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Preface

The purpose of this course-based text book is to revisit classic concepts in nonlinear
circuit theory, from an introductory standpoint:

1. The book is completely self-contained and does not assume any prior knowledge
of circuit theory. It is simply assumed that the reader has taken a first-year un-
dergraduate (elementary) course in differential and integral calculus, along with
elementary physics courses in classical mechanics and electrodynamics.

2. The book also covers topics that are not typically found in standard circuit text-
books, such as nonlinear operational amplifier circuits and memristor networks.

3. Nonlinear chaotic circuits are also discussed because we believe that chaotic cir-
cuits elegantly illustrate “applications” of concepts from circuit theory.

4. Each chapter has a set of illustrative examples, along with a set of exercises. We
will have a set of (maximum 20-minute) lecture videos and video solutions to
end-of-chapter exercises online: http://www.youtube.com/user/bhar
athberkeley/IntroToNonlinearCircuitsAndNetworks The pur-
pose of these supplementary videos is to walk the reader through major concepts
in each chapter, and thereby enhance understanding of nonlinear circuits and net-
works.

Over the course of a teaching career spanning 10 years at the University of Califor-
nia (UC) Berkeley, Dr. Muthuswamy has coordinated with Dr. Leon O. Chua and
others to reintroduce nonlinear circuit theory at an elementary level. Much of the
material in this book is thus derived from Dr. Chua’s EE100 (Electronic Techniques
for Engineering) lecture materials. This course was offered by electrical engineer-
ing and computer sciences department at UC Berkeley for non-electrical engineer-
ing majors. Therefore, the material in this book can be adopted for an introductory
course in circuit theory.

At the University of California, Berkeley, we were able to cover the material in
this book in one semester. The material on chaotic circuits was used as a source
of projects. For schools that are based on the shorter quarter system (10 weeks of
instruction), we would suggest splitting the material in this book into two courses.
The first course could cover chapters 1 and 2 (network elements). The second course
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would cover chapters 3, 4 and 5, where chapters 3 and 4 discuss techniques of net-
work analysis followed by chapter 5 as a source of course projects. Another option
would be to cover resistive networks in the first course and dynamic networks in the
second course. Specifically:

1. First course - resistive networks: Only excluding material on dynamic elements
in chapters 1 and 2 (sections 1.9.3, 1.9.4, 1.9.5, 2.2.3, 2.2.4, 2.3, 2.4) and covering
all of chapter 3.

2. Second course - dynamic networks: Cover dynamic elements in chapters 1 and
2, followed by chapters 4 and 5.

Hence the way we have organized the chapters is based on the fact that, in circuit
theory, the laws of elements are distinct from the laws of networks.

Our goal in writing this book is simple: a student who thoroughly understands
the concepts in this book will be well prepared for any follow-up course in circuit
theory.

Bharathwaj Muthuswamy, Santo Banerjee
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Mathematical Notation

The mathematical notation used in this book is standard [11]; nevertheless, this sec-
tion clarifies the notation used throughout the book.

1. Lowercase letters from the Latin alphabet (a− z) are used to represent variables,
with italic script for scalars and bold invariably reserved for vectors. The letter t

is of course always reserved for time. n is usually reserved for the dimension of
the state. j is used for

√
−1, in accordance with the usual electrical engineering

convention. Mathematical constants such as π , e, h (Planck’s constant) have their
usual meaning. Other constant scalars are usually drawn from lower case Greek
alphabet. SI units are used.

2. Independent variable in functions and differential equations is time (unless oth-
erwise stated) because physical processes change with time.

3. Differentiation is expressed as follows. Time derivatives use Leibniz’s ( dy
dx , for

example) or Newton’s notation: one, two or three dots over a variable corresponds
to the number of derivatives and a parenthetical superscripted numeral for higher
derivatives. Leibniz’s notation is used explicitly for non-time derivatives.

4. Real-valued functions, whether scalar- or vector-valued, are usually taken (as
conventionally) from lowercase Latin letters f through h, r and s along with x

through z.
5. Vector-valued functions and vector fields are bold-faced as well, the difference

between the two being indicated by the argument font; hence f(x) and f(x) re-
spectively.

6. Constant matrices and vectors are represented with capital and lowercase letters
respectively, from the beginning of the Latin alphabet. Vectors are again bolded.

7. In the context of linear time-invariant systems the usual conventions are re-
spected: A is the state matrix B(b) is the input matrix (vector).

8. Subscripts denote elements of a matrix or vector: di is the ith column of D; x j is
the jth element of x. Plain numerical superscripts on the other hand may indicate
exponentiation, a recursive operation or simply a numbering depending on con-
text. A superscripted T indicates matrix transpose. I is reserved for the identity
matrix. All vectors are assumed to be columns.
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9. Σi is used for summations, sampling interval is symbolized by T and ∈ denotes
set inclusions.

10. Calligraphic script (R etc.) is reserved for sets which use capital letters. Elements
of sets are then represented with the corresponding lowercase letter. Excepted
are the well known number sets which are rendered in doublestruck bold: N,
Z, Q, R and C for the naturals, integers, rationals, reals and complex numbers
respectively. The natural numbers are taken to include 0. Restrictions to positive

or negative subsets are indicated by a superscripted + or −. The symbol
△
= is used

for definitions. ∀ and ∃ have the usual meaning of ”for all” and ”there exists”
respectively.



Conventions Used In The Book

Each chapter starts with an epigraph, the purpose is to evoke the intellectual curios-
ity of the reader. Chapters are divided into sections and subsections for clarity.

Figures and equations are numbered consecutively. The convention for a defini-
tion is shown below.

Definition 0.1. Definitions are typeset as shown.

The book has a variety of solved examples, in light gray shade.

Solved Examples

All references are placed at the end of each chapter for convenience. We use a
number surrounded by square brackets for in-text references, example [5]. Important
terminology and concepts are highlighted boldfaced. In the electronic copy of this
book, online URLs are colored and hyperlinked in midnight blue for ease of access.
Computer code is in verbatim font.

The mathematical plots were generated using ipython, the source is available on-
line at the companion website http://www.harpgroup.org/IntroToNon
linearCircuitsAndNetworks/. We utilize QUCS (Quite Universal Circuit
Simulator), a functional open-source circuit simulator, that is introduced in lab com-
ponent for Chapter 1. Figures were generated using a combination of xcircuit, xfig
and PNG screen captures in OS X that were converted to EPS.

On a concluding remark, when you find typos in the book please contact the au-
thors with constructive comments: bharath.berkeley@gmail.com, santoban@gmail.com.
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Chua, L. O. Memristor - The Missing
Circuit Element [2]

Chapter 1

Two-Terminal Network Elements

Abstract This chapter will set the stage for the rest of this book. We will start by dis-
cussing what is the aim of circuit theory, what are the fundamental circuit variables
and when the techniques in this book are valid: the lumped circuit approximation
holds and the frequencies of interest are not too high. We will discuss the concepts
of Kirchhoff’s laws, basic circuit topology, Tellegen’s theorem and two-terminal
circuit elements.

1.1 The Discipline of Circuit Theory

Circuit1 theory is a fundamental engineering discipline that pervades all electrical
engineering [5]. For the present, by physical circuit, we mean any interconnection of
electrical devices. Familiar examples of electrical devices include resistors, diodes,
transistors, operational amplifiers (opamps) etc. The goal of circuit theory is to pre-
dict the electrical behavior of physical circuits. The purpose of these predictions is
to improve their design: in particular, to decrease their cost and improve their per-
formance under all conditions of operation (e.g., temperature effects, aging effects,
possible fault conditions, etc.).

Probably the most fascinating aspect is that lumped circuit theory uses only four
fundamental circuit variables: current, charge, voltage and flux-linkage (flux). More-
over, current and voltage are related to charge and flux (Eqs. (1.3) and (1.4) respec-
tively). Thus, fundamentally we have only four elements that are characterized by
a mathematical relation between the above mentioned four circuit variables at the
element’s terminals [8], as shown in Fig. 1.1 [12].

Hence to start our study of circuit theory, we will first discuss the fundamental
circuit variables, the topic of section 1.2.

1 Throughout this book, we will use circuits and networks interchangeably, the justification will be
discussed in section 1.6.

1



2 1 Two-Terminal Network Elements

Fig. 1.1: The four fundamental two-terminal circuit elements along with the
associated reference directions (section 1.4) relate the fundamental circuit

variables, through the laws of elements. The elements starting counterclockwise
from the top-left are the resistor, inductor, memristor and capacitor. Note that
current is defined as the rate of flow of charge and voltage is defined as the rate of
change of flux-linkage, refer to section 1.2. The symbols used for the fundamental

circuit elements are standard for nonlinear circuit elements, the reader may be
familiar with the circuit symbol for the linear counterparts (excluding the

memristor), see section 1.9.4.

1.2 Fundamental Circuit Variables

We could say the advent of electricity [1] occurred with the discovery that dry sub-
stances such as amber tend to repel or attract each other upon being rubbed by
different materials such as silk. This phenomenon was first explained by postulat-
ing the existence of a certain basic electrical quantity called the “electric charge”
(charge), mathematical symbol q, which may be either positive or negative. Like
charges exert a force of repulsion and unlike charges exert a force of attraction. The
practical unit of charge is called the coulomb and has been defined to be equivalent



1.2 Fundamental Circuit Variables 3

to the total charge possessed by 6.24× 1018 electrons. Charge can be measured by
instruments such as the electroscope.

Since charged bodies exert forces on one another, energy or work is involved
whenever one charged body is moved in the vicinity of another charged body. Hence
if w is the work done by moving a charge q from point j to point k (assuming w is
independent of the path taken)2, the potential difference or voltage between these
points is defined as the work per unit charge.

v jk =
w

q
(1.1)

Observe that the magnitude of the charge is arbitrary; only the ratio between work
and charge is important. Hence, the incremental work dw required to move an in-
cremental test charge dq from point j to point k must also satisfy Eq. (1.1). Thus:

v jk =
dw

dq
(1.2)

We will delete the subscripts j and k when there is no possibility of confusion and
simply express voltage as v. The unit of voltage is called the volt and is measured
using a voltmeter.

Charges can be caused to flow from one charged body to another by connecting
a conducting wire between the two bodies. Hence, the quantity “rate of flow of
charge” becomes very useful, and it has been given the name current with symbol i.
By definition,

i =
dq

dt
(1.3)

The unit of current is the ampere. One ampere represents a charge flowing at the
rate of one coulomb per second. Current flow can be measured by an ammeter.

In 1819, Hans Christian Oersted discovered that current flowing through a wire
produced a force on a compass needle in the vicinity of the wire. This indicates
that the current (or moving charge) produces a magnetic field. This effect can be
explained by the generation of a magnetic flux λ by the current. If the conductor is
wound into a coil of n turns, then by defining φ = nλ to be the flux-linkage, Faraday
discovered that the voltage between the two terminals of the coil is given by

v =
dφ

dt
(1.4)

The unit of flux-linkage is the weber. Flux-linkage can be measured by a fluxmeter.

