PTFE/Woven Fiberglass Laminates

Features:
- Extremely Low Loss Tangent
- Excellent Dimensional Stability
- Product Performance Uniformity

Benefits:
- Electrical Properties Are Highly Uniform Across Frequency
- Consistent Mechanical Performance
- Excellent Chemical Resistance

Typical Applications:
- Military Radar Feed Networks
- Commercial Phased Array Networks
- Low Loss Base Station Antennas
- Missile Guidance Systems
- Digital Radio Antennas
- Filters, Couplers, LNAs

DiClad laminates are woven fiberglass/PTFE composite materials for use as printed circuit board substrates. Using precise control of the fiberglass/PTFE ratio, DiClad laminates offer a range of choices from the lowest dielectric constant and dissipation factor to a more highly reinforced laminate with better dimensional stability.

The woven fiberglass reinforcement in DiClad products provides greater dimensional stability than nonwoven fiberglass reinforced PTFE based laminates of similar dielectric constants. The consistency and control of the PTFE coated fiberglass cloth allows Arlon to offer a greater variety of dielectric constants and produces a laminate with better dielectric constant uniformity than comparable nonwoven fiberglass reinforced laminates. The coated fiberglass plies in DiClad materials are aligned in the same direction. Cross-plied versions of many of these materials are available as Arlon CuClad materials.

DiClad 522 and DiClad 527 (Er=2.40–2.65) use a higher fiberglass/PTFE ratio to provide mechanical properties approaching conventional substrates. Other advantages include better dimensional stability and lower thermal expansion in all directions. The electrical properties of DiClad 522 and 527 are tested at 1MHz and 10GHz, respectively.
Material Availability:

DiClad laminates are supplied with 1/2, 1 or 2 ounce electrodeposited copper on both sides. Other copper weights and rolled copper foil are available. DiClad is available bonded to a heavy metal ground plane. Aluminum, brass or copper plates also provide an integral heat sink and mechanical support to the substrate.

When ordering DiClad products please specify dielectric constant, thickness, cladding, panel size and any other special considerations. Available master sheet sizes include 36” x 48” and 48” x 54”.

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Condition</th>
<th>DiClad 880</th>
<th>DiClad 870</th>
<th>DiClad 522/527</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Constant @ 10 GHz</td>
<td>IPC TM-650 2.5.5.5</td>
<td>C23/50</td>
<td>2.17, 2.20</td>
<td>2.33</td>
<td>2.40 to 2.65</td>
</tr>
<tr>
<td>Dissipation Factor @ 10 GHz</td>
<td>IPC TM-650 2.5.5.5</td>
<td>C23/50</td>
<td>0.0009</td>
<td>0.0013</td>
<td>0.0018</td>
</tr>
<tr>
<td>Thermal Coefficient of Er (ppm/°C)</td>
<td>IPC TM-650 2.5.5.5</td>
<td>C23/50</td>
<td>-160</td>
<td>-161</td>
<td>-153</td>
</tr>
<tr>
<td>Peel Strength (lbs.per inch)</td>
<td>IPC TM-650 2.4.8</td>
<td>After Thermal Stress</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Volume Resistivity (MΩ-cm)</td>
<td>IPC TM-650 2.5.17.1</td>
<td>C96/35/90</td>
<td>1.4 x 10⁶</td>
<td>3.4 x 10⁷</td>
<td>4.5 x 10⁷</td>
</tr>
<tr>
<td>Surface Resistivity (MΩ)</td>
<td>IPC TM-650 2.5.17.1</td>
<td>C96/35/90</td>
<td>2.9 x 10⁶</td>
<td>3.4 x 10⁷</td>
<td>4.5 x 10⁷</td>
</tr>
<tr>
<td>Arc Resistance</td>
<td>ASTM D-495</td>
<td>D48/50</td>
<td>>180</td>
<td>>180</td>
<td>>180</td>
</tr>
<tr>
<td>Tensile Modulus (kpsi)</td>
<td>ASTM D-638</td>
<td>A, 23°C</td>
<td>267, 202</td>
<td>485, 346</td>
<td>706, 517</td>
</tr>
<tr>
<td>Tensile Strength (kpsi)</td>
<td>ASTM D-882</td>
<td>A, 23°C</td>
<td>8.1, 7.5</td>
<td>14.9, 11.2</td>
<td>19.0, 15.0</td>
</tr>
<tr>
<td>Compressive Modulus (kpsi)</td>
<td>ASTM D-695</td>
<td>A, 23°C</td>
<td>237</td>
<td>327</td>
<td>359</td>
</tr>
<tr>
<td>Flexural Modulus (kpsi)</td>
<td>ASTM D-790</td>
<td>A, 23°C</td>
<td>357</td>
<td>437</td>
<td>537</td>
</tr>
<tr>
<td>Dielectric Breakdown (kV)</td>
<td>ASTM D-149</td>
<td>D48/50</td>
<td>>45</td>
<td>>45</td>
<td>>45</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>ASTM D-792 Method A</td>
<td>A, 23°C</td>
<td>2.23</td>
<td>2.26</td>
<td>2.31</td>
</tr>
<tr>
<td>Water Absorption (%)</td>
<td>MIL-S-13949H 3.7.7</td>
<td>IPC TM-650 2.6.2.2</td>
<td>E1/105 + D24/23</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion (ppm/°C)</td>
<td>IPC TM-650 2.4.24</td>
<td>Mettler 3000</td>
<td>0°C to 100°C</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>X Axis</td>
<td>Thermomechanical Analyzer</td>
<td></td>
<td>17</td>
<td>29</td>
<td>217</td>
</tr>
<tr>
<td>Y Axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z Axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Conductivity (W/mK)</td>
<td>ASTM E-1225</td>
<td>100°C</td>
<td>0.261</td>
<td>0.257</td>
<td>0.254</td>
</tr>
<tr>
<td>Outgassing</td>
<td>NASA SP-R-0022A</td>
<td>Maximum 1.00%</td>
<td>125°C, ≤ 10⁻⁶ torr</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Mass Loss (%)</td>
<td>Maximum 0.10%</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Collected Volatile Condensable Material (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Water Vapor Regain (%)</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Visible Condensate (%)</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Flammability UL File E 80166</td>
<td>UL 94 Vertical Burn</td>
<td>IPC TM-650 2.3.10</td>
<td>C48/23/50, E24/125</td>
<td>Meets requirements of UL94-V0</td>
<td>Meets requirements of UL94-V0</td>
</tr>
</tbody>
</table>

