

Nevertheless, in the important case of orthotropic materials the transformation
is rather simple. In fact, in the orthotropic frame, the inverse of matrix [S], which
is perfectly analogous to matrix (2.63), is given by (no summation on the dummy
indexes)

Cii = Sj j Skk − S2
jk

S
= 1 − ν jkνk j

�
Ei , i, j, k = 1, 2, 3, i 	= j 	= k,

Ci j = Sik Sk j − Si j Skk

S
= νi j + νikνk j

�
E j , i, j, k = 1, 2, 3, i 	= j 	= k,

C44 = 1

S44
= 2G23, C55 = 1

S55
= 2G31, C66 = 1

S66
= 2G12, with

S = S11S22S33 − S11S2
23 − S22S2

13 − S33S2
12 + 2S12S23S13,

� = 1 − ν12ν21 − ν23ν32 − ν31ν13 − 2ν32ν21ν13.

(2.107)

In matrix form we have

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S22S33−S2
23

S
S13S32−S12S33

S
S12S23−S13S22

S 0 0 0
S11S33−S2

13
S

S21S13−S23S11
S 0 0 0

S11S22−S2
12

S 0 0 0
1

S44
0 0

sym 1
S55

0
1

S66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.108)

and with the technical constants
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[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1−ν23ν32
�

E1
ν12+ν13ν32

�
E2

ν13+ν12ν23
�

E3 0 0 0
1−ν13ν31

�
E2

ν23+ν21ν13
�

E3 0 0 0
1−ν12ν21

�
E3 0 0 0

2G23 0 0
sym 2G13 0

2G12

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.109)

and conversely

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

− ν21
E2

− ν31
E3

0 0 0
1

E2
− ν32

E3
0 0 0

1
E3

0 0 0
1

2G23
0 0

sym 1
2G13

0
1

2G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.110)

It is also worth to specify these results also for the isotropic case

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(1−ν)E
(1−2ν)(1+ν)

νE
(1−2ν)(1+ν)

νE
(1−2ν)(1+ν)

0 0 0
(1−ν)E

(1−2ν)(1+ν)
νE

(1−2ν)(1+ν)
0 0 0

(1−ν)E
(1−2ν)(1+ν)

0 0 0
E

1+ν
0 0

sym E
1+ν

0
E

1+ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (2.111)

and conversely

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
E − ν

E − ν
E 0 0 0

1
E − ν

E 0 0 0
1
E 0 0 0

1+ν
E 0 0

sym 1+ν
E 0

1+ν
E

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.112)

To remark that the Voigt’s notation can be obtained simply dividing by a factor 2
the components C44, C55 and C66, and multiplying by 2 the components S44, S55 and
S66.
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2.4 Bounds on the Elastic Constants

2.4.1 General Conditions and Results

Elastic constants cannot take any value: they are bounded because of the physical fact
that the deformation of an elastic bodyΩ cannot produce energy, i.e. the overall work
Lext done by the applied forces must be positive. From the Clapeyron’s Theorem

Lext = 2Vtot = 2

(
1

2

∫
Ω

σ · ε dΩ

)
, (2.113)

we get hence the condition that the total strain energy Vtot must be positive. Assuming
the strain as independent field over Ω , then the overall condition is

Vtot = 1

2

∫
Ω

σ · ε dΩ > 0 ∀ε 	= O. (2.114)

The above constraint on the deformation of an elastic body is a strong condition. By
a procedure of limit towards small volumes, it is easy to see that it must be true also
locally, i.e. ∀p ∈ Ω; it is just the local form of (2.114) that gives the bounds on the
elastic constants of a material. In fact, getting the local form of (2.114) and injecting
the Hooke’s law (2.12) gives

V = 1

2
σ · ε = 1

2
ε · Eε > 0 ∀ε 	= O. (2.115)

Equation (2.115) is the mathematical condition corresponding to the thermody-
namical fact that no energy can be produced deforming an elastic body: the elasticity
stiffness tensor E must be positive definite.

If the σ is taken as independent field over Ω in place of ε, we get a similar
restriction on the stress energy and finally the condition that the elasticity compliance
tensor Zmust be positive definite. Of course, the two approaches give in the end the
same results for the elastic constants.

2.4.2 Mathematical Conditions for the Elastic Matrices

It is easier to obtain practical results for the components of matrices [C] and [S] than
for tensors E and Z, so let us rewrite condition (2.115) in its equivalent matrix form:

1

2
{ε}�[C]{ε} > 0 ∀{ε} 	= {O}. (2.116)



2.4 Bounds on the Elastic Constants 49

Of course, the above condition states the positive definiteness of matrix [C], and
an analogous condition can be written for matrix [S].

