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Abstract. HBase is one of the most popular NoSQL database systems. Because
it operates on a distributed file system and supports a flexible schema, it is
suitable for dealing with large volumes of semi-structured data. However,
HBase only provides an index built on one dimensional rowkeys of data, which
is unsuitable for the effective processing of multidimensional spatial data. In this
paper, we propose a hierarchical index structure called a Q-MBR (quadrant
based minimum bounding rectangle) tree for effective spatial query processing
in HBase. We construct a Q-MBR tree by grouping spatial objects hierarchically
through Q-MBRs. We also propose a range query processing algorithm based
on the Q-MBR tree. Our proposed range query processing algorithm reduces the
number of false positives significantly. An experimental analysis shows that our
method performs considerably better than the existing methods.

Keywords: HBase - NoSQL - Spatial data indexing - Q-MBR tree - Range
query

1 Introduction

In recent years, a number of studies have attempted to use Hadoop distributed file
system and MapReduce framework to deal with spatial queries on big spatial data
[1-3]. However, these methods suffer from a large amount of data I/O during query
processing because of a lack of spatial awareness of the underlying system. In order to
overcome this problem, there have been attempts to distribute spatial data objects over
cloud infrastructure by considering their spatial proximity [4—7]. SpatialHadoop [4] and
Hadoop-GIS [5] observe the spatial proximity of data, and store adjacent data into same
storage block of Hadoop. They provide global index to retrieve relevant blocks for
query processing and also provide local index to explore data in each blocks. Dragon
[6] and PR-Chord [7] use similar indexing techniques on P2P environment. The lim-
itation of these methods is that they are vulnerable to update. When the updating is
issued, distribution of data is changed and entire index structure should be modified.

As an alternative to methods based on the Hadoop system, there have been several
studies have enhanced the spatial awareness of NoSQL DBMS, especially HBase
[8—10]. HBase provides an effective framework for fast random access and updating of
data on a distributed file system. Because HBase only provides an index built on one
dimensional rowkeys of data, most studies attempt to provide a secondary index of
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spatial data in the HBase table format. However, because these are not designed to fully
utilize the properties of HBase, inefficient I/O occurs during spatial query processing.

In this paper, we propose indexing and range query processing techniques to
efficiently process large spatial data in HBase. Our proposed indexing method adap-
tively divides the space into quadrants like a quad tree, by reflecting the data distri-
bution, and creates an MBR in each quadrant. These MBRs are used to construct a
secondary index to access spatial objects. The index is stored as an HBase table, and
accessed in a hierarchical manner.

This paper is organized as follows. Section 2 describes our data partitioning
method, named Q-MBR, and the index structure that employs it. Section 3 describes
the algorithms for insertion and range query using the Q-MBR tree. In Sect. 4, we
experimentally evaluate the performance of our index and algorithms. Finally, Sect. 5
concludes the paper.

2 Spatial Data Indexing Using Quadrant-Based MBR

2.1 Data Partitioning with Quadrant-Based MBR

We split the space using a quadrant based minimum bounding rectangle, named a
Q-MBR. To construct the Q-MBR, we divide the space into quadrants, and create an
MBR for the spatial objects in each quadrant. If the number of spatial objects in an
MBR exceeds a split threshold, then the quadrant is recursively divided into
smaller-sized sub-quadrants and MBRs are created for each sub-quadrant. Note that
this partitioning method can create an MBR containing only a single spatial object.
Figure 1 shows an example of the Q-MBR. The table shown in the figure is a list of
Q-MBRs generated by the points on the left side of the figure. In this example, we
assume that the capacity of the Q-MBR is four.
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Fig. 1. An example of quadrant-based MBR

As shown in Fig. 1, Q-MBR contains both information about the quadrant and the
MBR. The reason for maintaining information on both is to store the Q-MBR in the
HBase table and use it as the building block of our hierarchical index structure.
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The quadrant information is used as the rowkey, in order to reduce the cost of updating. If
the precise MBR information is used as a rowkey, then we frequently have to create a new
rowkey, because MBR information is update-sensitive. In the worst case, we create a new
rowkey and redistribute every spatial object when each update occurs. Hence, the MBR
information is stored in a column, which is relatively inexpensive to update. This MBR
information is used for distance calculations in spatial query processing.

2.2 Hierarchical Index Structure

The spatial objects in Q-MBR are accessed in a hierarchical manner through an index
tree. This index tree, named a Q-MBR tree, is implemented in an HBase table format.
The structure of a Q-MBR tree is similar to that of a quad-tree. The properties of a
Q-MBR tree are as follows. First, while related techniques sort spatial objects in z-order
and group objects according to the auto-sharding of the table, Q-MBR can group
spatial objects into smaller units as the user requires. The next property is that a
Q-MBR tree does not require an additional index structure, such as a BGRP tree or the
R+ tree of KR+ tree, in order to build and maintain itself. The structure of a Q-MBR
tree node is described in Table 1.