2 This assumption is valid only if the simultaneity postulate is satisfied, we will discuss more in
section 1.3.
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1.3 The Simultaneity Postulate in Lumped Circuit Theory

Having discussed the fundamental circuit variables, the next question we need to
address is: when are the techniques discussed in this book valid? The answer to this
question is of paramount importance because the domain of application for circuit
theory is extremely broad. For example, the size of circuits varies enormously: from
very large-scale integrated circuits which include over a billion transistors on a chip
the size of a fingernail to telecommunication circuits and power networks that span
continents [5]. Throughout this book we shall consider only lumped circuits [5].
For a physical circuit to be considered lumped, its physical dimension must be small
enough so that, for the problem at hand, electromagnetic waves propagate across
the circuit virtually instantaneously. Consider the following example:

Example 1.3.1 Consider an audio circuit whose highest frequency of interest
is f = 20 KHz. Discuss the lumped circuit approximation.
Solution: For electromagnetic waves, f = 20 KHz corresponds to a wave-
length of:

λ =
c

f

=
3×108 m/s

2.0×104 s−1

= 15 km

Based on the calculations above, even if the circuit is spread across a tennis
court, the size of the circuit is very small compared to the shortest wavelength
of interest λ .

Definition 1.1. Lumped circuit approximation is valid if d ≪ c ·∆ t, where d is the
largest dimension of the circuit, ∆ t the shortest time of interest and c is the velocity
of light.

When the conditions in definition 1.1 are satisfied, electromagnetic theory proves
[8] and experiments show that the lumped circuit approximation holds; namely,
throughout the physical circuit the current i(t) through any device terminal and the
voltage difference v(t) across any part of terminals, at any time t, are well-defined3.

3 Unless otherwise stated, we will assume from now on throughout the book that analogous state-
ments are true for q(t) and φ(t). In this case, we can equivalently discuss q(t) through any device
terminal and φ(t) across any part of the terminals.
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Example 1.3.2 Consider a circuit on a chip whose extent is 1 mm. Let the
shortest signal time of interest be 0.1 ns. Discuss the lumped circuit approxi-
mation from definition 1.1.
Solution: Again, since electromagnetic waves travel at the speed of light, the
time it would take for the electromagnetic wave to travel 1 mm is:

t =
d

c

=
1×10−3 m

3×108 m/s

= 3.3̄ ps

Therefore the propagation time in comparison with the shortest signal time of
interest is negligible and hence the lumped circuit approximation is valid.

Based on examples 1.3.1 and 1.3.2, roughly speaking, the higher the frequency
of operation, the smaller must be the device’s physical dimension in order for the
lumped circuit approximation to be satisfied. From an electromagnetic theory point
of view, a lumped circuit reduces to a point since it is based on the approxima-
tion that electromagnetic waves propagate through the circuit instantaneously. For
this reason, in lumped circuit theory, the respective locations of the elements of the
circuit will not affect the behavior of the circuit. The approximation of a physical
circuit by a lumped circuit is analogous to the modeling of a rigid body as a particle:
in doing so, all data relating to the extent (shape, size, orientation, etc.) of the body
are ignored by the theory.

In situations where lumped approximation is invalid, the physical dimensions of
the circuit must be considered. To distinguish such circuits from lumped circuits we
call them distributed circuits, typical examples are transmission lines and waveg-
uides. In distributed circuits, the circuit variables depend not only on time, but also
on space variables such as length and width. We need electromagnetic theory for
predictions of the behavior of distributed circuits and hence they will not be dis-
cussed in this book.

1.4 Reference Directions

One of the most basic concepts in physical science is that any physical quantity
is invariably measured with respect to some “assumed” frame of reference [8]. In
electrical network theory, the frame of reference takes the form of an assumed refer-
ence direction of the current i and an assumed reference polarity of the voltage v. A
thorough understanding of the concept of reference current direction and reference
voltage polarity is absolutely essential in the study of nonlinear network theory. It is
a fact that a large percentage of the mistakes committed by students of network the-
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ory can be traced to either the students’ underestimation of the full significance of
reference current directions and voltage polarities or the students’ failure to maintain
a consistent set of references.

The simplest way to understand the concept of assumed reference direction and
polarity is through the experiment illustrated in Fig. 1.2. We will discuss reference
voltage polarity, an analogous discussion holds for the reference current direction.
Suppose we are given a black box with a pair of accessible ports or terminals a−b,
as shown in Fig. 1.2, and we are required to measure the voltage across terminals
a−b. Let us measure the voltage by connecting a−b to the vertical input terminals
of an oscilloscope. Since one of the two vertical input terminals of an oscilloscope
is marked with a positive sign while the other is marked with a negative sign, the
question that immediately arises is which of the two terminals of the black box
should we connect to the positive terminal of the oscilloscope in order to obtain the
desired information?

The answer is that it does not matter. In order to see this, suppose we arbitrarily
assume terminal b is connected to the positive terminal as shown in Fig. 1.2 (a). The
assumption that terminal b is at the positive terminal does not mean that terminal
b is at a higher potential than terminal a. It does mean however that if at any time
t = t1,v(t1)> 0, then the potential at b is higher than the potential at a. On the other
hand, if v(t1)< 0, then the potential at b at t = t1 is actually lower than the potential
at a. For example, if the voltage v(t) displayed on the oscilloscope (in volts) is given
by

v(t) = 10sinπt (1.5)

then terminal b is at a higher potential than terminal a during the time interval 0 <
t < 1 s. But during the time interval 1 < t < 2 s, terminal b is at a lower potential
than terminal a.

Let us now consider what happens when we assume terminal a is connected to
the positive terminal of the oscilloscope, instead of terminal b, as shown in Fig. 1.2
(b). Since this connection is opposite to the connection in Fig. 1.2 (a), it is clear that
the voltage displayed on the oscilloscope (in volts) is given by:

v(t) =−10sinπt (1.6)

Thus in either case, the final answers are identical. We can therefore conclude
that in order to specify the voltage between any pair of terminals unambiguously,
we may arbitrarily assume any one of the two possible terminals to be positive.
By analogy, we can conclude that in order to specify the current through any wire
unambiguously, we may arbitrarily assume any one of the possible two directions to
be positive.

Let us consider next a two-terminal black box N and assume a reference direction
for the terminal current i and a reference polarity for the terminal voltage v, see
Fig. 1.3. Since the references for both i and v are arbitrary, there are four distinct sets
of combinations of references. There is no reason to prefer any one combination over
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a

b

a

b

(a)

(b)

+
v
-

v
+

-

Fig. 1.2: An experiment demonstrating that regardless of which terminal of the
black box is chosen to be positive, the actual voltage across terminals a−b can be

unambiguously specified for all time.

the others. However, in practice, it is usually convenient to choose the combination
so that positive power represents power entering the black box.

From classical mechanics, we know that power is defined by Eq. (1.7).

p =
dw

dt
(1.7)

But,

vi =
dw

dq

dq

dt

=
dw

dt
(1.8)

Thus we have:

p(t) = v(t)i(t) (1.9)
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N

N

b

+
v1
-

-

+
v2

a

b

a
i2

i1

Fig. 1.3: Two possible sets of reference direction for the passive sign convention
from definition 1.2.

From the simultaneity postulate, the same current must leave the negative termi-
nal4. Hence, based on this observation, we have definition 1.2.

Definition 1.2. Associated Reference Direction or Passive Sign Convention:
Whenever the reference direction for the current i in a two-terminal black box is in
the direction of the reference voltage drop v across the black box (v > 0.i > 0), we
use a positive sign in any expression that relates voltage to current. Otherwise, we
use a negative sign.

Thus definition 1.2 implies that the allowable reference combination must be
either of the form shown in Fig. 1.3.

1.5 Kirchhoff’s Laws

When circuit elements are interconnected to form a circuit, there are some governing
laws that all elements in the network must obey. We shall refer to these laws as

4 This is also a consequence of Kirchhoff’s Current Law, see section 1.5.2.
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the laws of interconnection. Before we discuss these laws, we need the following
definitions:

Definition 1.3. A node is a point in a circuit where two or more circuit elements are
interconnected.

Definition 1.4. A path is a trace of adjoining elements, with no elements included
more than once.

Definition 1.5. A closed node sequence is a path whose last node is the same as the
starting node.

Definition 1.6. A loop is a closed node sequence that traverses only through two-
terminal elements.

Definition 1.7. A branch is a path that connects two nodes.

Definition 1.8. A connected circuit is one in which any node can be reached from
any other node, by traversing a path through the circuit elements.

en−1

2
3 k

+

-

+

+

+

-

-

j

-

en−1

vk−j

n− 1
e1

n

ek

+
vk−j

-1

en = 0

e1

k

j

ej

ek
1

n

n− 1

Fig. 1.4: Labeling node-to-ground voltages for a circuit with n nodes.

Now, given any connected lumped circuit having n nodes, we may choose (arbi-
trarily) one of the nodes as a ground node, i.e., as a reference for measuring electric
potentials. Note that a circuit does not have to be physically connected to ground for
proper functionality, think about circuits inside our mobile phones.

With respect to the chosen ground node, we define n− 1 node-to-ground volt-
ages as shown in Fig. 1.4. Since the circuit is a connected lumped circuit, these
n− 1 voltages are well-defined and, in principle, physically measurable quantities.
Henceforth, we shall label them e1,e2, . . . ,en−1 and dispense with the + and − signs
indicating voltage reference direction. Note that en = 0 since node n is chosen as the
ground node.

Let vk− j denote the voltage difference between node k and node j as shown in
Fig. 1.4. Kirchhoff’s voltage law states:
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1.5.1 Kirchhoff’s Voltage Law (KVL)

Definition 1.9. KVL: For all lumped connected circuits, for all choices of ground
node, for all times t, for all pairs of nodes k and j,

vk− j(t) = ek(t)− e j(t) (1.10)

4
T

A

B

C D

E

e1

e2 e3

e5

e4

3

5

1

2

Fig. 1.5: Circuit for example 1.5.1.

Example 1.5.1 Write KVL expressions for the circuit in Fig. 1.5.
Solution: The connected circuit in Fig. 1.5 is made of 5 two-terminal elements
and 1 four-terminal element. There are five nodes. Choosing (arbitrarily) node
5 as the ground node, we define the four node-to-ground voltages e1, e2, e3

and e4. Therefore by KVL, we may write the following seven equations (for
convenience, we drop the dependence on t):
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v1−2 = e1 − e2

v2−3 = e2 − e3

v3−4 = e3 − e4

v1−4 = e1 − e4

v4−5 = e4 − e5 = e4

v5−1 = e5 − e1 =−e1 (1.11)

Note that v1−2,v2−3,v3−4,v4−5,v5−1 are the voltages across the two-terminal
elements A, C, D, E, B respectively; v1−4, v4−5 and v5−1 are the voltages
across the node pairs (1,4); (4,5) and (5,1) of the four-terminal element T
respectively.