Mathematically, the problem is hence clear: being [C] symmetric, so, by the
Spectral Theorem, with real eigenvalues λi , condition (2.116) corresponds to impose
that all the eigenvalues are positive:

1

2
{ε}�[C]{ε} > 0 ∀{ε} 	= {O} ⇐⇒ λi > 0 ∀i = 1, . . . , 6. (2.117)

The above result is almost useless, because the Laplace’s equation of [C] is an
algebraic equation of degree 6. Hence, generally speaking, it is not possible to get
an analytic expression of the roots of this equation, the eigenvalues λi , for obtaining
the searched bounds on the Ci j .

Nevertheless, a first qualitative result is that the number of conditions on the Ci j s
is 6. As distinct components are, in the most general case, 21, the conditions on
the Ci j s are not necessarily simple bounds but at least some of them are necessarily
relations among some of the components. Also, for the hexagonal, cubic and isotropic
syngonies the number of conditions is redundant with respect to the distinct elastic
constants, so some of them have lower and upper bounds and/or some of the bounds
are redundant (this, anyway, can be true also for other syngonies).

Though the approach by eigenvalues is practically impossible, there is another
mathematical approach which is completely general and feasible. To this purpose,
let us introduce the following definitions and theorems of matrix algebra.

A principal minor of a matrix [A] is the determinant of the sub-matrix extracted
from [A] removing an equal number of rows and columns having the same indexes,
i.e. preserving the leading diagonal.

A leading principal minor of order r is the determinant of a principal r × r sub-
matrix whose rows and columns are the first r rows and columns of [A]. Hence, a
n × n matrix has n leading principal minors.

Theorem 1 (Necessary condition for a symmetric matrix to be positive definite) All
the principal minors of a positive definite n × n symmetric matrix [A] are positive.

Proof By the hypothesis,

{x}�[A]{x} > 0 ∀{x} 	= {0}. (2.118)

Then, for a principal r × r sub-matrix [Ar ] extracted from [A] deleting n − r rows
and columns with the same indexes, we have

{xr }�[Ar ]{xr } = {x}�[A]{x} > 0 ∀{x}, {xr } 	= {0} (2.119)

where {x} is any vector whose components corresponding to the removed rows of
[A] are null and with at least one of the other components different from zero,
while {xr } is the r−dimensional vector obtained removing from {x} the components
corresponding to the removed rows of [A].
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Hence, [Ar ] is positive definite and because it is symmetric, its eigenvalues are
positive, see Eq. (2.117). Then, its determinant, which is the product of its eigenval-
ues, is positive too. This proves that det[Ar ] > 0 and hence the theorem.

Theorem 2 (Necessary and sufficient condition for a symmetricmatrix to bepositive
definite) For a n × n symmetric matrix [A] to be positive definite it is necessary and
sufficient that its n leading principal minors are all positive.

The proof of this theorem is non trivial and the reader is referred to (Hohn 1958, p.
340).

The six principal minors of [C] are

M1 = C11, M2 =
∣∣∣∣ C11 C12

C12 C22

∣∣∣∣ , M3 =
∣∣∣∣∣∣
C11 C12 C13

C12 C22 C23

C13 C23 C33

∣∣∣∣∣∣ ,

M4 =

∣∣∣∣∣∣∣∣

C11 C12 C13 C14

C12 C22 C23 C24

C13 C23 C33 C34

C14 C24 C34 C44

∣∣∣∣∣∣∣∣
, M5 =

∣∣∣∣∣∣∣∣∣∣

C11 C12 C13 C14 C15

C12 C22 C23 C24 C25

C13 C23 C33 C34 C35

C14 C24 C34 C44 C45

C15 C25 C35 C45 C55

∣∣∣∣∣∣∣∣∣∣
, (2.120)

M6 = det[C].

Contrarily to the eigenvalues, it is always possible to explicit the above expressions
and hence the 6 conditions

Mi > 0, i = 1, . . . , 6. (2.121)

That is why the use of Theorem 2 is more interesting than condition (2.117), though
to write down the 6 conditions in the most general case of a triclinic material gives
so long expressions that they are omitted here.