Table 1. Structure of a Q-MBR tree node

Type Component Description
Internal Quadrant The binary values of quadrant information
node MBRs of The coordinates of the lower left and the upper right corners of
children the MBR
Number of Number of objects in sub-tree
objects
Leaf node | Quadrant The binary values of the quadrant information
Data objects The list of spatial objects in this node
Number of Number of objects in this node
objects

An internal node consists of the quadrant information of the node, the MBRs of the
child nodes and the number of objects included in their sub-tree. The quadrant infor-
mation of the node can be represented by binary values. When we split a node, the
newly created sub-quadrants can be enumerated according to the z-order. For example,
if partitioning occurs at the root node, then the sub-quadrants are named using two-bit
values, such as 00, 01, 10 and 11. If the sub-quadrant is recursively partitioned, then the
name of the sub-quadrant is created by concatenating the name of their parent with the
newly created two-bit name.

A leaf node consists of a quadrant, a list of spatial objects, and the number of
objects in this leaf node. The quadrant information and number of objects are similar to
their counterparts for an internal node. The difference lies in the list of spatial objects.
HBase provides a function of data filtering in order to only transmit data of interest to a
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client. We define the filtering function as computing the distance between a query point
and a spatial object. Therefore, the list of spatial objects contains their coordinates and
ids. Figure 2 shows an example of a hierarchical Q-MBR index structure for spatial
objects shown in Fig. 1. In this example, we assume that capacity of a leaf node is four.

Name RO
Quadrant -
# objects 15
MBR1 5. 5). (22, 12)
MBR2 (10, 60), (36, 78)
MBR3 (43,2), (64, 26)
MBR4 (56, 57). (75, 74)
Name R1 Name R2 Name R3 Name R4
Quadrant 00 Quadrant o1 Quadrant 10 Quadrant 11
#objects 2 #objects 4 #objects 6 #objects 2
Data pl.p2 Data 3. p4, MBR1 (43,2),(53.11) Data pl.p2
Ll MBR2 (46,22),(55.26)
MBR3 (64.8),(64.8)
l
Name RS Name R6 Name R7
Quadrant 1000 Quadrant 1001 Quadrant 1001
#objects 3 #objects 2 #objects 1
Data p7. gpS. Data p10, p11 Data p12
P

Fig. 2. An example of a Q-MBR tree

2.3 Representation of a Q-MBR Tree in HBase

In order to store a Q-MBR tree in an HBase table, it is necessary to design a schema
that supports effective 1/O considering the characteristics of HBase. In particular,
because leaf nodes storing a group of spatial object have a large number of entries,
designing table schema for efficiently loading leaf nodes from the table is important to
improve the overall performance of index traversing. Due to the flexibility in schemas
of HBase, a table of HBase can take one of two forms: tall-narrow and flat-wide.
A tall-narrow table has a large number of rows with few columns, and a flat-wide table
consists of a small number of rows with many columns.
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Fig. 3. Response time for loading spatial objects from an HBase table
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The format of wide table is more appropriate for loading a large-sized leaf node
from the HBase table. Because the spatial objects stored in a single row have the same
rowkey, the time required for data fetching from a wide table is shorter. Figure 3 shows
the response times for loading spatial objects from a tall-table and a wide-table. The
x-axis of the graph indicates the number of spatial objects loaded from the HBase table
at each time. In the case of the tall-narrow table, a desired number of rows are read at a
time through a scan operation. In the flat-wide table, the number of spatial objects read
at a time is stored in a single row, and these are obtained through a ger operation. As
shown in the figure, loading objects from the wide table delivers a better performance.
Based on this observation, we store the spatial objects in each leaf node in a single row,
and add a new column entry whenever a spatial object is inserted.

Meta family MBR family Data Family
Row key
(Quadrant) | Is ""l > obitds 00 01 10 11 d1 | a2 | d3 | d4
(5.5) (10,60), (43.2), (56,57).
Root o 15 (2212) | (36.78) (64.26) (75.74)
00 1 2 PL P2
01 1 4 ps ps ps | ps
10 0 6 432), | @622), (64.8),
(5311) | (55.26) (64.8)
1000 1 3 p7 ps Ps |
1001 1 2 P10 P11
1010 1 1 P12
11 1 3 P13 P14 | P1s |