If we add the last three equations in Eq. (1.11), we find that:

v1−4 + v4−5 + v5−1 = 0 (1.12)

Hence for this particular closed node sequence, the sum of the voltages is
equal to zero.

Note also that if we add the first three and last two equations in Eq. (1.11),
we find the sum of voltages around a loop is zero:

v1−2 + v2−3 + v3−4 + v4−5 + v5−1 = 0 (1.13)

Example 1.5.1 shows that we can state KVL in terms of closed node sequences:

Definition 1.10. KVL (closed node sequences): For all lumped connected circuits,
for all closed node sequences, for all times t, the algebraic sum of all node-to-node
voltages around the chosen closed node sequence is equal to zero.

1.5.2 Kirchhoff’s Current Law (KCL)

A fundamental law of physics asserts that electrical charge is conserved: There is no
known experiment in which a net electric charge is either created or destroyed. KCL
expresses this fundamental law in the context of lumped circuits. To state KCL, we
first need the definition of a gaussian surface.

Definition 1.11. A gaussian surface L is a two-sided closed surface, that has an
“inside” and an “outside”.

To express the fact that the sum of the charges inside L is constant, we shall
require that at all times, the algebraic sum of all the currents leaving the surface L

is equal to zero.
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Definition 1.12. KCL: For all lumped circuits, for all L , for all times t, the alge-
braic sum of all the currents leaving L at time t is equal to zero.

We will choose L so that it cuts only the wires which connect the circuit ele-
ments, as discussed in example 1.5.2.

i11

1
4

L1 L5

L6

L3

2

3

L4

i5

i6

i7

i8

i9
i10

i1

i2

i3

i4

L2

5

Fig. 1.6: An opamp circuit illustrating gaussian surfaces and KCL.

Example 1.5.2 Write KCL expressions for the circuit in Fig. 1.6.
Solution: In Fig. 1.6, we have used two-terminal elements and a three-
terminal ideal operational amplifier (opamp) (that we will discuss in sec-
tion 2.5). In the figure, we have drawn six gaussian surfaces L1,L2, · · · ,L6.
We will use these surfaces to illustrate KCL.

For L1, KCL states:

i1(t)+ i2(t) = 0 ∀t (1.14)
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Note that L1 contains only node 1 in its “inside”. Thus a node may be con-
sidered as a special case of L , i.e., the surface is shrunk to a point.

For L2, KCL states:

−i1(t)+ i11(t) = 0 (1.15)

Note that L2 encloses a two-terminal element. Thus we make the conclusion
that for a two-terminal element, the current entering the element from one
node at any time t is equal to the current leaving the element from the other
node at t.

For L3, KCL states:

i1(t)+ i4(t)+ i5(t)+ i6(t) = 0 (1.16)

For L4, KCL states:

i3(t)+ i8(t)+ i9(t)− i4(t)− i5(t)− i6(t) = 0 (1.17)

For L5, KCL states:

−i4(t)− i7(t)− i10(t) = 0 (1.18)

Note that these are the three currents pertaining to the opamp. Thus choosing
an L that encloses any n-terminal element, we state that the algebraic sum of
the currents leaving or entering the n-terminal element is equal to zero at all
times t. n-terminal elements will be covered in more detail in Chapter 2.

For L6 (that encloses only the reference node), KCL states:

−i3(t)− i8(t)− i9(t)− i11(t) = 0 (1.19)

We conclude this section by stating KCL for nodes:

Definition 1.13. KCL (node law): For all lumped circuits, for all L , for all times
t, the algebraic sum of currents leaving any node is equal to zero.

1.6 From Circuits to Graphs: The Definition of a Network

It should be clear from our discussions of KVL and KCL that the equations arising
from laws of interconnection are independent of the type of elements in a network.
We will now state the definition of a network.

Definition 1.14. A network is any interconnection of circuit elements.
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Only the network connection diagram, the topology, needs to be specified in
order to obtain the equations to the laws of interconnection. The topology of a circuit
is best exhibited by way of a graph.

Definition 1.15. A graph G is specified by a set of nodes {1,2, · · · ,n} together with
a set of branches {β1,β2, · · · ,βn}.

If each branch is given an orientation, indicated by an arrow on the branch, we
call the graph directed. For example, a two-terminal element and the associated
element graph is shown in Fig 1.7.

i

v

−

1

2

+1

2

β1

i1

Fig. 1.7: A two-terminal element and its associated element graph representation.

Notice that the element graph for a two-terminal element has two nodes and one
branch. Also note that the directions of the current flow through and voltage drop
across the two-terminal element are specified using the passive sign convention from
definition 1.2.

For a given circuit, if we replace each element by its associated element graph,
we obtain the directed circuit graph or digraph G . In this book, whenever we
refer to a network, we mean the associated digraph of the circuit. We can use either
the digraph or the circuit for analysis. Hence, throughout this book, we will use
“circuits” and “networks” interchangeably. Nevertheless, there are results in circuit
theory such as Tellegen’s theorem in section 1.6.1, that are more obvious from the
network associated with a given circuit.

Example 1.6.1 Write KCL and KVL expressions for the digraph in Fig. 1.8.
Solution: It is interesting to note that since the circuit contains a three-
terminal element, the digraph bears little resemblance to the circuit. In fact,
given the digraph, without specifying which nodes belong to the three-
terminal element, it is not possible to reconstruct the circuit. This observation
is false if the circuit contains only two-terminal elements.

KCL gives:
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1

5

42

3

β2

β7 β9β8

β5

β1

β6

β4

β3

β10

Fig. 1.8: Digraph associated with the circuit in Fig. 1.6. Detailed derivation of the
opamp digraph will be covered in section 2.5.

i1 + i2 = 0

−i2 + i4 + i5 + i6 = 0

i3 + i10 = 0

−i5 − i6 + i7 + i8 + i9 = 0 (1.20)

Let us rewrite Eq. (1.20) in matrix form:

⎛

⎜

⎜

⎝

1 1 0 0 0 0 0 0 0 0
0 −1 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 0 0 0 −1 −1 1 1 1 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i1
i2
i3
i4
i5
i6
i7
i8
i9
i10

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0
0
0
0
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(1.21)

Let:

A
△
=

⎛

⎜

⎜

⎝

1 1 0 0 0 0 0 0 0 0
0 −1 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 0 0 0 −1 −1 1 1 1 0

⎞

⎟

⎟

⎠

(1.22)

Thus, Eq. (1.21) can be written as:
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Ai = 0 (1.23)

Matrix A is called the incidence matrix.
We can express all ten branch voltages in terms of the reference node by

using KVL:

v1 = e1

v2 = e1 − e2

v3 = e3

v4 = e2

v5 = e2 − e4

v6 = e2 − e4

v7 = e4

v8 = e4

v9 = e4

v10 = e3 (1.24)

Rewriting Eq. (1.24) in matrix form:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0
1 −1 0 0
0 0 1 0
0 1 0 0
0 1 0 −1
0 1 0 −1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

e1

e2

e3

e4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(1.25)

Comparing Eqs. (1.21) and (1.25), we can see that the constant matrix on
the LHS of Eq. (1.25) is AT . Hence Eq. (1.25) can be written as:

AT e = v (1.26)

Much more will be said about topological concepts in circuit theory throughout
this book. Specifically, element graphs for multi-terminal elements will be discussed
in Chapter 2. We will formalize the matrix formulation of Kirchhoff’s laws in Chap-
ter 3, before we discuss formal techniques of circuit analysis.
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1.6.1 Tellegen’s Theorem

A beautiful illustration of the generality of the digraph approach is Tellegen’s theo-
rem. Before formally stating the theorem, consider the circuits in Fig. 1.9.

(a) (b)

i1

i2 i4

i3

i5

i6

1 2 3

4

1 2 3

ĩ5

ĩ2 ĩ4

ĩ1 ĩ3 ĩ6
4

Fig. 1.9: Circuits for understanding Tellegen’s theorem.

KVL and KCL in matrix form for the circuit in Fig. 1.9 (a) are:

AT e = v

Ai = 0 (1.27)

where:

A =

⎛

⎝

1 1 0 0 1 0
0 −1 1 1 0 0
0 0 0 −1 −1 1

⎞

⎠ (1.28)

Let the branch power vkik be summed for all N branches of the circuit. Then, by
Eq. (1.27):

N

∑
k=1

vkik = vT i

= (AT e)T i

= eT (Ai)

= 0 (1.29)

In deriving Eq. (1.29), the familiar rules (AB)T = BT AT ,(AT )T = A,eT 0 = 0 of
vector algebra have been used.

The result in Eq. (1.29) should not be surprising since we have derived the con-
servation of power in a circuit from Kirchhoff’s laws.
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Consider however the circuit of Fig. 1.9 (b) which has the same topological con-
figuration, same reference directions and numbering, and hence the same A as the
circuit in Fig. 1.9 (a). Hence, the incidence matrix for the circuit in Fig. 1.9 (b) is
also given by Eq. (1.28). Let the electrical quantities of the circuit be ĩ, ṽ, ẽ in Fig. 1.9
(b). Then:

AT ẽ = ṽ

Aĩ = 0 (1.30)

Now consider:

N

∑
k=1

vkĩk = vT ĩ

= (AT e)T ĩ

= eT (Aĩ)

= 0 (1.31)

While the LHS of Eq. (1.31) has the dimensions of power, the quantity is physically
meaningless since vk and ĩk exist in two different circuits.

Similarly, we can show:

ṽT i = 0 (1.32)

Eqs. (1.31) and (1.32) are general forms of Tellegen’s theorem, which we will
now formally state.

Theorem 1.1. Tellegen’s theorem

Consider an arbitrary circuit. Let the associated digraph G have b branches. Using
passive sign convention, let v = (v1,v2, · · · ,vb)T be any set of branch voltages satis-
fying KVL for G and let i = (i1, i2, · · · , ib)T be any set of branch currents satisfying
KCL for G . Then:

b

∑
k=1

vkik = 0 (1.33)

Equivalently:

vT i = 0 (1.34)

Tellegen’s theorem has significant applications in general resistive circuit analysis.
We will prove Theorem 1.1 and apply it to circuit analysis in Chapter 3.
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1.7 Circuit Theory from Electromagnetic Field Theory

Now that we have an understanding of the laws of interconnection, we will have a
short discussion in this section on how to arrive at these laws, by using the fact that
circuit theory is an approximation of electromagnetic field theory. Although we are
only concerned with lumped circuits in this book, this section is useful because the
approximation techniques used have roots in the very important concept of modeling
[8].

Engineers and scientists seldom analyze a physical system in its original form.
Instead, they construct a model which approximates the behavior of the system. By
analyzing the behavior of the model, they hope to predict the behavior of the actual
system. The primary reason for constructing models is that physical systems are
usually too complex to be amenable to a practical analysis. In most cases, the com-
plexity of a system is due in part to the presence of many nonessential factors. The
basic principle of modeling consists, therefore, of extracting only the essential
factors.