We can, however, consider the different elastic syngonies and because they have a
simpler form of [C] than in the triclinic case, also conditions (2.121) will be simpler.
In particular, let us consider here some cases whose results are particularly simple
(the bounds are written for matrix [C], but similar results can be written for [S] too;
redundant bounds have been omitted):

• orthotropic elastic syngony, Eq. (2.63):

Cii > 0, i = 1, 4, 5, 6,

C11C22 − C2
12 > 0,

C11C22C33 − C33C
2
12 − C11C

2
23 − C22C2

13 + 2C12C13C23 > 0;
(2.122)

• tetragonal elastic syngony with 6 constants, Eq. (2.86):
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C44 > 0,

C66 > 0,

C2
11 − C2

12 > 0,

(C11 − C12)
[
C33(C11 + C12) − 2C2

13

]
> 0;

(2.123)

• axially symmetric elastic syngony, Eq. (2.73):

C44 > 0,

C2
11 − C2

12 > 0,

(C11 − C12)
[
C33(C11 + C12) − 2C2

13

]
> 0;

(2.124)

• cubic elastic syngony, Eq. (2.87)

C44 > 0,

C11 − C12 > 0,

C11 + 2C12 > 0;
(2.125)

• isotropic elastic syngony, Eq. (2.77):

C11 − C12 > 0,

C11 + 2C12 > 0.
(2.126)

2.4.3 A Mechanical Approach

The bounds on the elastic constants can be found also by a direct mechanical
approach, based upon the fact that the strain energy must be positive for each pos-
sible choice of the strain field ε. This allows for choosing particularly simple strain
fields, giving some direct, simple results. Let us see how (no summation over dummy
indexes): choose a field {ε} with only one component εi 	= 0. Then,

V > 0 ⇐⇒ Cii > 0, i = 1, . . . , 6; (2.127)

we get hence six conditions. Unfortunately, each one of them is only a necessary
condition for the strain energy be positive, so the (2.127) do not constitute a set
of necessary and sufficient conditions for the positiveness of V . Nevertheless, they
give us a precious information: all the moduli responsible for the direct effects are
strictly positive. Using the stress energy instead of the strain energy, it is immediately
recognized that it is also:

Sii > 0 ∀i = 1, . . . , 6. (2.128)
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2.4.4 Bounds on the Technical Constants

The results of Eqs. (2.89), (2.91) and (2.128) give immediately

Ei > 0, Gi j > 0 ∀i, j = 1, 2, 3 : (2.129)

all the Young’s and shear moduli are strictly positive quantities, result that is valid
for any kind of elastic syngony.

To these necessary conditions some other relations for the technical constants can
be added. First of all, let us consider a spherical state of stress; it is then easy to see
that

{σ } = σ {I } ⇒ {σ }�[S]{σ } > 0 ⇐⇒
S11 + S22 + S33 + 2(S13 + S32 + S21) > 0.

(2.130)

Replacing in the above result the expressions of the Si j s from Eqs. (2.89) and (2.94)
gives the condition

1 − 2ν12
E1

+ 1 − 2ν23
E2

+ 1 − 2ν31
E3

> 0. (2.131)

This result is valid regardless of the elastic syngony; for the cubic and isotropic
syngonies it becomes the well known bound ν < 1/2 on the Poisson’s coefficient.
A simpler but rougher estimation can be obtained from bound (2.131), (Lekhnitskii
1950, p. 85):

3 − 2(ν12 + ν23 + ν31)

min{E1, E2, E3} >
1 − 2ν12

E1
+ 1 − 2ν23

E2
+ 1 − 2ν31

E3
> 0 ⇒

ν12 + ν23 + ν31 <
3

2
.

(2.132)

Some other necessary conditions can be given expressing the Cii in terms of the
technical parameters. This is impossible in the most general case of the triclinic
syngony, for the calculations are too complicate. However, this can be done for the
orthotropic syngony; the supplementary bounds can be found expressing the (2.127)
as functions of the technical constants through Eq. (2.107) and taking into account
the positivity of the Young’s moduli, Eq. (2.129):

1 − νi jν j i > 0 ∀i, j = 1, 2, 3;
� = 1 − ν12ν21 − ν23ν32 − ν31ν13 − 2ν32ν21ν13 > 0.

(2.133)

Condition (2.133)2 can be transformed to

ν32ν21ν13 <
1

2

(
1 − ν2

32
E2

E3
− ν2

21
E1

E2
− ν2

13
E3

E1

)
<

1

2
. (2.134)
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Through the reciprocity conditions on the Poisson’s coefficients, Eq. (2.95), condi-
tions (2.133)1 can be written also as

|νi j | <

√
Ei

E j
∀i, j = 1, 2, 3, (2.135)

or equivalently
|Si j | <

√
Sii S j j ∀i, j = 1, 2, 3. (2.136)

Some remarks to end this part; first of all, the bounds concern frame dependent
quantities, and of course they are more easily written in a frame composed by sym-
metry directions. Then, the only, general, necessary and sufficient conditions are
the (2.121), that can always be written and used in numerical applications, e.g. for
checking the validity of the results of experimental tests.

In the case of orthotropic materials, a set of conditions on the technical constants
can be easily written, but it is still questionable whether or not it constitutes a set
of necessary and sufficient conditions for the positivity of the strain energy, a point
never treated in the literature. Finally, bounds on the Chentsov’s andmutual influence
coefficients are apparently unknown in the literature.