1 Based on a Dielectric Constant of ≤ 2.50, Thickness ≥ 0.020”

Results listed above are typical properties; they are not to be used as specification limits. The above information creates no expressed or implied warranties. The properties of Arlon laminates may vary depending on the design and application.
Results listed above are typical properties; they are not to be used as specification limits. The above information creates no expressed or implied warranties. The properties of Arlon laminates may vary depending on the design and application.

Figure 1

Demonstrates the Stability of Dielectric Constant across Frequency. This information was correlated from data generated by using a free space and circular resonator cavity. This characteristic demonstrates the inherent robustness of Arlon Laminates across Frequency, thus simplifying the final design process when working across EM spectrum. The stability of the Dielectric Constant of DiClad over frequency ensures easy design transition and scalability of design.

Figure 2

Demonstrates the Stability of Dissipation Factor across Frequency. This characteristic demonstrates the inherent robustness of Arlon Laminates across Frequency, providing a stable platform for high frequency applications where signal integrity is critical to the overall performance of the application.
Results listed above are typical properties; they are not to be used as specification limits. The above information creates no expressed or implied warranties. The properties of Arlon laminates may vary, depending on the design and application.

DiClad 870

Figure 3

Demonstrates the Stability of Dielectric Constant across Frequency. This information was correlated from data generated by using a free space and circular resonator cavity. This characteristic demonstrates the inherent robustness of Arlon Laminates across Frequency, thus simplifying the final design process when working across EM spectrum. The stability of the Dielectric Constant of DiClad over frequency ensures easy design transition and scalability of design.

Figure 4

Demonstrates the Stability of Dissipation across Frequency. This characteristic demonstrates the inherent robustness of Arlon Laminates across Frequency, providing a stable platform for high frequency applications where signal integrity is critical to the overall performance of the application.
Results listed above are typical properties; they are not to be used as specification limits. The above information creates no expressed or implied warranties. The properties of Arlon laminates may vary, depending on the design and application.

Figure 5
Demonstrates the Stability of Dielectric Constant across Frequency. This information was correlated from data generated by using a free space and circular resonator cavity. This characteristic demonstrates the inherent robustness of Arlon Laminates across Frequency, thus simplifying the final design process when working across EM spectrum. The stability of the Dielectric Constant of DiClad over frequency ensures easy design transition and scalability of design.

Figure 6
Demonstrates the Stability of Dissipation across Frequency. This characteristic demonstrates the inherent robustness of Arlon Laminates across Frequency, providing a stable platform for high frequency applications where signal integrity is critical to the overall performance of the application.
CONTACT INFORMATION:

For samples, technical assistance, customer service or for more information, please contact Arlon Materials for Electronics Division at the following locations:

NORTH AMERICA:
Arlon LLC
Electronic Substrates
9433 Hyssop Drive
Rancho Cucamonga, CA 91730
Tel: (909) 987-9533
Fax: (909) 987-8541

Arlon LLC
Microwave Materials
1100 Governor Lea Road
Bear, DE 19701
Tel: (800) 635-9333
Outside U.S. & Canada: (302) 834-2100
Fax: (302) 834-2574

SOUTHERN CHINA:
Arlon LLC
Room 805, Unit 3, Bldg 4
Liyuan, Xincun Holiday Road
Huaqiao Cheng, Shenzhen 518053
China
Tel/Fax: (86) 755-269-066-12

NORTHERN CHINA:
Arlon LLC
Room 11/401, No. 8
Hong Gu Road
Shanghai, China 200336
Tel/Fax: (86) 21-6209-0202

EUROPE:
Arlon LLC
44 Wilby Avenue
Little Lever
Bolton, Lancaster BL31QE
United Kingdom
Tel: (44) 120-457-6068
Fax: (44) 120-479-6463

© 2008, 2009 Arlon LLC

Or visit us on the web at:
www.arlon-med.com