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1. Introduction

This document is version 1.0 of the RISC-V vector extension for public review.

Note

This version 1.0 is considered frozen for public review as part of the RISC-V International rati�cation process. Version 1.0 is
considered stable enough to begin developing toolchains, functional simulators, and implementations, including in upstream software
projects, and is not expected to have incompatible changes except if serious issues are discovered during rati�cation. Once rati�ed,
the spec will be given version 2.0.

This spec includes the complete set of currently frozen vector instructions. Other instructions that have been considered
during development but are not present in this document are not included in the review and rati�cation process, and may be
completely revised or abandoned. Section Standard Vector Extensions lists the standard vector extensions and which
instructions and element widths are supported by each extension.
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2. Implementation-de�ned Constant Parameters

Each hart supporting a vector extension de�nes two parameters:

1. The maximum size in bits of a vector element that any operation can produce or consume, ELEN ≥ 8, which must be a
power of 2.

2. The number of bits in a single vector register, VLEN ≥ ELEN, which must be a power of 2, and must be no greater than
216.

Standard vector extensions (Section Standard Vector Extensions) and architecture pro�les may set further constraints on
ELEN and VLEN.

Note
Future extensions may allow ELEN > VLEN by holding one element using bits from multiple vector registers, but this current proposal
does not include this option.

Note
The upper limit on VLEN allows software to know that indices will �t into 16 bits (largest VLMAX of 65,536 occurs for LMUL=8 and
SEW=8 with VLEN=65,536). Any future extension beyond 64Kib per vector register will require new con�guration instructions such
that software using the old con�guration instructions does not see greater vector lengths.

The vector extension supports writing binary code that under certain constraints will execute portably on harts with different
values for the VLEN parameter, provided the harts support the required element types and instructions.

Note Code can be written that will expose differences in implementation parameters.

Note
In general, thread contexts with active vector state cannot be migrated during execution between harts that have any difference in
VLEN or ELEN parameters.
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3. Vector Extension Programmer’s Model

The vector extension adds 32 vector registers, and seven unprivileged CSRs (vstart, vxsat, vxrm, vcsr, vtype, vl,
vlenb) to a base scalar RISC-V ISA.

Table 1. New vector CSRs
Address Privilege Name Description
0x008 URW vstart Vector start position
0x009 URW vxsat Fixed-Point Saturate Flag
0x00A URW vxrm Fixed-Point Rounding Mode
0x00F URW vcsr Vector control and status register
0xC20 URO vl Vector length
0xC21 URO vtype Vector data type register
0xC22 URO vlenb VLEN/8 (vector register length in bytes)

Note The four CSR numbers 0x00B-0x00E are tentatively reserved for future vector CSRs, some of which may be mirrored into vcsr.

3.1. Vector Registers

The vector extension adds 32 architectural vector registers, v0-v31 to the base scalar RISC-V ISA.

Each vector register has a �xed VLEN bits of state.

3.2. Vector Context Status in mstatus

A vector context status �eld, VS, is added to mstatus[10:9] and shadowed in sstatus[10:9]. It is de�ned analogously
to the floating-point context status �eld, FS.

Attempts to execute any vector instruction, or to access the vector CSRs, raise an illegal-instruction exception when
mstatus.VS is set to Off.

When mstatus.VS is set to Initial or Clean, executing any instruction that changes vector state, including the vector CSRs,
will change mstatus.VS to Dirty. Implementations may also change mstatus.VS from Initial or Clean to Dirty at any time,
even when there is no change in vector state.

Note Accurate setting of mstatus.VS is an optimization. Software will typically use VS to reduce context-swap overhead.

If mstatus.VS is Dirty, mstatus.SD is 1; otherwise, mstatus.SD is set in accordance with existing speci�cations.

Implementations may have a writable misa.V �eld. Analogous to the way in which the floating-point unit is handled, the
mstatus.VS �eld may exist even if misa.V is clear.

Note
Allowing mstatus.VS to exist when misa.V is clear, enables vector emulation and simpli�es handling of mstatus.VS in systems
with writable misa.V.

3.3. Vector Context Status in vsstatus

When the hypervisor extension is present, a vector context status �eld, VS, is added to vsstatus[10:9]. It is de�ned
analogously to the floating-point context status �eld, FS.