In the case of isotropic materials, the conditions of positivity of the strain energy
reduce to the well known three bounds on E and ν

E > 0, −1 < ν <
1

2
, (2.137)

but when the bounds are written for the two distinct components of [C], C11 and C12,
then rather surprisingly the bounds are only two, see Eq. (2.126):

C11 − C12 > 0, C11 + 2C12 > 0. (2.138)

Also when the isotropic constitutive law is written under the form of the Lamé’s
equations

σ = 2με + λtrε I, (2.139)

it is easy to show that the only two bounds on the Lamé’s constants λ and μ are

μ > 0, 2μ + 3λ > 0, (2.140)

that corresponds exactly to bounds (2.138). This fact shows that the number of
necessary and sufficient conditions for the strain energy to be positive depends upon
the choice of the elastic constants and that, anyway, it is quite hard to establish a
priori its value, whose maximum remains however 6.

A last remark: all the bounds and conditions written in this Section are written on
frame dependent quantities, apart those written for the isotropic case, Eq. (2.126),
of course. In particular, conditions (2.122) to (2.125) are valid exclusively in the
symmetry frame where the respective matrices [C] have been written. In the plane
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case, we will see that it is possible, with the polar formalism, to give completely
invariant bounds, i.e. bounds established on tensor invariants, which are not yet
known for the general 3D case.

2.5 An Observation About the Decomposition
of the Strain Energy

Let us consider a pointwhich is true at least for isotropicmaterials but often thought as
generally true also for other elastic syngonies: is it possible to decompose the strain,
or stress, energy into spherical and deviatoric parts? In other words, we ponder
whether or not it is always possible to write

V = Vsph + Vdev, (2.141)

where Vsph , the spherical part of V is produced exclusively by the spherical part of
ε and by its corresponding part of σ , i.e.

Vsph = 1

2
εsph · Eεsph, (2.142)

and Vdev, the deviatoric part of V is produced exclusively by the deviatoric part of ε

and by its corresponding part of σ , i.e.

Vdev = 1

2
εdev · Eεdev. (2.143)

Mechanically, such a decomposition means that V can be considered as the sum of
two parts: one, Vsph , due to volume changes not accompanied by shape changes, the
other one, Vdev, produced by isochoric shape changes. This decomposition is, for
instance, at the basis of the Hüber–Hencky–von Mises criterion, where the only Vdev

is considered to be responsible of yielding.
We recall that it is always possible to decompose σ and ε into a spherical and a

deviatoric part

σ = σ sph + σ dev, σ sph = 1

3
trσ I, σ dev = σ − σ sph,

ε = εsph + εdev, εsph = 1

3
trε I, εdev = ε − εsph,

(2.144)

and that any spherical part is orthogonal to any deviatoric part:
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σ sph · εdev = 1

3
trσ I ·

(
ε − 1

3
trε I

)
= 1

3
trε trσ − 1

3
trε trσ = 0,

σ dev · εsph =
(

σ − 1

3
trσ I

)
· 1
3
trε I = 1

3
trε trσ − 1

3
trε trσ = 0.

(2.145)

Using decomposition (2.144) we have

V =1

2
ε · Eε = 1

2
(εsph + εdev) · E(εsph + εdev) =

1

2
εsph · Eεsph + 1

2
εdev · Eεdev + 1

2
εsph · Eεdev + 1

2
εdev · Eεsph .

(2.146)

For the decomposition (2.141) to be true, it is necessary and sufficient that

εsph · Eεdev = 0 ⇒ tr
[
ε�

sph(Eεdev)
] = 0 ∀ε. (2.147)

In fact, whenever Eq. (2.147) is satisfied, for definition (2.38) it is

εdev · Eεsph = E
�εdev · εsph = εsph · Eεdev, (2.148)

because of the symmetry of E, i.e. for its major symmetries. This result shows that
the two mixed terms in (2.146) are identical.