We will start discussing modeling of the fundamental circuit elements in sec-
tion 1.8 and continue the discussion throughout the book. But, with respect to the
laws of interconnection, namely KCL and KVL, we need to only discuss how these
laws extract only the essential factors from electromagnetic field theory [8].

From the node form of KCL in definition 1.13, we know that the sum of the
currents flowing out of a node must be equal to zero. From field theory, the surface
integral of the current density over a closed surface must be equal to zero, if no
charge accumulates inside that surface. Definition 1.3 of a node implies that a node
is a theoretical abstraction of a physical interconnection of wires: a node does not
have any circuit elements such as capacitors associated with it. Hence, no charge
can accumulate on a node, and the sum of currents leaving the node must be equal
to zero.

KVL from definition 1.10 is equivalent to Faraday’s law of induction from
Maxwell’s theory of electromagnetism. This equivalence, however, is not directly
evident as the relation between KCL and the law of conservation of charge. Indeed,
KVL depends on how the branch voltages are defined in terms of the electromag-
netic field. The details are beyond the scope of this book. But, we can get an intu-
itive idea by considering the fact that we defined branch voltage as the difference
between node-to-ground voltages in Eq. (1.10). In fact, a practical device for mea-
suring branch voltage - the voltmeter - is connected such that voltage is measured
across a pair of nodes. Hence a voltmeter is designed to measure the line integral
of the electric field along the path formed by the connecting leads. Thus, the sum
of voltages around a closed loop in a circuit has the electromagnetic equivalent of
the electric field around a closed path. The electric field involved in this integration
is, by assumption, equal (or approximately so) to the negative gradient of a scalar
potential [8]. Therefore, the line integral of the electric field should vanish, and this
gives us KVL.
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1.8 Characterization of a Two-Terminal Black Box

Now that we have discussed interconnection of circuit elements, it is time to discuss
the circuit elements themselves. Although we will encounter many physical devices
of varying complexity throughout this book, we will model them as black boxes
[8]. These boxes may possess many terminals, but only two of these are accessible
to the external world in the sense that the device may be excited only through
these terminals. For our purpose, it is convenient to imagine that the device is
enclosed in a box and that the two accessible terminals are brought out by two
connecting wires, with the symbol shown in Fig. 1.10 (a).

(a) (b)

Fig. 1.10: Symbolic representation of two-terminal black boxes.

It is important to emphasize that the content of the black box may be as simple
as a light bulb, or as complicated as an arbitrary interconnection of black boxes as
shown in Fig .1.10 (b).

The choice of the term “blackbox” is quite appropriate here because the box
is really black inside in the sense that we cannot see its contents. As a matter of
fact, unless we open the box and peep inside, there is no way of determining its
contents. However, as engineers, we are not so much interested in the contents of
the box as in knowing what the box is capable of and how it behaves externally
when it is connected with other black boxes into a network. In other words, we
are primarily interested in predicting the external behavior of the black box. Our
first step toward such an analytical approach is to “characterize” the black box. To
properly characterize a blackbox, it is paramount that we choose the correct
set of terminal variables. We will illustrate this idea in this section by modeling a
“spring” from basic physics, refer to Fig. 1.11.

Suppose we did not know that in reality we had a spring inside the black box
and we were asked to predict the behavior of the external terminals when an arbi-
trary force f (t) is applied to one end (terminal) of the spring while the other end
(terminal) is fixed against a wall. The mechanical variables of interest here are the
displacement x (displacement to the right of the initial 0 position is assumed posi-
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x(t)

f(t)

Fig. 1.11: An example illustrating the characterization of a mechanical black box.

tive, as shown in Fig. 1.11), velocity v of the terminal that is free to move and the
force f (positive for tension, negative for compression).

Clearly the only way we can hope to characterize this black box (other than
opening the box) is to start performing some experiments. Suppose we begin by
applying a constant force f = A and measure the corresponding velocity v. This
would give us a point in the velocity-vs-force plane ( f − v plane). By repeating the
above experiment with several values of the force f , we obtain the data show in
Fig. 1.12.

We might be tempted to draw a smooth curve through these data points (which in
this case happens to be the f axis) and claim to have characterized the black box in
the sense that given any constant force f , we can analytically predict the associated
velocity.

However a little thought will show that we have not really characterized the black
box yet, for if, instead of applying a constant force we apply a slowly varying si-
nusoidal force, f (t) = Asin(t). The characteristics in Fig. 1.12 would predict that
v = 0.

This is of course contrary to what we observe experimentally: namely, v(t) =
(A/k)cos(t), where k is the spring constant. We might hope that this inconsistency
can be resolved by plotting all points ( f ,v). Nevertheless we will again quickly con-
clude that the length of both axes of the resulting ellipse depends on the amplitude
A of the applied force f . For each A we will obtain an unique ellipse and thus we
will eventually fill the entire f − v plane. Even if we could draw an infinite set of
ellipses, we would be able to predict the velocity only if f is sinusoidal. Using these
ellipses to predict v due to non-sinusoidal f would again yield incorrect answers.
We must now realize that the useful information we obtained from this experiment
is that the black box cannot be characterized by a curve in the f − v plane.

Suppose we try another set of variables, say the force f and displacement x.
Repeating the experiments, we will find that provided f(t) does not change rapidly,
the black box can be characterized by a displacement-vs-force ( f − x) curve.

After experiencing the length of time needed to carry out the above experiments,
we can now begin to appreciate the utility of such a conclusion; namely, the charac-
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Fig. 1.12: force-velocity plot for constant force f = A.

terization of the black box permits an analytical solution and thereby eliminates the
need to carry out any further experiments.

Observe however that our conclusion is based on the assumption that f (t) does
not change rapidly. If we were to repeat our experiment with higher-frequency sinu-
soidal waveforms, as well as non-sinusoidal waveforms which change rapidly, we
will find deviations from our conclusions drawn using low frequency waveforms.
This will suggest that our earlier assumption, that f does not change rapidly, is in-
deed necessary. In order to emphasize this restriction, it is a common practice to call
a black box characterization as static characterization, in contrast to a dynamic
characterization for higher frequencies. Hence for the black box in Fig. 1.11, the
f − x curve is the static characteristic.

Since the deviation of the measured characteristic from the static characteris-
tic increases slowly with frequency rather than abruptly, it is impossible to pick a
definite frequency above which the static characteristic does not hold. Neither it is
possible to find a single dynamic characteristic that would hold for all frequencies.
Hence a certain amount of scientific judgment is involved in deciding whether a cer-
tain static characteristic curve can be used to satisfactorily solve a given problem.
It is encouraging, however, to know that a large percentage of practical networks
can indeed be analyzed using only static characteristics. Moreover, even in cases
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where the static characteristic fails to give satisfactory solutions, we shall show in
future chapters that we can often patch up the error by including “parasitic ele-
ments”, namely, elements which are undesirable but which are invariably present
in the black box in small quantities. Thus, in this book, we will assume all char-
acteristics are static and will utilize parasitic elements to model the necessary
dynamic characteristics. We shall henceforth delete the adjective “static”.

For the example in Fig. 1.11, the parasitic element consists of the mass associated
with the spring. At low frequencies, the mass being quite small, has relatively no
effect on the f − x characteristic. However as the frequency of the external force
increases, the acceleration of the spring increases and the inertia force due to the
mass becomes appreciable.

1.9 Two-Terminal Elements

From the previous section, we know that it is essential to choose the correct set
of variables for characterizing a blackbox. For two-terminal elements, the circuit
variables of interest are those that can be measured externally. Hence the terminal
voltage v and terminal current i are of primary interest because they can be readily
measured. The charge q and flux-linkage φ are also of interest because they can
be indirectly measured by integrating the measured current i(t) and voltage v(t)
respectively. From these measurements, we shall then try to establish a relationship,
if any, between each pair of independent variables.

i and q are related by Eq. (1.3); v and φ are related by Eq. (1.4). Hence the only
remaining combinations consist therefore of the relationship between the following
variables.

1. Relationship between v and i, this is the two-terminal resistor shown in the top-
left corner of Fig. 1.1.

2. Relationship between φ and i, this is the two-terminal inductor shown in the
bottom-left corner of Fig. 1.1.

3. Relationship between φ and q, this is the two-terminal memristor shown in the
bottom-right corner of Fig. 1.1.

4. Relationship between v and q, this is the two-terminal capacitor shown in the
top-right corner of Fig. 1.1.

We will now discuss each of these elements in detail. But, before we begin our
discussion of two-terminal elements, a note about time− varying elements: each of
the four fundamental circuit elements we will discuss can be time-varying. For in-
stance, a time-varying resistor is defined by the relation: fR(v, i, t)= 0. A very simple
example is a potentiometer (or variable resistor), whose arm is being rotated by say
a motor. Nevertheless, the analysis of a nonlinear network containing time-varying
elements is a very difficult mathematical problem requiring advanced mathematics.
Hence we will restrict discussion in this book to nonlinear time-invariant elements.
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1.9.1 Resistors

The linear resistor is probably the most familiar circuit element that one encounters
in basic physics. This device satisfies Ohm’s law: that is, the voltage across such an
element is proportional to the current flowing through it. We represent it by the
symbol shown in Fig. 1.13 where the current i through the resistor and the voltage v

across it are measured using the passive sign convention from definition 1.2.

i+

v

-

R

Fig. 1.13: Symbol for a linear resistor with resistance R.

Ohm’s law states that at all times.

v(t) = Ri(t) or

i(t) = Gv(t) (1.35)

where the constant R is the resistance of the linear resistor (measured in the unit
of ohms (Ω )) and G is the conductance measured in units of siemens (S).

Eq. (1.35) can be plotted on the i− v plane or v− i plane5 as shown in Fig. 1.14.
There are two special cases of linear resistors which deserve special mention,

namely, the open circuit and short circuit.

Definition 1.16. A two-terminal resistor is called an open circuit iff its current i is
identically zero irrespective of the voltage v; i.e. f (v, i) = i = 0.

The characteristic of an open circuit is the v axis in the v− i plane, with zero
slope (G = 0). In the i− v plane, it has an infinite slope, R → ∞, refer to Fig. 1.15

Definition 1.17. A two-terminal resistor is called a short circuit iff its voltage v is
identically zero irrespective of the current i; i.e. f (v, i) = v = 0.

The characteristic of a short circuit is the i axis in the v− i plane, with G → ∞. In
the i− v plane, the characteristic has zero slope, G = 0, refer to Fig. 1.16.

5 When we say x− y plane, we denote specifically x as the horizontal axis and y as the vertical
axis of the plane. This is consistent with the conventional usage where the first variable denotes
the abscissa and the second variable denotes the ordinate.
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0 v

(a) (b)

i

G

i

v

R

0

Fig. 1.14: Linear resistor characteristic plotted on the (a) i− v and (b) v− i plane.

G = 0

v

(a) (b)

i

i

v

0 0

R → ∞

Fig. 1.15: Characteristic of an open circuit.

Comparing Figures 1.15 and 1.16, we see that the curve of the open circuit in one
plane is identical to the curve of the short circuit in the other plane. For this reason,
the open circuit is said to be the dual of the short circuit and vice-versa.

