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Abstract
The seizure prediction performance of algorithms based in stacked auto-encoders
deep-learning technique has been evaluated. The study is established on long-term
electroencephalography (EEG) recordings of 103 patients suffering from drug-resistant
epilepsy. The proposed patient-specific methodology consists of feature extraction,
classification by machine learning techniques, post-classification alarm generation, and
performance evaluation using long-term recordings in a quasi-prospective way. Multiple
quantitative features were extracted from EEG recordings. The classifiers were trained to
discriminate preictal and non-preictal states. The first part of the feature time series was
considered for training, a second part for selection of the “optimal” predictors of each
patient, while the remaining data was used for prospective out-of-sample validation. The
performance was assessed based on sensitivity and false prediction rate per hour (FPR/h).
The prediction performance was statistically evaluated using an analytical random
predictor. The validation data consisted of approximately 1664 h of interictal data and 151
seizures, for the invasive patients, and approximately 4446 h of interictal data and 406
seizures for the scalp patients. For the patients with intracranial electrodes 18% of the
seizures were correctly predicted (27), leading to an average sensitivity of 16.05% and
average FPR/h of 0.27/h. For the patients with scalp electrodes 20.69% of the seizures
(84) on the validation set were correctly predicted, leading to an average sensitivity of
17.49% and an average FPR/h of 0.88/h. The observed performances were considered
statistically significant for 4/19 invasive patients (� 21%) and for 5/84 scalp patients
(� 6%). The observed results evidence the fact that, when applied in realistic conditions,
the auto-encoder based classifier shows limited performance for a larger number of patients.
However, the results obtained for some patients point that, in some specific situations
seizure prediction is possible, providing a “proof-of-principle” of the feasibility of a
prospective alarming system.
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Introduction

Despite available drug and surgical treatment options, more
than 30% of patients with epilepsy continue to experience
seizures [1]. In these patients with pharmaco-resistant epi-
lepsy, the apparent unpredictability of seizure occurrence
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imposes a considerable limitation of their daily lives and
results in a high risk of unforeseen endangering situations [2,
3]. A system that could warn the patient of an impending
seizure or trigger an antiepileptic device to prevent seizure
occurrence would dramatically improve the quality of life
for especially these patients.

Although some promising results have been reported,
suggesting the existence of a pre-seizure state and an con-
sequently the capability to predict seizures [4], until recently
prediction performances have not been prospectively eval-
uated on large, collaborative databases [3]. Thus, the ques-
tion to which extent seizure prediction is possible remains
unanswered [5–7]. In particular, the weaknesses of most
studies are (1) that they optimize parameters retrospectively,
(2) that they rely on short, selected data sets, and (3) that
they lack rigorous statistical evaluation [4]. In [8, 9] report
for the first time studies that make use of an appropriate
database developed on behalf of the EPILEPSIAE project
[10, 11]. The EPILEPSIAE database is used in our study.

The aim of this study is to investigate for the first time
whether a deep-learning technique based on Stacked
Auto-encoders (SA), and having as input EEG-based fea-
tures are able to predict seizures quasi-prospectively on a
large multiple-center database of long-term unselected
recordings. Quasi-prospectively here refers to the fact that
the data have actually been recorded, which renders a
prospective study impossible. But as we only evaluate our
results on unevaluated validation data, we are as close to a
prospective study as possible.

It was referred by several authors that, to date, no single
feature has shown predictive power [4, 12, 13].
Machine-learning methods can face at the same time several
features computed from raw data, and collected from dif-
ferent cerebral sites. These methods try to classify the brain
state based not only on a single feature, but also on the
general behavior of the set of features, exploring their linear
and non-linear interactions. This paper as others already
published, such as [13], hypothesize that a patient-specific
approach based on multiple EEG measures will achieve high
sensitivity and specificity.

Data & Methods

In this section, the database used as well as the methodology
employed are described. In this paper, we distinguish
“classifier” from “predictor”. Classifier is the first part of the
prediction system that discriminates the feature samples in
four brain states (classes). A predictor is the full system
composed by the classifiers plus the alarm generation
procedure.

Patient Characteristics and EEG Database

Long-term EEG recordings from 103 epilepsy patients (50
males; age range, 10–65 years; mean age: 35 years) suffer-
ing from medically intractable partial epilepsy were analyzed
in this study. Data had been recorded in three different
epilepsy units (Hospitais da Universidade de Coimbra,
Portugal; Unité d’Épilepsie of the Pitié-Salpêtrière Hospital,
Paris, France; Epilepsy Center, University Medical Centre of
Freiburg, Germany) resulting in a total of almost 707 days
(16,963 h) of EEG including 1062 seizures, and is part of
the 275 patients containing in the EPILEPSIAE database
[10, 11]. These 103 patients are those that have more than 5
seizures and enable the evaluation strategy implemented in
this paper.