Through (2.144), condition (2.147) can be written as

tr

[
1

3
trε I(Eεdev)

]
= 0 ∀ε ⇐⇒ tr(Eεdev) = 0. (2.149)

The components of E must satisfy Eq. (2.149) for the decomposition (2.141) to be
possible. It can be rewritten as

tr

[
E

(
ε − 1

3
trε I

)]
= 0 ⇒ 3tr(Eε) − trε tr(EI) = 0 ∀ε. (2.150)

Actually, it is easy to check that condition (2.147) corresponds to impose that

σ dev = Eεdev, σ sph = Eεsph . (2.151)

Condition (2.150) can be written by components:

Ehhkkεi i − 3E j jpqεpq = 0 ∀εmn, i, j, h, k, p, q, m, n = 1, 2, 3. (2.152)

Generally speaking, this quantity does not vanish for any possible choice of ε. As a
consequence, for a generic anisotropic material decomposition of the strain energy
into a spherical and deviatoric part is not possible. Nevertheless, it can be checked
that for the cubic syngony Eq. (2.152) is always satisfied. In fact, for an orthotropic
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material condition (2.152) becomes

1

3
[E1111 (2ε11 − ε22 − ε33) + E2222 (2ε22 − ε11 − ε33)+

E3333 (2ε33 − ε22 − ε11)]+
2

3
[E1122 (ε11 + ε22 − 2ε33) + E1133 (ε11 + ε33 − 2ε22) +

E2233 (ε22 + ε33 − 2ε11)] = 0,

(2.153)

condition which is not yet satisfied, generally speaking, but which is always satisfied
when

E1111 = E2222 = E3333, E1122 = E2233 = E1133, (2.154)

i.e. by cubic materials. Hence, for materials of the cubic syngony, decomposition
(2.141) is always possible and, a fortiori, by isotropic materials too, as well known,
because they can be considered as a special case of the cubic syngony, see Sect. 2.2.11,
point 10.

2.6 Determination of Symmetry Planes

The classification in elastic syngonies presupposes that, for a given material, the
existing equivalent directions are known, so as to write E, or equivalently [C], in
a symmetry frame, which makes some of the Ei jkls, and the corresponding Ci j s,
vanish.

But when amaterial is completely unknown, the independent measures to be done
in experimental tests to characterize the material are as much as 21; practically, it
is very complicate to do all of these tests. Nevertheless, the existence of possible
symmetry planes remains unknown also once all the Ci j s are known, if [C] is a full
matrix.

The problem is hence the following one: given a general matrix [C], is it possible
to determine if some planes of symmetry exist and which they are? We will see in
Sect. 4.1 that in the planar case it is very simple to determine whether or not the
material has some kind of elastic symmetry and the symmetry directions using the
polar formalism. In the three dimensional case, the problem ismuchmore complicate;
it has been solved by Cowin and Mehrabadi in two works, (Cowin and Mehrabadi
1987; Cowin 1989), successively completed by Ting (1996). We give here a brief
account of these results.

Be n andm two vectors such that ||n|| = ||m|| = 1, m ·n = 0, with n orthogonal
to a symmetry plane for a material whose elastic tensor is E. Consider the following
second-rank symmetric tensors:V = EI,W the acoustic14 tensor relative to the basis

14The acoustic or Green-Christoffel tensor Au relative to the direction u is the unique tensor such
that Auw = E(w ⊗ u)u ∀w ∈ V .

http://dx.doi.org/10.1007/978-981-10-5439-6_4
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direction ep,X andY the acoustic tensors relative to n andm, respectively.15 We can
now state the following:

Theorem 3 The following statements are equivalent (λi ∈ R, i = 1, . . . , 6):

1. the material has a plane of symmetry whose normal is n;
2. Vn = λ1Yn = λ2n;
3. Wn = λ3Yn = λ4n;
4. Xn = λ5Yn = λ6n.

Proof Without loss of generality, let us suppose that n = e1 and m = cos θe2 +
sin θe3. When n is an eigenvector of V, W, X or Y then

Vn = λvn → Ei1qqei = λve1,

Wn = λwn → Eip1pei = λwe1,

Xn = λxn → Ei111ei = λxe1,

Yn = λyn →[
Ei212 cos

2 θ + Ei313 sin
2 θ + (Ei213 + Ei312) sin θ cos θ

]
ei = λye1 ∀θ.

(2.155)

For i = 1, the above results give the values of the respective eigenvalues, but for
i = 2, 3 we get, respectively,

E21qq = E31qq = 0,

E2p1p = E3p1p = 0,

E2111 = E3111 = 0,

E2212 cos
2 θ + E2313 sin

2 θ + (E2213 + E2312) sin θ cos θ =
E3212 cos

2 θ + E3313 sin
2 θ + (E3213 + E3312) sin θ cos θ = 0 ∀θ.

(2.156)

Passing to the Ci j s for the sake of convenience, and writing down in the order all the
above relations, we get

C15 + C25 + C35 = C16 + C26 + C36 = 0,

C15 + C35 + C46√
2

= C16 + C26 + C45√
2

= 0,

C15 = C16 = 0,

C25 = C26 = C35 = C36 = C45 = C46 = 0.