Example 1.9.1 A linear resistor with resistance of 100 Ω is given. What is its
dual?
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G → ∞

(a) (b)

i

i

v

0 v0

R = 0

Fig. 1.16: Characteristic of a short circuit.

Solution: Consider a linear resistor with resistance R = 1
100 Ω . The i− v and

v− i characteristics are plotted in Fig. 1.17. Notice how the i1 − v1 character-
istic of the resistor with R = 100 Ω is equivalent to the v4 − i4 characteristic
of the resistor with R = 1

100 Ω . Similarly, the v2 − i2 characteristic for resis-
tor with R = 100 Ω is equivalent to the i3 − v3 characteristic for resistor with
R = 1

100 Ω . Hence the dual is a resistor with R = 1
100 Ω .

From Eq. (1.9), the power delivered to a linear resistor at time t by the remainder
of the circuit to which it is connected is:

p(t) = v(t)i(t)

= Ri2(t)

= Gv2(t) (1.36)

Thus the power delivered to a linear resistor is always non-negative if R ≥ 0. We
say that a linear resistor is passive iff its resistance is non-negative. Thus a passive
resistor always absorbs energy from the remainder of the circuit.

But from Eq. (1.36) we can see the power delivered to a linear resistor is negative
if R< 0; i.e., as current flows through it, the resistor delivers energy to the remainder
of the circuit. Therefore we call such a linear resistor with negative resistance an
active resistor.

While linear passive resistors are familiar to everyone, linear active resistors are
perhaps new to some readers. They are one of the basic circuit elements in the
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Fig. 1.17: R = 100 Ω and R = 1
100 Ω are duals of each other. vn is in volts and in is

in amps.

design of negative resistance oscillators. We will show how to synthesize piecewise-
linear negative resistors using opamps in section 2.5.3.2. We will discuss oscillator
design in later parts of the book. For the present we only wish to mention that the
linear active resistor is useful in modeling nonlinear devices and circuits over certain
ranges of voltages, currents and frequencies.

While the linear resistor is perhaps the most prevalent circuit element in electrical
engineering, nonlinear devices which can be modeled with nonlinear resistors have
become increasingly important. Hence we will now define the concept of a non-
linear resistor in the most general way. Note that in keeping with the theme of the
book, linear resistors (elements) will only be discussed as special cases of nonlinear
resistors (elements).

In general, a two-terminal element will be called a resistor if its voltage v and
current i satisfy the relation in Eq. (1.37):

R = {(v, i) : fR(v, i) = 0} (1.37)
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This relation is called the v− i characteristic of the resistor and can be plotted graph-
ically in the v − i (or i − v) plane. We have already done so for linear resistors.
The circuit symbol for the nonlinear resistor was shown in Fig. 1.1, reproduced in
Fig. 1.18.

R

Fig. 1.18: Nonlinear resistor R.

Note that in view of the nonsymmetrical nature of the circuit symbol for the non-
linear resistor (and nonlinear elements in general), we may avoid drawing the asso-
ciated voltage (flux) polarity and current (charge) direction signs beside the symbol,
provided we agree to assume that the darkened edge is the negative terminal
and current (charge) enters the positive terminal. This convention will be fol-
lowed in this book, when adding polarities and directions will clutter the circuit
diagram.

Now we can generalize the concept of duality to nonlinear resistors: we say that
the dual of a given resistor is another resistor whose v− i characteristic in the v− i

plane is the same as that of the given resistor in the i− v plane. We will revisit this
concept of duality throughout the book and study it in detail in section 4.1.1, since
it helps us in understanding and analyzing circuits of great generality.

In order to be able to use nonlinear resistors effectively in a practical design, it
is necessary to understand some basic properties. We will illustrate these properties
by considering a prototypical example of a nonlinear resistor, the pn-junction diode
(henceforth referred to as diode).

Although we model diodes as nonlinear resistors, they are so important in cir-
cuit theory that they have their own symbol, shown in Fig. 1.19/ A typical v− i

characteristic is shown in Fig. 1.20.
In typical applications, the device is operated to the right of point A, where A is

near the “knee” of the diode. In this range, the current obeys the diode junction law
in Eq. (1.38).

i(v) = Is[e
v

VT −1] (1.38)

where Is is a constant on the order of microamperes and it represents the reverse
saturation current. The parameter VT = kT

q is called the thermal voltage, where q is
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i
+

v

-

Fig. 1.19: Circuit symbol for a diode.

Fig. 1.20: Diode v− i.

the charge of an electron, k is Boltzmann’s constant and T is the temperature in K.
At room temperature, VT is approximately 0.026 V.

In Eq. (1.38), we have a nonlinear resistor whose current i is expressed as a
function of its voltage v. This means that for any given voltage v, the current i is
uniquely specified. A nonlinear resistor having this property is called a voltage-
controlled nonlinear resistor. By contrast, if the voltage is a single-valued function
of the current v = v(i), we have a current-controlled nonlinear resistor. Another
important property shared by some v− i curves is their symmetry with respect to the
origin. Such elements are called bilaterial resistors because in this case, the two
terminals may be interchanged without effecting the v− i curve (see exercise 1.2).
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Finally, if for each pair of points (v1, i1) and (v2, i2) on the curve, we observe that
whenever v2 > v1 then i2 > i1, then the corresponding element is said to be strictly
monotonically increasing resistor. An example is a linear passive resistor.

Note that while Eq. (1.38) represents a good model for the diode at low fre-
quencies (recall section 1.8), we need to use additional circuit elements, capacitors,
inductors and linear resistors to model the device at higher frequencies. A very im-
portant physical property of the diode, namely charge-storage effects are modeled
by memristors. Memristors will be discussed in section 1.9.4.

Many practical diode circuits can be analyzed by a very simply piecewise-linear
diode model, called the ideal diode model, described analytically by Eq. (1.39).

i = 0 ∀v < 0
v = 0 ∀i > 0

p = vi = 0 ∀v, i
(1.39)

Observe that the last constraint is introduced to eliminate any point in the fourth
quadrant from becoming a part of the v− i curve. It is also important to observe that
an ideal diode becomes an open circuit for v < 0 and a short circuit for i > 0.

R

+

vout

-
vin

+

Fig. 1.21: Circuit for example 1.9.2.

Example 1.9.2 Consider the circuit shown in Fig. 1.21. Discuss what would
be the output voltage vout(t) if vin(t) = sin(πt), assuming the ideal diode
model.
Solution: The circuit in Fig. 1.21 is the first step in converting an AC (alter-
nating current or time-varying) voltage into a DC (direct current or constant)
voltage, a process called rectification. The terms AC and DC are so named
because in AC, the electric charge (and hence voltage) reverses (or alternates)
direction periodically. In DC, the electric charge flows in only one direction.

The output voltage vout for a sinusoidal vin is shown in Fig. 1.22. When the
input voltage vin(t) is positive, the diode becomes a short circuit and vout(t) =
vin(t). When the input voltage is negative, the diode becomes an open circuit
and vout(t)= 0. The result is that the output voltage becomes zero during every
other half cycle.

The circuit in Fig. 1.21 is called a half-wave rectifier, since the negative
half cycle is simply zeroed out, instead of being rectified.
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Fig. 1.22: vin(t) (solid) and vout(t) (dashed) for the circuit in Fig. 1.21.

Although the rectifier in example 1.9.2 uses an ideal diode, the above example
illustrates a universal principle of creative design: first arrive at an idealized network
(which is usually much easier to come by) and then introduce physical non-idealities
as necessary.

1.9.2 Independent Sources

Note that in example 1.9.2, we encountered a sinusoidal voltage source. Sources
are a very important class of two-terminal devices because electrical energy must be
supplied in order to move the charges which constitute current i. Of course energy
cannot be created or destroyed, electrical sources simply transform some other form
of energy into electrical energy. For instance, a battery transforms chemical energy
into electrical energy. We will encounter two6 types of sources7:

6 We will not use charge and flux-linkage sources in this book.
7 We will postpone discussion of the very important class of dependent sources till section 2.5.2,
after we have discussed two-port representation in section 2.2.1.
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Definition 1.18. An independent voltage source is a two-terminal device whose ter-
minal voltage v is always equal to some given function of time vs(t); regardless of
the value of current flowing through it.

The dual of the independent voltage source is the independent current source.

Definition 1.19. An independent current source is a two-terminal device whose ter-
minal current i is always equal to some given function of time is(t); regardless of
the value of voltage across its terminals.

The circuit symbol(s) for independent voltage and current sources are shown in
Fig 1.23.

v(t) V i(t)+

(a) (b) (c)

Fig. 1.23: Symbols for independent voltage and current sources. An independent
DC voltage source can also be indicated by the standard battery symbol shown in

(b).

On many occasions, we shall find it convenient to consider a DC voltage source
and a DC current source as nonlinear resistors. This interpretation is valid because,
by definition, a DC voltage source with terminal voltage E can be represented by the
vertical line v = E in the v− i plane. Similarly, a DC current source with terminal
current I can be represented by the horizontal line i = I in the v− i plane.

1.9.3 Inductors and Capacitors

In this section, we introduce inductors and capacitors. To emphasize the “dual” char-
acter of these two elements, we will use a two-column format so that each statement
on the left is the dual of the one on the right. Once the reader gets used to the idea
of duality, they need only read one column while mentally reflecting on the dual
statement in the other column.

An inductor is defined by

L = {(φ , i) : fL(φ , i) = 0} (1.40)

A capacitor is defined by

C = {(q,v) : fC(q,v) = 0} (1.48)
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The circuit symbol for an inductor is
shown in Fig. 1.24, reproduced from Fig.
1.1.

L

Fig. 1.24: Nonlinear inductor L .

If Eq. (1.40) can be solved for i as a
single-valued function of φ , namely:

i = î(φ) (1.41)

the inductor is said to be flux-controlled.
If Eq. (1.40) can be solved as a single-
valued function of i, namely:

φ = φ̂(i) (1.42)

then the inductor is said to be current-
controlled. If the function φ̂(i) is differ-
entiable, we can apply the chain rule in
Eq. (1.42) to obtain:

v = L(i)
di

dt
(1.43)

where

L(i)
△
=

dφ̂(i)

di
(1.44)

Example 1.9.3 Analyze the sys-
tem shown in Fig. 1.25, where
we have a conducting wire wound
around a toroid made of a non-
metallic material.

The circuit symbol for the capacitor is
shown in Fig. 1.27, reproduced from Fig.
1.1.

C

Fig. 1.27: Nonlinear capacitor C .

If Eq. (1.48) can be solved for v as a
single-valued function of q, namely:

v = v̂(q) (1.49)

the capacitor is said to be charge-controlled.
If Eq. (1.48) can be solved as a single-
valued function of v, namely:

q = q̂(v) (1.50)

then the capacitor is said to be voltage-
controlled. If the function q̂(v) is differ-
entiable, we can apply the chain rule in
Eq. (1.50) to obtain:

i =C(v)
dv

dt
(1.51)

where

C(v)
△
=

dq̂(v)

dv
(1.52)

Example 1.9.3 Analyze the sys-
tem shown in Fig. 1.28, where we
have two flat parallel metal plates
separated by a distance d.
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i(t)

+

v

−

Fig. 1.25: Toroidal inductor.