43% of the patients had temporal lobe epilepsy, lateral-
ized to the right in 57%, to the left in 30% and bilateral in
13%. In 84 patients, EEG was recorded using 22–37 scalp
electrodes; the average recording period was 149 h. In 19
patients, intracranial EEG with 14–121 recording sites was
recorded using stereotactically implanted depth electrodes,
subdural grids and/or strips; the average recording period
was 232 h. EEG data were recorded using a Nicolet,
Micromed, Compumedics, or Neurofile NT digital video
EEG system at sampling rates of 256, 400, 512, 1024 or
2500 Hz.

Feature Extraction

For the recorded EEG channels, 22 univariate features were
extracted every five seconds of EEG with no overlap, i.e.,
consecutive five-seconds windows were considered for all
the analyzed patients. The computed features are listed in
Table 1. More details can be obtained in [14]. Features have
to be computationally efficient, i.e., with potential for online
implementation in low computational power environments.
This is why we restricted ourselves to univariate linear
features in this study.

The Approach to a Quasi-prospective Study

The same feature was computed for all the electrodes and for
all the patients. The evaluation methodology implemented in
this paper encompasses the splitting of these time series into
three parts. A first part containing the first three seizures, was
used for optimizing the classifiers, i.e., for training. A second
part containing the next two seizures was used for the
selection of an “optimal” predictor among all the tested
alternatives. The third and last part, containing at least one
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seizure, was used for quasi-prospective long-term
out-of-sample evaluation, i.e., for validation. The average
interictal duration of the validation data was approximately
88 h, and 54 h for the invasive, and scalp recordings,
respectively. In total, 6111 h of interictal out-of-sample data
were considered containing a total of 557 seizures.

Classification Methodology

In this paper, the brain state is classified over time into one
of two states: preictal and non-preictal; and the number of
classifier’s inputs are 22 times the number of channels,
originating a very high dimensional space. The windows that
are just before the seizure onset times are nominated as
preictal windows. The non-preictal class encompass the
ictal, postictal and interictal periods. The ictal period is the
time frame where seizure occurs. The postictal period refers
to epochs that are just after the seizure offset time. The
interictal period relates to seizure-free epochs. The neurol-
ogists clinically defined the seizure onset and offset times.
The exact time where the preictal state starts is unknown and
can probably be patient-dependent. Thus, in a first approach,
the search for appropriate predictors should include the
consideration of a range of preictal times, or seizure occur-
rence periods (SOPs). In this work, four SOPs were con-
sidered: 10, 20, 30 and 40 min.

In this paper, we use machine-learning techniques to
define decision boundaries between classes. The machine
learning technique used was SA [15]. SA can be considered
a deep machine learning algorithm, since there are based on

the construction of a new representation of the data for
posterior classification, a technique known as representation
leaning. The neural networks developed contained between
three and six layers, and the number of neuron varies
between 1000 and 10 per layer, diminishing from the input
to the output of the network. Their auto-encoders were
trained according to a two-phase protocol: Greedy
Layer-Wise Training procedure and that were then
fine-tuned [16]. The first stage of the training is used to
optimize each auto-encoder, individually, to compress and
restructure the data in the best way possible, by introducing a
bottleneck on the network [17]. The second stage of
fine-tuning, is meant to lead the network to be more dis-
criminative regarding the classes [16].

By making use of such a sophisticated technic we hope to
overcome the obstacles faced when using shallow or classic
classifiers. Moreover, due to the data dimensionality a sys-
tem capable of automatically reduce the number of dimen-
sions while likely retaining only the important information
justify the use of SA.

Seizure Prediction Method

If we consider that a single positive classifier output repre-
sents a prediction, we can have a prediction at each 5 s. As in
practice a classifier will most likely not classify all of the
samples correctly, a lot of false alarms could be issued. To
reduce the number of false alarms the output of the classifier
was smoothed using a method described in [18, 19]. This
method is based on a sliding window with a size equal to the

Table 1 EEG features

Time domain Mean

Variance

Skewness

Kurtosis

Energy

Frequency domain MSE of estimated AR models

Delta band rel. power (0.1–4 Hz)

Theta band rel. power (4–8 Hz)

Alpha band rel. power (8–15 Hz)

Beta band rel. power (15–30 Hz)

Gamma band rel. power (> 30 Hz)