(2.157)

15It is simple to verify that
V = EI = Eikqqei ⊗ ek ,

W = Eipkpei ⊗ ek ,

X = Eilkmnl nmei ⊗ ek ,

Y = Ei jkhm j mhei ⊗ ek .
.
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If the material has x1 = 0 as unique plane of symmetry, it belongs to the monoclinic
syngony and its matrix [C] is given by, see Sect. 2.2.5,

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 0 0
C22 C23 C24 0 0

C33 C34 0 0
C44 0 0

sym C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.158)

that is:

C15 = C16 = C25 = C26 = C35 = C36 = C45 = C46 = 0. (2.159)

It is then clear that conditions (2.157)1,4, (2.157)2,4 or (2.157)3,4 imply (2.159) and
vice-versa, which proves the theorem.

This theorem states that the material has a plane of symmetry whose normal is n
if and only if n is the eigenvector of Y and of at least another tensor among V,W or
X.

2.6.1 Physical Interpretations

A physical interpretation of Theorem 3 is possible in the frame of the acoustics
theory, see (Ting 1996, p. 61): tensor X is the acoustic tensor for the elastic waves
that propagate in the direction of n. An elastic wave is a longitudinal wave whenever
n is an eigenvector of X; in such a case, n is called a specific direction of X. It has
been proved by Kolodner that in an anisotropic material there exist always at least
three different specific directions (Kolodner 1966). When n is an eigenvector of Y,
then the wave is transversal, m is the direction of the wave propagation and n is
called the specific axis.

Then conditions (2.157)3,4, i.e. whenn is an eigenvector ofX andY, are equivalent
to say that n is at the same time a specific direction and a specific axis, i.e. it is
simultaneously the direction of propagation of longitudinal waves and the transversal
direction of transversal waves propagating along the direction ofm orthogonal to n.

A statical interpretation has also been given by Hayes and Norris. It traduces
the above acoustics conditions into equivalent statical conditions. They have been
resumed in the following

Theorem 4 A material has a plane of symmetry if and only if at least two orthogonal
planes of pure shear exist, sharing a common shear direction which is the normal to
the plane of symmetry.

For the proof of this Theorem, rather articulated, we address the reader to the
original paper (Hayes and Norris 1991).
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2.7 Curvilinear Anisotropy

When in a body there are directions that are not parallel but mechanically equivalent,
then the body possesses a curvilinear anisotropy. It is still possible to write the
Hooke’s law in a rectangular coordinate system, as done until now. However, in
doing so, the components of [C] or [S] are no more constants, but vary with the
position according to the variation of the coordinate directions with respect to the
equivalent directions.

Be {ξ, η, ζ } the coordinate directions of the curvilinear coordinates that coin-
cide with the mechanically equivalent directions. With self-evident meaning of the
symbols, the Hooke’s law can be written in the curvilinear coordinate system as
(Lekhnitskii 1950, p. 64),

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σξξ

σηη

σζζ√
2σηζ√
2σζξ√
2σξη

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εξξ

εηη

εζζ√
2εηζ√
2εζξ√
2εξη

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (2.160)

where the Ci j s are constants. In some cases of non homogenous bodies, the Ci j s can
depend upon the coordinates {ξ, η, ζ }. Of course, if some type of elastic symmetry
is present in the body, then some of the Ci j s can be null, as in the ordinary cases of
the elastic syngonies.

A special case of curvilinear anisotropy is that of cylindrical anisotropy: the body
has an axis of symmetry, not necessarily inside the body itself, all the directions
crossing this axis at right angles are equivalent, as well as all the directions parallel
to the axis and the directions orthogonal to the first two directions.

Using a customary set of cylindrical coordinates {r, θ, z}, with z the axis of sym-
metry, then the Hooke’s law can be written as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σrr

σθθ

σzz√
2σθ z√
2σzr√
2σrθ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εrr

εθθ

εzz√
2εθ z√
2εzr√
2εrθ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.161)

A special case of cylindrical anisotropy is that of cylindrical orthotropy: each
plane which is radial, tangential or orthogonal to the symmetry axis is a plane of
symmetry. In such a case matrix [C] in Eq. (2.161) is simplified:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σrr

σθθ

σzz√
2σθ z√
2σzr√
2σrθ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

sym C55 0
C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εrr

εθθ

εzz√
2εθ z√
2εzr√
2εrθ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.162)

It isworth noting that cylindrical orthotropy is not equivalent to transverse isotropy
(that in fact depends upon only 5 constants, not upon 9). Actually, transverse isotropy
is a special case of cylindrical orthotropy, because not only the radial and tangential
directions are equivalent, but all the directions lying in a plane orthogonal to the
symmetry axis are equivalent directions.

Some examples of cylindrical anisotropy are a block of wood with regular yearly
cylindrical layers, or metallic pipes, for their manufacturing process, or a circular
reinforced concrete slab with steel bars disposed radially and circumferentially, a
bicycle wheel, when homogenized, a circular stone arch and so on.