Solution: When a current i(t) is
applied, we recall from physics
that a flux equal to φ(t) = Li(t)
is induced at time t and circu-
lates around the interior of the
toroid. The constant of proportion-
ality is given approximately by

L = µ0
N2A

l H where µ0 = 4π ·
10−7 H/m is the permeability of
the core, N is the number of turns
of the coil, A is the cross-sectional
area in m2 and l is the midcir-
cumference along the toroid in m.
Hence, in Eq. (1.44), we will have
L(i) = L (a constant) and thus
we have the classic linear time-
invariant inductor from circuit the-
ory, with the relation:

v = L
di

dt
(1.45)

For the properties below, we will as-
sume linear time-invariant inductors and
address properties for the nonlinear coun-
terparts in chapter 4.
Memory Property:
Suppose we apply a voltage source v(t)
across an inductor L. The inductor cur-
rent can be obtained by integrating Eq. (
1.45) (assuming i(t →−∞) = 0):

+
−

v(t)

i(t)

d

Fig. 1.28: Parallel-plate capacitor.

Solution: When a voltage
v(t) is applied, we recall from
physics that a charge equal to
q(t) = Cv(t) is induced at time t

on the upper plate, and an equal
but opposite charge is induced on
the lower plate at time t. The con-
stant of proportionality is given
approximately by C = ε0

A
d F

where ε0 = 8.85 · 10−12 F/m is
the permittivity of free space, A

is the plate area in m2 and d is
the separation of the plate in m.
Hence, in Eq. (1.52), we have
C(v) = C (a constant) and thus
we have the classic time-invariant
capacitor from circuit theory, with
the relation:

i =C
dv

dt
(1.53)

For the properties below, we will as-
sume linear time-invariant capacitors and
address properties for the nonlinear coun-
terparts in chapter 4.
Memory Property:
Suppose we connect a current source i(t)
in series with capacitor C. The capacitor
voltage can be obtained by integrating
Eq. (1.53) (assuming v(t →−∞) = 0):
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i(t) =
1

L

∫ t

−∞
v(τ)dτ t ≥ t0 (1.46)

Hence the inductor current depends on
the entire past history of v(τ). Therefore
the inductor has memory.

Suppose however that current i(t0) at
some time t0 < t is given, then we get:

i(t) = i(t0)+
1

L

∫ t

t0

v(τ)dτ t ≥ t0

(1.47)

In other words, instead of specifying the
entire past history, we need only spec-
ify i(t) at some conveniently chosen ini-
tial time t0. In effect, the initial condition
i(t0) summarizes the effect of v(τ) from
τ → −∞ to τ = t0, on the present value
of i(t). We can draw an equivalent circuit
symbolizing the memory effect as shown
in Fig 1.26.

L

i(t)

i(t0) = i0

L

i(t)

i0

i1(t)

i1(t0) = 0

Fig. 1.26: Initial condition
transformation for L.

Continuity Property:
Suppose we apply a voltage source de-
scribed by a discontinuous square wave
across an inductor, then the current through
the inductor is given by Eq. (1.47). As-
suming that i(t0) = 0, we will obtain
continuous inductor current waveform.
This “smoothing” phenomenon turns out

v(t) =
1

C

∫ t

−∞
i(τ)dτ t ≥ t0 (1.54)

Hence the capacitor voltage depends on
the entire past history of i(τ). Therefore
the capacitor has memory.

Suppose however that voltage v(t0) at
some time t0 < t is given, then we get:

v(t) = v(t0)+
1

C

∫ t

t0

i(τ)dτ t ≥ t0

(1.55)

In other words, instead of specifying the
entire past history, we need only spec-
ify v(t) at some conveniently chosen ini-
tial time t0. In effect, the initial condi-
tion v(t0) summarizes the effect of i(τ)
from τ → −∞ to τ = t0, on the present
value of v(t). We can draw an equivalent
circuit symbolizing the memory effect as
shown in Fig 1.29.

C

v(t0) = v0

i(t)

+

v

-

+

v1

-

i(t)

v0

v1(t0) = 0

C

Fig. 1.29: Initial condition
transformation for C.

Continuity Property:
Suppose we apply a current source de-
scribed by a discontinuous square wave
through a capacitor, then the voltage across
the capacitor is given by Eq. (1.55). As-
suing v(t0) = 0, we will obtain contin-
uous capacitor voltage waveform. This
“smoothing” phenomenon turns out to
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to be a general property.

If the voltage waveform vL(t) across a
linear time-invariant inductor L remains
bounded in a closed interval [ta, tb], then
the current waveform iL(t) through the
inductor is a continuous function in the
open interval (ta, tb). In particular, for
any time T satisfying ta < T < tb,
iL(T−) = iL(T+).

be a general property.

If the current waveform iC(t) in a lin-
ear time-invariant capacitor C remains
bounded in a closed interval [ta, tb], then
the voltage waveform vC(t) across the
capacitor is a continuous function in the
open interval (ta, tb). In particular, for
any time T satisfying ta < T < tb,
vC(T−) = vC(T+).

The continuity property for inductors and capacitors is so important that we will
prove the continuity property for a capacitor (the inductor follows by duality).

Consider Eq. (1.55). Substituting t = T and t = T + dt into Eq. (1.55) where
ta < T < tb and ta < T +dt ≤ tb, and subtracting, we get:

vC(T +dt)− vC(T ) =
1

C

∫ T+dt

T
iC(τ)dτ (1.56)

Since we have assumed iC(t) to be bounded in [ta, tb], there is a finite constant M

such that |iC(t)|< M, ∀t ∈ [ta, tb]. It follows that the area under the curve iC(t) from
T to T +dt is at most Mdt (in absolute value), which tends to zero as dt → 0. Hence
Eq. (1.56) implies vC(T +dt)→ vC(T ). Therefore vC(t) is continuous at t = T .

1.0kΩ0.1 pF
+
V0
-

t = 0
i

Fig. 1.30: Figure for example 1.9.4.

Example 1.9.4 Find the value i(0+) in Fig. 1.30, assuming the capacitor is
precharged to 0.5 V and the ideal switch instantaneously closes at t = 0.
Solution:
Since the capacitor is precharged to 0.5 V , v0(0−) = 0.5 V . By the continuity
property for capacitors, v0(0+) = 0.5 V . Since we have a linear resistor, by
Ohm’s law and the passive sign convention:
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i =−
0.5 V

1.0 kΩ
=−0.5 mA (1.57)

The continuity property will be further utilized in Chapter 4, where we apply it
to solve8 a variety of circuits that exhibit switching discontinuities.

1.9.4 Memristors

Looking at Fig. 1.1 and based on our discussions of the other fundamental circuit
elements, it is only natural that, by symmetry arguments, there exists a fourth
fundamental circuit element for establishing a φ −q relationship:

M = {(φ ,q) : fM(φ ,q) = 0} (1.58)

Such an element was defined by Dr. Chua in 1971 [2]. Nevertheless investigations
of this element began in earnest only after HP’s announcement in 2008 [22]. HP’s
memristor is a very specific TiO2 based device, and most works nowadays are fo-
cused on memristors as a form of resistive random-access memory.

We will rather study general characteristics of this device. Interestingly, literature
survey gives a wealth of insight into this device, and hence we will begin our study
with the very first citations of Chua’s seminal work.

Dr. Penfield, in a MIT technical report [18], mentions the memristor in con-
nection with the Josephson junctions. Throughout the late 20th century, a plethora
of research [10], [16], [17], [24] regarding the “phase-dependent conductance” in
Josephson junctions were carried out. But a proper memristor approach to interpret-
ing the “phase-dependent conductance” occurred only with Peotta and Di Ventra’s
seminal paper in 2014 [19]. However, before we examine the ideal memristor in
Josephson junctions, we will state some important properties of the memristor [2].

Consider a function of q based on Eq. (1.58):

φ = g(q) (1.59)

Differentiating both sides of Eq. (1.59) with respect to time and applying the
chain rule, we get:

8 By “solve” a circuit, we mean to find the voltage across and current through every branch for all
times t.
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dφ

dt
=

dg(q)

dt

=
dg

dq

dq

dt
(1.60)

From Eq. (1.3), i = dq
dt and from Eq. (1.4), v = dφ

dt . Hence we have the memristor
v− i relation in Eq. (1.61).

v(t) = M(q(t))i(t) (1.61)

M(q(t)) in Eq. (1.62) is defined as the incremental memristance, we can anal-
ogously define a W (φ(t)) as incremental menductance9.

i(t) =W (φ(t))v(t) (1.62)

We can make the following observations from Eq. (1.61) (analogous observations
hold for Eq. (1.62)):

1. M(q(t)) = M(
∫ t
−∞ i(τ)dτ). Hence the fact that memristor stands for “memory-

resistor” can be justified: the value of the memristance at any time t depends
on the time integral of the memristor current from −∞ to t. Therefore while
the memristor behaves like an ordinary resistor at a given instant of time, its
resistance depends on the complete past history (or memory) of memristor
current.

2. In the very special case where the memristor φ − q curve is a straight line, we
obtain M(q) = R, the memristor reduces to a linear time-invariant resistor.

Point 2. above illustrates why the memristor is not relevant in linear circuit the-
ory: unlike the other three fundamental circuit elements (resistor, inductor, capac-
itor), a memristor is a fundamentally nonlinear device, a linear memristor is
simply a resistor. Hence techniques from nonlinear circuit theory are essential to
understanding memristor functionality.

We can now discuss the phase-dependent conductance in Josephson junction as
an ideal memristor. Before doing so we will derive the Josephson relation from first
principles, since not only does this relation utilize fundamental physical principles,
but it also helps us practice our definitions of the fundamental circuit variables.

Consider the Josephson junction (JJ) shown in Fig. 1.31.
From basic physics, we know that energy E is quantized from the Planck-Einstein

relation:

E = hν (1.63)

Rewriting Eq. (1.63), we get:

9 To avoid clutter, we will use the terms memristance and menductance from now on. We will
reserve the use of “incremental” for clarity purposes.



1.9 Two-Terminal Elements 39

v

S I S

i

Fig. 1.31: A Josephson junction formed by using a
superconductor-insulator-superconductor setup. The barrier I is thin enough (on

the order of a few angstroms) that superconducting Cooper pairs can tunnel across
the junction when v = 0 [9].