Fig. 4. Table for a Q-MBR tree node

Figure 4 presents the table of the Q-MBR tree for the example in Fig. 2. An
internal node, such as the root or 10, has a column family of MBRs that indicates the
MBR information of its children. On the other hand, leaf nodes contain a column
family of data objects, which maintains a list of spatial objects. For the purpose of
illustration, the column qualifier of each spatial object is enumerated from dl to d4.
However, in order to use column filtering, each spatial object should have a unique
column qualifier consisting of their coordinate values. The splitting threshold of a leaf
node is determined according to the batch size of the RPC in the HBase system. The
batch size is the unit size of a transmission in the HBase system. This can be defined
according to the requirements of the user.
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3 Algorithms of Spatial Data Insertion and Range Query
Processing

3.1 Insertion Algorithm for a Q-MBR Tree

Algorithm 1 presents the insertion algorithm for a Q-MBR tree. The algorithm inserts a
spatial object into the leaf node whose quadrant covers the location of the spatial
object. To find the appropriate leaf node, the algorithm retrieves the Q-MBR tree using
the quadrant information for each node. This searching process is described in lines 2 to
7. The MBR information of children and the number of spatial objects are updated
when the internal nodes are traversed. After updating the information of the current
traversed node, the algorithm calculates the rowkey of the next node, and loads this
from the table for the next iteration. If the appropriate leaf node is found, then the
spatial object is added to the dataFamily of the leaf node. When the number of spatial
objects in a leaf node exceeds the split threshold, the function SplitNode() is called to
split the leaf node. The function SplitNode(node) returns an internal node that is the
result of partitioning. The splitting process creates new children by dividing the
quadrant into four sub-quadrants, and redistributes the spatial objects into newly cre-
ated leaf nodes.

Algorithm 1. Insert data point for a Q-MBR tree

Input : Spatial object p, split threshold S
Output : The updated Q-MBR tree after insertion

node A< root node of the Q-MBR tree
while(#/ is not a leaf node)
For(each child C of # ) do
if (quadrant of C covers p)
update MBR of C in &
increase object counter of W&
N —C
if (object counter of # < S5 ) then
add an spatial object p to DataFamily of &
increase object counter of ¥
else if (size of #>= S ) then
& =SplitNode (4)
for (each child C of A& do
if (quadrant of C covers p)
update MBR of C in &
add an spatial object p to DataFamily of C
increase object counter of C

End

Figure 5 present an example of insertion. Suppose that the spatial object pl,
marked with a star in the figure, is inserted in the Q-MBR tree from Fig. 5(a). The
algorithm starts with an examination of the root node R0. Because the quadrant of R2
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covers the location of pl, the algorithm updates the MBR of R2 in the root node, and
loads R2 from the index table. The next step is to insert the object pl into R2.
However, the number of objects in R2 exceeds the split threshold after this insertion.
Therefore, R2 is split into sub-quadrants, and the spatial objects in R2 are redistributed
to the children. As a result, the new leaf nodes R8, R9 and R10 are inserted into the
index table, as shown in Fig. 5(b).
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(a) Q-MBR index before insertion of p1 (b) Q-MBR index after insertion of p1

Fig. 5. An example of insertion algorithm

3.2 Range Query Algorithm for a Q-MBR Tree

The range query receives a query point ¢ and query radius r as input, and returns a set of
data points whose distance from the query point is less than r. Our algorithm for
processing a range query is presented in Algorithm 2. The proposed algorithm explores
the Q-MBR tree in BFS (breadth-first-search) order, and reads as many rows from the
index table as possible at each time, in order to reduce the number of data requests to the
region server. Two sets, named N¢ and Rk in the algorithm, are maintained for this
processing. The first, Nt, stores the nodes that are required to be traversed in the current
iteration. Rk is a set of rowkeys to be loaded from the index table for the next iteration of
the algorithm. The algorithm is terminated if there are no more nodes in either of the sets.

The algorithm starts by inserting rowkey of the root node into Rk, and loading it
from the index table. If the current traversed node is an internal node, then the algo-
rithm calculates the minimum distance between the MBRs of its children and the query
point g. The rowkeys of the child nodes with distance less than the query radius r are
inserted into Rk. After all of the nodes in V¢ have been traversed, the algorithm loads
nodes from Rk from the index table, and stores the result into Nt for the next iteration.
When the current traversed node is a leaf node, the algorithm calculates the distance
between the spatial objects and the query point in order to answer the query. If the
distance between a spatial object p and the query point ¢ is less than or equal to the
query radius r, then the algorithm inserts p into the result set R.
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Algorithm 2. Range query algorithm

Input : Query point ¢ and range r
Output : A set of spatial objects within a given query range

Nt <0
Rk <0

Result set R «0@

insert rowkey of root node into Rk
while Rk is not empty do

Nt=Nt U{Prefetch nodes in Rk}
while Nt is not empty do
for (each node n eNt )do
if(n is a leaf node) then
for (each object p € n) do
if (distance(p,q) <=r) then
R=RU{p}

else if(n is not a leaf node) then
for (each child ¢ of n) do
if (overlap (MBRof ¢, q, r)) then
insert rowkey of ¢ into Rk
Return R