Another, less common, type of curvilinear anisotropy is that of spherical
anisotropy: there is a center of symmetry, not necessarily belonging to the body,
and all the rays emanating from it are equivalent directions. Also, the tangents to
the meridians and to the parallels are equivalent directions too. Using a standard
spherical coordinate systems {ρ, θ, ϕ}, where the directions of the coordinate axes
coincide with the equivalent directions, Eq. (2.160) becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σρρ

σθθ

σϕϕ√
2σθϕ√
2σϕρ√
2σρθ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ερρ

εθθ

εϕϕ√
2εθϕ√
2εϕρ√
2ερθ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.163)

The case of spherical orthotropy is get when each meridian and tangential plane
is a plane of symmetry as well as each plane orthogonal to these two planes. Then,
Eq. (2.163) becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σρρ

σθθ

σϕϕ√
2σθϕ√
2σϕρ√
2σρθ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

sym C55 0
C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ερρ

εθθ

εϕϕ√
2εθϕ√
2εϕρ√
2ερθ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.164)

To remark the difference between isotropy and spherical orthotropy: isotropy is
a special case of spherical orthotropy, because all the directions are equivalent, not
only those emanating from the centre of symmetry. This reduces the number of
independent elastic constants from 9 to only 2.
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Fig. 2.3 Scheme of the
frame rotation for tracing the
elastic constants 3D-graphics
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2.8 Some Examples of Anisotropic Materials

To end this Chapter, we give in this Section some examples of anisotropic materials,
showing the matrix [C] (in GPa) and the 3D-directional diagrams of some of the
technical constants. These last have been obtained as the value get by the constant
on the axis of x ′

1 of a frame {x ′
1, x ′

2, x ′
3} rotated with respect to the frame {x1, x2, x3}

where the matrix [C] is known, see Fig. 2.3. The rotation matrix [R] is obtained
according to Eq. (2.48), with a rotation tensor U that is

U =
⎡
⎣ sin ϕ cos θ sin ϕ sin θ cosϕ

− sin θ cos θ 0
− cosϕ cos θ − cosϕ sin θ sin ϕ

⎤
⎦ . (2.165)

So, with this choice axis x2 lies always in the horizontal plane.
The compliance matrix [S′] in the rotated frame can be obtained using the inverse

of relations (2.49):

{ε} = [S]{σ } → [R]�{ε′} = [S][R]�{σ ′} →
{ε′} = [R][S][R]�{σ ′} ⇒ [S′] = [R][S][R]�.

(2.166)

This result can be applied to [C] too, and it is the matrix corresponding of Eq. (2.34).
Once the Si j s known, the technical constants can be easily calculated using the results
of Sect. 2.3.

Through Eqs. (2.165) and (2.166) it can be shown that for the materials of the
hexagonal elastic syngony it is always

S14 = S16 = S24 = S26 = S34 = S36 = S45 = S56 = 0. (2.167)

For these materials, the only Chentsov’s and mutual influence coefficients that are
not identically null are μ23,12, η1,31, η2,31, η3,31, η31,1, η31,2 and η31,3.

Different cases are considered below; for each one of them, the directional 3D-
graphics of E1, G12, ν12, μ23,12, η1,31 and η31,1 are traced. For the four last constants,
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when needed a blue translucent sphere is also traced: it represents the surface where-
on the property traced in the graphics vanishes. So, the part of the 3D-graphics
inside the sphere corresponds to negative values of the property itself. The graphics
show clearly that the Poisson’s, Chentsov’s and mutual influence coefficients can get
negative values. The values of the Ci j s, E1 and G12 are in GPa. To remember that
[C] is given in the Kelvin’s notation, Eq. (2.24).

From the graphics below, one can appreciate the extreme variety of forms of
the technical constants. It can be remarked how anisotropy properties change very
quickly for small changes of direction (Fig. 2.9, 2.10, 2.11, 2.12, 2.13 and 2.14).

The case of the hexagonal syngony is very articulated, and it can be shown that
there are asmuch as 8 possible different profiles of E1(ϕ), (Vannucci 2015) (of course
E1, like all the other properties, does not dependupon θ , because the hexagonal elastic
syngony is equivalent to transverse isotropy).