E = h
ω

2π
(1.64)

In Eq. (1.63), ν is frequency in Hz and in Eq. (1.64), ω is angular frequency in rad/s.
In a physical JJ in the superconducting state, a quantum mechanical phase differ-

ence Φ is established between the two superconductors. Therefore, we have:

E =
h

2π

dΦ

dt
(1.65)

Based on Eq. (1.1), we have:

2e−v =
h

2π

dΦ

dt
(1.66)

We have used 2e− because Cooper pairs carry the charge in the superconducting

state. Using Eq. (1.4), defining h̄
△
= h

2π and simplifying, we get:

dφ

dt

(

2e−

h̄

)

=
dΦ

dt
(1.67)
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In Eq. (1.67), we can define φ0
△
= φ/ h̄

2e− . In other words, the quantum mechanical
phase difference across the junction is quantized as a function of the magnetic flux
through the loop ( h

2e− is the magnetic flux quantum): Φ = φ0. Eq. (1.67) is the
fundamental Josephson relation.

The current i through the junction can be written [9] as:

i(v) = Ic sin(φ0)+σ0(v)v+ ε cos(φ0)v+ · · · (1.68)

In Eq. (1.68), Ic,ε are constants based on the physical superconducting materials
and σ0(v) is the nonlinear conductance for the particular JJ. But, the important point
is to notice how the current i will be non-zero even if the voltage across the junction
is zero! This is due to the Josephson current I j = Ic sin(φ0). The mindful reader
should have noticed that we can model a JJ as a nonlinear inductor, when v = 0.

But the important point is that the third term in Eq. (1.68) can be written as:

i3(v) =W (φ0)v (1.69)

This equation is precisely the equation of an ideal memristor (the device is tech-
nically a menductor). But there are two issues in trying to design an ideal memristor:

1. The Josephson current I j is usually much larger when compared to the memris-
tance term i3.

2. The memristance term is non-zero only when the voltage across the junction is
non-zero. And in this case, it is oscillating at a very high frequency10.

Nevertheless, Peotta and Di Ventra propose an elegant approach [19] to isolate
the memristance term: utilize two Josephson junctions of different material, con-
nected in parallel, to cancel the Josephson current.

But how do we identify a memristive two-terminal blackbox? The answer lies
in our definition : since v(t) (i(t)) has to be zero whenever i(t) (v(t)) is zero for a
memristor (menductor), under periodic excitation, a memristor distinctly displays a
Lissajous figure in the v− i plane.

However, in the case of the ideal memristor in the Josephson junction, we still
have the issue of the cosφ0 term oscillating at very high frequencies for practical
measurements. Thus, are there other memristive devices that we can easily study
experimentally?

The answer is yes! For studying other memristive devices, we will use the gener-
alization of an ideal memristor to a general memristive device, as defined by Chua
and Kang [3].

An nth-order current-controlled memristive one-port is represented by:

ẋ = f (x, i, t)

v = R(x, i, t)i (1.70)

10 Private email communication from Dr. Brian Josephson to Dr. Muthuswamy on March 14th
2014.
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An nth-order voltage-controlled memristive one-port is represented by:

ẋ = f (x,v, t)

i = G(x,v, t)v (1.71)

A variety of physical devices are memristive in nature. We will examine one of
these devices: a discharge tube, whose resistance is a function of the number of
conduction electrons ne [12]. Consider Eq. (1.72):

vM = R(ne)iM

ṅe =−βn+αR(ne)i
2
M (1.72)

vM is the voltage across the discharge tube, iM is the current flowing through it
and ne is the number of conduction electrons. R(ne) =

F
ne

. α,β ,F are parameters
depending on the dimensions of the tube and the gas fillings. Comparing Eqs. (1.70)
and (1.72), we can clearly see that a discharge tube can be modeled as a current-
controlled memristor.

Fig. 1.32 shows a simulated vM − iM curve and Fig. 1.33 shows an oscilloscope
screenshot of a measured discharge tube characteristic.

Fig. 1.32: Simulated Lissajous figure for iM(t) = sin(ωt) in Eq. (1.72), with
α = 0.1,β = 0.1,F = 1,ω = 0.063.

We will have more to discuss about other memristive devices such as thermistors
in section 4.3.2.
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Fig. 1.33: Measured discharge tube characteristics. We have plotted vM on the
Y-axis (2 V/div) and have scaled iM to voltage for ease of plotting on the X-axis (5

V/div).

1.9.5 Periodic Table of Circuit Elements

Sections 1.9.1 through 1.9.4 have helped us discuss the four fundamental circuit
elements in Fig. 1.1. The elements are fundamental in the sense that no element
from this basic set can be derived from the other three elements [4].

In fact, we can generalize Fig. 1.1 to higher-order circuit elements. As a moti-
vating example, consider Eq. (1.73) of the Duffing oscillator. This oscillator is used
to model a variety of phenomena in science. We will discuss a circuit implementa-
tion of this oscillator in section 5.2.

v̈+δ v̇+ v(β +αv2) = i(t) (1.73)

Since we are forcing a current input on the RHS, each expression on the LHS
of Eq. (1.73) represents current. Thus, by KCL, we simply have three elements in
parallel to an ideal current source.

From Eq. (1.53), we know that the current through a capacitor is proportional to
the first derivative of the voltage across it. Hence, δ v̇ in Eq. (1.53) can be modeled by
a linear time-invariant capacitor. We will learn when we synthesize this oscillator in
section 5.2 that a tunnel diode has a cubic i(v) and hence can be used to synthesize
the v(β +αv2) term. But, does there exist a two-terminal element whose current
through the terminals is proportional to the second derivative of the voltage across
it?
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Although the current answer to the question is “we do not know”, Eq. (1.73)
shows the necessity of defining such a circuit element. Of course, one could also
ask: why not simply build an analog computer that solves Eq. (1.73)? The answer
is: the analog computer will not help us study the underlying physical phenomenon.
As an analogy, consider a mass-spring-damper model of a second-order system.
The equivalent analog computer implementation is simply a “signal flow” graph
and cannot yield insightful information, say, the energy transfer between the mass
and the spring.

Hence, we need to expand our repertoire of fundamental circuit elements from
Fig. 1.1, by introducing a sufficiently rich family of elementary circuit elements [6]
which play the same role as the set of basis vectors to define a vector space.

The key concept is the following definition.

Definition 1.20. A two-terminal or one-port black box characterized by a constitu-
tive relation in the v(α)− i(β ) plane is called an (α,β ) element, where v(α) and i(β )

are variables derived from voltage v(t) and current i(t) below.

v
(αk)
k (t)

△
=

⎧

⎪

⎨

⎪

⎩

dαk vk(t)
dtαk

if αk > 0

vk(t) if αk = 0
∫ t
−∞

∫ τk−1
−∞ · · ·

∫ τ2
−∞ vk(τ1)dτ1dτ2 · · ·dταk

if αk < 0

(1.74)

i
(βk)
k (t)

△
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dβk ik(t)

dtβk
if βk > 0

ik(t) if βk = 0
∫ t
−∞

∫ τk−1
−∞ · · ·

∫ τ2
−∞ ik(τ1)dτ1dτ2 · · ·dτβk

if βk < 0

(1.75)

The circuit symbol for v(α)-i(β ) element is shown in Fig 1.34.

i

+

v

-

α

β

Fig. 1.34: Two terminal or one-port representation of (α,β ) element.
In other words, based on Eqs. (1.74) and (1.75), we can make the following

observations:

1. Every (0,0) element is a resistor R
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2. Every (-1,0) element is an inductor L

3. Every (0,-1) element is a capacitor C

4. Every (-1,-1) element is a memristor M

Thus, based on our discussion so far and KCL, a circuit equivalent of Eq. (1.73)
is shown in Fig. 1.35.

0

-2
RC i(t)N

+

v

−

Fig. 1.35: A circuit realization of the Duffing oscillator

We will revisit and synthesize (α,β ) elements in section 2.5.5, once we under-
stand how to use opamps in circuit synthesis. It turns out that we need only two
opams to synthesize the v(0)− i(−2) element!

It is instructive to visualize the (α,β ) elements in the form of a “periodic table”
in Fig. 1.36, that expands the basic four element quadrangle from Fig. 1.1.

In Fig. 1.36, all elements printed in the same color belong to the same element
“species” and, notice that there are only four colors. The justification for the “peri-
odic table” label and a rigorous analysis of Fig. 1.36 will be done in section 4.5.

1.10 Series and Parallel Connections of Resistors

We are now in a position to consider a special but very important class of circuits:
circuits formed by series and parallel connections of two-terminal resistors. First, we
wish to generalize the concept of the v− i characteristic of a resistor to that of a two-
terminal circuit made of two-terminal resistors, or more succinctly, a resistive one-
port. We will demonstrate that the series and parallel connections of two-terminal
resistors will yield a one-port whose v− i characteristic is again that of a resistor.
We say that two resistive one-ports are equivalent iff their v− i characteristics are
the same.
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Fig. 1.36: The periodic table of all two-terminal (α,β ) elements, adopted from [6].
mQ is defined as a small-signal slope about an operating point, and will be

rigorously discussed in section 4.5.

When we talk about resistive one-ports, we naturally use port voltage and port
current as the pertinent variables. The v− i characteristic of a one-port in terms
of its port voltage and port current is often referred to as the driving-point or DP
characteristic11 of the one-port. The reason we call it the DP characteristic is that

11 We will discuss DP characteristics in detail in section 3.7.1.
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we may consider the one-port as being driven by an independent voltage source vs or
an independent current source is. In the former, the input is vs = v and the response
is the current i. In the latter, the input is is = i and the response is v.

N

1

2

3

i

+

v1

-

+

v2

-

i1

i2

+

v

-

R1

R2

Fig. 1.37: Two nonlinear resistors connected in series together with the rest of the
circuit N .

Consider the circuit shown in Fig. 1.37 where two nonlinear resistors R1 and
R2 are connected at node 2. Nodes 1 and 3 are connected to the rest of the circuit,
which is designated by N . Looking towards the right from nodes 1 and 3, we have a
one-port which is formed by the series connection of two resistors R1 and R2. For
our present purposes, the nature of N is irrelevant. We are interested in obtaining
the DP characteristic of the one-port with port voltage v and port current i.

Let us assume that both resistors are current-controlled, i.e.,

v1 = v̂1(i1)

v2 = v̂2(i2) (1.76)

Notice that these are the laws of elements. Next, applying KVL for the node se-
quence 1−2−3−1 gives:

v = v1 + v2 (1.77)

Applying KCL to nodes 1 and 2 gives:

i = i1 = i2 (1.78)

Combining Eqs. (1.76), (1.77), (1.78), we obtain:
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v = v̂(i)

where v̂(i)
△
= v̂1(i)+ v̂2(i) (1.79)

Note that Eq. (1.79) can be extended to n nonlinear resistors Rn in series. Thus, we
can conclude that:

1. KVL requires the port voltage v to be equal to the sum of the branch voltages of
the resistors.

2. KCL forces all branch currents to be equal to the port current.
3. If each resistor is current-controlled, the resulting DP characteristic of the one-

port is also a current-controlled resistor.