Figure 6 shows an example of a range query. The algorithm starts by inserting
therowkey of RO into Rk and loading it into Nt. There are two children, R2 and R3,
which overlap with the query range. Therefore, the rowkeys of R2 and R3 are inserted
into Rk at the first iteration, and loaded together from the index table. Similarly, the
rowkeys of R9 and R6 are inserted and loaded at the second iteration. Because R9 and
R6 are leaf nodes, the next loop inspects the data objects of R9 and R6 in order to
answer the query. As a result, the result set R contains the two points, pl and p2, and
the algorithm is terminated, because there are no more nodes to traverse.

i J
- [ 1
.Rl: :_ R7 |
! 1
! 1

-

Fig. 6. An example of a range query
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4 Performance Analysis

4.1 Experimental Setup and Datasets

We use synthetically generated databases, to control the size and distribution of the
data. The first synthetic database contains two-dimensional uniformly distributed data,
and the second contains two-dimensional data that follows a normal distribution. We
implemented our method on a pseudo-distributed HBase cluster of four nodes, using
HBase 0.98.0 and Hadoop 2.4.0 as the underlying system. Our experiments were
performed on a physical machine that consists of a 2.5 GHz quad-core, 32 GB
memory, and a 1 TB HDD, and runs 64bit Linux.

For all of the experiments, we compare our method (labeled as Q-MBR tree in the
graphs) with MD-HBase [8] (labeled as MD-HBase in the graphs), and KR+ tree [9].
The average response time of 100 random queries is used for comparison. We set the
parameters of MD-HBase and KR+ tree according to the analysis of [9]. MD-HBase
must determine the capacity of the grid cell to group spatial objects. We set the
threshold to 2500. The parameters of KR+ tree consist of the lower and upper bounds
of the rectangle, and the order of the grid. We set the boundary of rectangle to (100,
50), and the order to eight. Q-MBR tree also uses the capacity of the Q-MBR as the
parameter. In varying the capacity, there is a trade-off between the complexity of the
index and the selectivity. We set the capacity of Q-MBR to 1024 after measuring the
performance of a range query for one million datasets.

4.2 Performance Evaluation for Range Query

Effect of Query Radius

For these experiments, the database size was fixed at 10 million. Figure 7 plots the
response times of range queries with a query radius increasing from 0.5% to 5% of the
space. As shown in Fig. 7, Q-MBR tree outperforms MD-HBase and KR+ tree. In
particular, when the size of the retrieved data increases, Q-MBR tree achieves a better
performance than the other two methods because the time for loading data objects from
the table is shorter. Although the table structure of KR+ tree is similar to that of
Q-MBR tree, the performance of KR+ tree is inferior to that of Q-MBR tree. The
reason for this is that the range query algorithm of KR+ tree is based on a key table
produced by grid partitioning.

Effect of Database Size

For this set of experiments, the database size was increased from one million to 10
million points. The query radius was set as constant. Figure 8 shows that as the
database size increases, the response time also increases for all methods. However, as
can be seen from the figure, the rate of this increase in the response time of the Q-MBR
tree is lower than for the other two methods. Because the three parameters required by
KR+ tree are sensitive to the data distribution, this method shows the worst perfor-
mance in this experiment.
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Fig. 7. Effect of query radius on the response time

2000 7 2500
1800 || —®— Q-MBR o Q-MBR
1600 + —— MD-HBase 2000 —#— MD-HBase
1400 -+ KR+ KR+
o o
E 1200 - E 1sm0
§ 800 ~ § 1000
2 5o = e "
-
400 - 500 —
200 -y ‘ =
02".. o.’o",',','_f,.
M M 4am &M 8M  10M M 2M 4am 6M 8M  10M
Database Size Database size
(a) Dataset with uniform distribution (b) Dataset with normal distribution

Fig. 8. Effect of database size on the response time

5 Conclusion

In this paper, we have presented Q-MBR tree, an efficient index scheme for handling
large scale spatial data on an HBase system. The proposed scheme recursively divides
the space into quadrants, and creates MBRs in each quadrant in order to construct a
hierarchical index. Q-MBR provides better filtering power for processing spatial
queries than existing schemes. A Q-MBR tree is stored in a flat-wide table, in order to
enhance the performance of index traversal. Algorithms for range queries using
Q-MBR tree have also been presented in this paper. Our proposed algorithms signif-
icantly reduce the query execution times, by prefetching the necessary index nodes into
memory while traversing the Q-MBR tree. Experimental results demonstrate that our
proposed algorithms outperform those of the existing two methods, MD-HBase and KR
+ tree. We are currently developing an effective kNN query algorithm suitable for
Q-MBR tree.
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