• Anorthite (CaAl2Si2O8)
Crystal syngony: Monoclinic, N = 13, plane of symmetry: x2 = 0.
Source: Evans and Grove (2004)

(a) E1 (b) G12 (c) ν12

(d) μ23,12 (e) η1,31 (f) η31,1

Fig. 2.4 Directional 3D-graphics of Anorthite
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[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

124 66 50 0 −26.9 0
205 42 0 −9.9 0

156 0 −25.4 0
48 0 −2

sym 80 0
84

⎤
⎥⎥⎥⎥⎥⎥⎦

• Perovskite (CaTiO3)
Crystal syngony: Orthorhombic, N = 9.
Source: Evans and Grove (2004)

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

515 117 117 0 0 0
525 139 0 0 0

435 0 0 0
48 0 0

sym 404 0
350

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) E1 (b) G12 (c) ν12

(d) μ23,12 (e) η1,31 (f) η31,1

Fig. 2.5 Directional 3D-graphics of Perovskite
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• Dolomite (CaMg(CO3)2) (*estimated)
Crystal syngony: Trigonal, N = 7.
Source: Bakri and Zaoui (2011)

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

196.6 64.4 54.7 31.7 25.3∗ 0
196.6 54.7 −31.7 −25.3∗ 0

110 0 0 0
83.2 0 −35.84

sym 83.2 44.8
132.2

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) E1 (b) G12 (c) ν12

(d) μ23,12 (e) η1,31 (f) η31,1

Fig. 2.6 Directional 3D-graphics of Dolomite



2.8 Some Examples of Anisotropic Materials 65

• Calcium Tungstate (CaWO4)
Crystal syngony: Tetragonal, N = 7.
Source: Landolt and Börnstein (1992)

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

141 61 41 0 0 1.9
141 41 0 0 −1.9

125 0 0 0
67.4 0 0

sym 67.4 0
81.4

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) E1 (b) G12 (c) ν12

(d) μ23,12 (e) η1,31 (f) η31,1

Fig. 2.7 Directional 3D-graphics of Calcium Tungstate
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• Quartz (SiO2)
Crystal syngony: Trigonal, N = 6.
Source: Landolt and Börnstein (1992)

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

86.8 7.1 14.4 24.3 0 0
86.8 14.4 −24.3 0 0

107.5 0 0 0
116.4 0 0

sym 116.4 34.4
79.7

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) E1 (b) G12 (c) ν12

(d) μ23,12 (e) η1,31 (f) η31,1

Fig. 2.8 Directional 3D-graphics of Quartz
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• Zircon (ZrSiO4)
Crystal syngony: Tetragonal, N = 6.
Source: Evans and Grove (2004)

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

424 70 149 0 0 0
424 149 0 0 0

489 0 0 0
262 0 0

sym 262 0
96

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) E1 (b) G12 (c) ν12

(d) μ23,12 (e) η1,31 (f) η31,1

Fig. 2.9 Directional 3D-graphics of Zircon
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• Ice (H2O)
Crystal syngony: Hexagonal, N = 5.
Source: Evans and Grove (2004)

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

13.5 6.5 6 0 0 0
13.5 6 0 0 0

15 0 0 0
6 0 0

sym 6 0
7

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) E1 (b) G12 (c) ν12

(d) μ23,12 (e) η1,31 (f) η31,1

Fig. 2.10 Directional 3D-graphics of Ice
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• Titanium Boride (TiB2)
Crystal syngony: Hexagonal, N = 5.
Source: Landolt and Börnstein (1992)

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

648.3 404.2 317.7 0 0 0
648.3 317.7 0 0 0

439.3 0 0 0
500 0 0

sym 500 0
244.1

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) E1 (b) G12 (c) ν12

(d) μ23,12 (e) η1,31 (f) η31,1

Fig. 2.11 Directional 3D-graphics of Titanium Boride
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• Pine Wood
Transversely isotropic, N = 5.
Source: Lekhnitskii (1950)

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.45 0.11 0.13 0 0 0
0.45 0.13 0 0 0

10.1 0 0 0
1.5 0 0

sym 1.5 0
0.34

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) E1 (b) G12 (c) ν12

(d) μ23,12 (e) η1,31 (f) η31,1

Fig. 2.12 Directional 3D-graphics of Pine Wood
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• Gold (Au)
Crystal syngony: Cubic, N = 3.
Source: Evans and Grove (2004)

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

191 162 162 0 0 0
191 162 0 0 0

191 0 0 0
84 0 0

sym 84 0
84

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) E1 (b) G12 (c) ν12

(d) μ23,12 (e) η1,31 (f) η31,1

Fig. 2.13 Directional 3D-graphics of Gold
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• Diamond (C)
Crystal syngony: Cubic, N = 3.
Source: Evans and Grove (2004)

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1079 124 124 0 0 0
1079 124 0 0 0

1079 0 0 0
1156 0 0

sym 1156 0
1156

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) E1 (b) G12 (c) ν12

(d) μ23,12 (e) η1,31 (f) η31,1

Fig. 2.14 Directional 3D-graphics of Diamond
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