Example 1.10.1 Determine v̂(i) if the two terminals of R1 in Fig. 1.37 are
turned around.
Solution: The new circuit is redrawn in Fig. 1.38. Hence, the v− i character-
istic for R1 is now:

v1 = v̂1(−i1) (1.80)

KVL gives:

v =−v1 + v2 (1.81)

Thus, we have:

v =−v̂1(−i)+ v̂2(i) (1.82)
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N

1

2

3

i

+

v1

-

+

v2

-

i1

i2

+

v

-

R1

R2

Fig. 1.38: Circuit for example 1.10.1.

N

1

2

i

+

v1

-

+

v2

-

i1 i2+

v

-

R1 R2

Fig. 1.39: Two nonlinear resistors connected in parallel together with the rest of the
circuit N .

Consider the circuit shown in Fig. 1.39 where two nonlinear resistors R1 and
R2 are connected across nodes 1 and 2 to the rest of the circuit, which is desig-
nated by N . Looking towards the right from nodes 1 and 2, we have a one-port
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which is formed by the parallel connection of two resistors R1 and R2. For our
present purposes, the nature of N is irrelevant. We are interested in obtaining the
DP characteristic of the one-port with port voltage v and port current i.

Let us assume that both resistors are voltage-controlled, i.e.,

i1 = î1(v1)

i2 = î2(v2) (1.83)

Notice that these are the laws of elements. Next, applying KVL gives:

v = v1 = v2 (1.84)

Applying KCL at node 1 gives:

i = i1 + i2 (1.85)

Combining Eqs. (1.83), (1.84), (1.85), we obtain:

i = î(v)

where î(v)
△
= î1(v)+ î2(v) (1.86)

Note that Eq. (1.86) can be extended to n nonlinear resistors Rn in parallel. Thus,
we can conclude that:

1. KVL forces all branch voltages to be equal.
2. KCL requires the port current i to be equal to the sum of the branch currents of

the resistors.
3. If each resistor is voltage-controlled, the resulting DP characteristic of the one-

port is also a voltage-controlled resistor.

The careful reader would have noticed that Eqs. (1.76) to (1.78) and Eqs. (1.83)
to (1.85) are duals of each other! In other words, if we make the substitutions for all
the v’s with i’s and for all the i’s with v’s in one set of equations, we obtain precisely
the other set. For this reason, we can extend and generalize the concept of duality
introduced earlier for resistors to circuits.

In table 1.1, we list two sets of terms S and S∗ which we have encountered and
which are said to be dual to one another.

Before we end this section, we would like to solve an example that illustrates a
variety of concepts from this chapter.

Example 1.10.2 In Fig. 1.40, determine the value of I.
Solution: Before attempting to solve any problem, it is a good idea to under-
stand the problem and devise a plan of action. We then carry out the plan
and check our answer [20].
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Table 1.1: Dual terms

S S∗

Branch Voltage Branch Current
Resistance Conductance
Current-controlled resistor Voltage-controlled resistor
Open circuit Short circuit
Independent voltage source Independent current source
Inductor Capacitor
KVL KCL
Port voltage Port current
Series connection Parallel connection

3 V 2 V

10k
4 V

20k

I
A B

C

D

Fig. 1.40: Circuit with only linear elements
.

In this case, a quick examination of the problem will indicate that we need
to determine the current through a linear resistor and hence if we know the
voltage across it, we can apply Ohm’s law.

Starting at node B and applying KVL, we get:

vAB +3−2 = 0 (1.87)

Notice our judicious choice of voltage polarity as vAB and not vBA. This choice
is no accident: in this problem, the current direction has been clearly specified,
so we must choose vAB to comply with the passive sign convention definition
from definition 1.2.

We can in fact now carry out the plan and get the result as:

I =
vAB

20 k

=−0.05 mA. (1.88)
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Notice a negative I implies the voltage drop across the resistor is opposite
to the direction we picked.

How do we check our answer? One approach would be to make sure that
the power delivered is equal to power absorbed. This is essential because our
circuit is a closed system. We need to first find the current through the branch
B−D−A. This can be done by finding the voltage across the 10 k resistor
which in turn can be found by using KVL around D−A−C−B−D:

4+3−2− vBD = 0 (1.89)

Thus vBD = 5 V . Hence the current through the 10 k is IBD = 0.05 mA. KCL
at node B gives ICB = 0.1 mA. We now have all the necessary variables to
find the power associated with each element, keeping in mind the passive sign
convention form definition 1.2.

P3 V =−0.3 mW

P2 V =+0.2 mW

P4 V =−0.2 mW

P10 k =+0.25 mW

P20 k =+0.05 mW

Σ = 0 mW (1.90)

Hence we should have good confidence that our answer is correct. We will
discuss more circuit analysis techniques based on energy (including expres-
sions for energy stored in an inductor etc.) and power in section 4.6.

1.11 Conclusion

In this chapter, we discussed the fundamental circuit variables, elements and Kirch-
hoff’s laws. To summarize:

1. We will assume the lumped circuit approximation.
2. We will follow a black box approach and model static (or “low frequency”) char-

acteristics. We will use parasitic components as necessary to model “high fre-
quency” effects. We emphasize that “low frequency” and “high frequency” de-
pend on the particular device being modeled.

3. The laws of interconnection (KVL, KCL) are independent of the laws of ele-
ments.

4. Elements are said to be in series when they have the same current flowing through
them.
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5. Elements are said to be in parallel when they have the same voltage across them.

In the next chapter, we will move on to study multi-terminal elements, particularly
the transistor, operational amplifier and transformer.

Exercises

1.1. Given the v− i characteristic Γ of a resistor R on the v− i plane, show that the
dual characteristic is obtained by reflecting Γ about the 45◦ line through the origin.

1.2. Find a necessary and sufficient condition for a nonlinear two-terminal element
(resistor, inductor, capacitor and memristor) to be bilateral.

1.3. A certain v− i curve is described by an equation v = 10i+ 5. Is this a linear
resistor?

1.4. Discuss mechanical analogies to the four fundamental circuit elements. For the
memristor, a good starting point is the classic paper by Oster and Auslander [15].

1.5. This exercise (courtesy of Dr. Oldham from UC Berkeley [14]) is designed to
test the reader’s fundamental understanding of the conceptual material from this
chapter, and is very similar to example 1.10.2. As a result, the reader should strive
to find the correct solution mentally, without the use of pen and paper.

Find the values of the indicated variables below.

1. VAB in Fig. 1.41.

6 V

20k

10k

20k

10k

A

B

Fig. 1.41

2. VCD in Fig. 1.42.
3. Power associated with the 500 kΩ resistor in Fig. 1.43.
4. Equivalent resistance at AB in Fig. 1.44.



1.11 Conclusion 53

2 mA

1k

4k

4k

1k

2k 6k

C D

Fig. 1.42

2 V 500k10 uA

Fig. 1.43

A B
80k20k

10k

50k 50k

Fig. 1.44

i1

+
+

v2

-

+

v3

-

i3i2

i

+

v

-

R1

R2 R3

v1 -

Fig. 1.45: A ladder circuit with nonlinear resistors.
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1.6. Consider the circuit in Fig. 1.45. Assuming R1 is current-controlled (v1 =
v̂1(i1)), R2 and R3 are voltage-controlled (i2 = î2(v2), i3 = î3(v3)), determine the
characteristic for R.

1.7. Based on the ideas from section 1.10, discuss:

1. Ln inductors in series and parallel
2. Cn capacitors in series and parallel
3. Mn memristors in series and parallel

1.8. The current in the circuit in Fig. 1.46 [13] is known to be i0 = 5e−2000t(2cos4000t+
sin4000t) mA to t ≥ 0+. Find the values of v1(0+) and v2(0+).

400 Ω

5 µF 10 mH

+

-

+

-

v1 v2

i0

Fig. 1.46

1.9. At t = 0, a series-connected capacitor and inductor are placed across the termi-
nals of a black box, as shown in Fig. 1.47 [13]. For t > 0, it is known that:

i0 = 1.5e−16000t −0.5e−4000t A (1.91)

If v1(0) =−50 V , find and sketch v0 for t ≥ 0.

+

-

v1 625 nF

25 mH

t = 0

i0

+

v0

-

Black

Box

Fig. 1.47
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Lab 1: Introduction to QUCS (Quite Universal Circuit
Simulator)

Objective: To successfully install QUCS
Theory:
The goal of circuit simulation is to predict the behavior of a circuit before we phys-
ically construct the circuit.

A variety of circuit simulators exist. In keeping with the introductory nature of
this text, we would like to use a circuit simulator that is easy to use, has a robust
graphical user interface (GUI) and is supported across multiple platforms (Windows,
OS X and Linux based computers). Moreover, as stated in the online QUCS FAQ
[21], classic SPICE based simulators have a variety of limitations that QUCS aims
to overcome.

In this lab component, we simply install QUCS and make sure that the program
is functional.

Lab Exercise:

1. Download and install the correct version of QUCS from [21] for your platform.
Detailed instructions are in Appendix A.

2. Start QUCS. If successful, you should see Fig. 1.48.

Fig. 1.48: QUCS startup screen in OS X Sierra.
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3. Once you start QUCS, we encourage you to read the associated documentation
[21] and try some of the sample simulations. More will be explained about the
different simulation (transient etc.) throughout the book.
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Appendix A

Installing QUCS

In this appendix, we will discuss how to install QUCS [1]. Note that QUCS has a
lot of components, many of which we will not use. Nevertheless, we will install all
components for completeness.

A.1 Windows

Please install the official Windows QUCS package from the download section in the
QUCS homepage [1].

A.2 OS X

Please install the official OS X QUCS package from the download section in the
QUCS homepage [1].

A.3 Linux

If you are using Linux, make sure you have a reliable internet connection, as we will
be installing from source. If you are on a Linux platform, we will assume that you
are comfortable with basic command line tools such as tar, apt-get etc. and
have sudo access.

The instructions below are specifically for Ubuntu 14.04 distribution, but they
should be applicable to any of the popular Linux distributions.

1. The first step is to download the latest QUCS tarball (v0.0.19 as of this writing)
from [1] in your home folder.

77
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2. Extract and unzip the tarball:

1 $ tar xvzf qucs-0.0.19.tar.gz

3. Change into the QUCS directory and go through README.md.
4. You may need to install missing dependencies via the Debian package manager.

In our case, we had to install the following packages:

1 $ sudo apt-get install gperf libxml-libxml-perl libxml2

libxml2-dev libgd-perl octave texlive-collection-mathextra

texlive-math-extra texlive-science

5. Next, we need to install ADMS. To do, clone the repository from github into your
root folder, configure and install:

1 $ git clone https://github.com/Qucs/ADMS.git

2 $ export LD_LIBRARY_PATH=/usr/local/lib

3 $ cd ADMS

4 $ sh bootstrap.sh

5 $ ./configure --enable-maintainer-mode

6 $ make

7 $ sudo make install

8 $ sudo ldconfig

6. Configure, make and install QUCS:

1 $ cd ˜/qucs-0.0.19/

2 $ ./configure

3 $ make

4 $ sudo make install
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Solutions

For step-by-step solutions to all problems, please visit online material at: http://
www.youtube.com/user/bharathberkeley/IntroToNonlinearCir

cuitsAndNetworks
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