Spectral edge frequency (90%)

Spectral edge power (90%)

Decorrelation time

Hjorth mobility

Hjorth complexity

Time frequency Energy of DB4 wavelet coefficients (6 decomposition levels)
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considered preictal time, or SOP. Alarms are raised whenever
the number of epochs classified as preictal in the sliding
window is larger than a predefined threshold. The thresholds
considered for each patient were 0.2, 0.4, 0.6 and 0.8,
meaning that 20%, 40%, 60%, and 80% of the samples were
classified as preictal inside the window, respectively. Once an
alarm is raised, another one can only occur after a dead-time
equal to the SOP. The main advantage of the algorithm
implemented is that it is exactly known during which time
period a seizure is to be expected. In the case of approaches
that allow re-triggering, such as the one presented in [20], the
alarms may prolong for long times and the patients do not
know definitely when the seizure is to be expected.

Quasi-prospective Performance Evaluation

The performance of the seizure prediction algorithm is evalu-
ated using the seizure prediction characteristics, which char-
acterizes the sensitivity of the seizure prediction algorithm,
given themaximum rate offalse alarms and two-timewindows:
the SOP and the time needed to perform any intervention, called
the intervention time (IT).A correctly predicted seizure requires
that the seizure onset to occur in the time window occurrence
period. In this paper, SOP assumes one of the values defined for
the preictal time, while the IT was fixed as 10 s. As specificity,
we used the false prediction rate defined as the number of false
alarms divided by the duration during which false alarms could
be triggered, which is obtained by subtracting the time under
false warning from the total interictal duration. Mathematically
the FPR is given by [4]:

FPR ¼ #False Alarms

Interictal Duration� ð#False Alarms� SOPÞ :

ð1Þ
To statistically evaluate the results we use the analytic

random predictor based on the binomial distribution [3, 21].
It quantifies critical sensitivities that could be obtained by
chance given the time windows and the false prediction rate.
No other information of the data is provided to the random
predictor. Because we implemented a quasi-prospective
evaluation protocol that resulted in the selection of a best
predictor, we only tested a single predictor, i.e., a single
degree of freedom is attained, leaving out the need for
multiple testing corrections.

Results and Discussion

For each patient four different preictal times were tested, as
well as four different thresholds used on the alarm generation
system, making 16 different predictors per patient. The

predictor applied on the validation data was selected based
on the performance on the testing set, and was the one with
performance closest to 100% sensitivity, and 0/h FPR. This
selection was based on a period containing two seizures that
were not used for the training of the classifiers nor for any
performance evaluation.

For the patients with intracranial electrodes the validation
data consisted of 1664.42 h of recording and 151 seizures.
For the patients with scalp electrodes the validation data
consisted in 4445.57 h and 406 seizures.

We found out that for the patients with intracranial
electrodes 18% of the seizures were correctly predicted (27),
leading to an average sensitivity of 16.05% and average false
positive rate of 0.27/h. For the patients with scalp electrodes
20.69% of the seizures (84) on the validation set were cor-
rectly predicted, leading to an average sensitivity of 17.49%
and an average false prediction rate of 0.88/h.

We have compared these performances to those achieved
by a random predictor [21]. We found that preictal changes
can be identified above chance level in four out of 19
intracranially monitored patients (� 21%) and in five out of
84 scalp monitored patients (� 6%).

Regarding the influence of certain variables in the results,
several important conclusions can be taken. For the patients
with intracranial electrodes, the sensitivity of the female
subjects was less than half of the male patients, 9.70% and
24.71%, respectively. Regarding the focal character of the
seizures, the sensibility is considerably higher on patients with
well-defined focalization. Moreover, three of the four patients
with results above chance level have well defined focalization
character, and all of these have focus on the frontal right lobe.
Regarding the patients with scalp electrodes, the general
panorama is that sleep stage influences sensitivity (paired t-test
p-value < 0.05). For the scalp population, the preictal period
also significantly influences sensitivity (paired t-test
p-value = 0.01). Of the different preictal period durations
tested, 30 min was the value that leaded to better results.

Comparing our results with the ones published in [9] that
employed a realistic validation schema similar to the one
implemented in this paper, similar results were obtained. The
advantage of our approach relies on the automatic feature
and channel selection accomplished by the deep-learning
technique used.

Conclusions

We approached seizure prediction to the best of our
knowledge for the first time based on SA, applied in mul-
ticentre, long-term, unselected data. The result argues for the
possibility to predict seizures, at least for some patients.
Future work will be devoted to a true online assessment and
evaluation of seizure prediction performance.
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