When V=1, both vsstatus.VS and mstatus.VS are in effect: attempts to execute any vector instruction, or to access the
vector CSRs, raise an illegal-instruction exception when either �eld is set to Off.

When V=1 and neither vsstatus.VS nor mstatus.VS is set to Off, executing any instruction that changes vector state,
including the vector CSRs, will change both mstatus.VS and vsstatus.VS to Dirty. Implementations may also change
mstatus.VS or vsstatus.VS from Initial or Clean to Dirty at any time, even when there is no change in vector state.
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If vsstatus.VS is Dirty, vsstatus.SD is 1; otherwise, vsstatus.SD is set in accordance with existing speci�cations.

If mstatus.VS is Dirty, mstatus.SD is 1; otherwise, mstatus.SD is set in accordance with existing speci�cations.

For implementations with a writable misa.V �eld, the vsstatus.VS �eld may exist even if misa.V is clear.

3.4. Vector type register, vtype

The read-only XLEN-wide vector type CSR, vtype provides the default type used to interpret the contents of the vector
register �le, and can only be updated by vset{i}vl{i} instructions. The vector type determines the organization of
elements in each vector register, and how multiple vector registers are grouped. The vtype register also indicates how
masked-off elements and elements past the current vector length in a vector result are handled.

Note Allowing updates only via the vset{i}vl{i} instructions simpli�es maintenance of the vtype register state.

The vtype register has �ve �elds, vill, vma, vta, vsew[2:0], and vlmul[2:0]. Bits vtype[XLEN-2:8] should be
written with zero, and non-zero values in this �eld are reserved.

02356783031

vlmul[2:0]vsew[2:0]vtavmareservedvill

Note This diagram shows the layout for RV32 systems, whereas in general vill should be at bit XLEN-1.

Table 2. vtype register layout
Bits Name Description

XLEN-1 vill Illegal value if set
XLEN-2:8 0 Reserved if non-zero

7 vma Vector mask agnostic
6 vta Vector tail agnostic

5:3 vsew[2:0] Selected element width (SEW) setting
2:0 vlmul[2:0] Vector register group multiplier (LMUL) setting

Note
A small implementation supporting ELEN=32 requires only seven bits of state in vtype: two bits for ma and ta, two bits for
vsew[1:0] and three bits for vlmul[2:0]. The illegal value represented by vill can be internally encoded using the illegal 64-bit
combination in vsew[1:0] without requiring an additional storage bit to hold vill.

Note Further standard and custom vector extensions may extend these �elds to support a greater variety of data types.

Note

The primary motivation for the vtype CSR is to allow the vector instruction set to �t into a 32-bit instruction encoding space. A
separate vset{i}vl{i} instruction can be used to set vl and/or vtype �elds before execution of a vector instruction, and
implementations may choose to fuse these two instructions into a single internal vector microop. In many cases, the vl and vtype
values can be reused across multiple instructions, reducing the static and dynamic instruction overhead from the vset{i}vl{i}
instructions. It is anticipated that a future extended 64-bit instruction encoding would allow these �elds to be speci�ed statically in
the instruction encoding.

3.4.1. Vector selected element width vsew[2:0]

The value in vsew sets the dynamic selected element width (SEW). By default, a vector register is viewed as being divided
into VLEN/SEW elements.

Table 3. vsew[2:0] (selected element width) encoding
vsew[2:0] SEW
0 0 0 8
0 0 1 16
0 1 0 32
0 1 1 64
1 X X Reserved
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Note
While it is anticipated the larger vsew[2:0] encodings (100-111) will be used to encode larger SEW, the encodings are formally
reserved at this point.

Table 4. Example VLEN = 128 bits
SEW Elements per vector register

64 2
32 4
16 8

8 16

The supported element width may vary with LMUL.

Note

The current set of standard vector extensions do not vary supported element width with LMUL. Some future extensions may support
larger SEWs only when bits from multiple vector registers are combined using LMUL. In this case, software that relies on large SEW
should attempt to use the largest LMUL, and hence the fewest vector register groups, to increase the number of implementations on
which the code will run. The vill bit in vtype should be checked after setting vtype to see if the con�guration is supported, and an
alternate code path should be provided if it is not. Alternatively, a pro�le can mandate the minimum SEW at each LMUL setting.

3.4.2. Vector Register Grouping (vlmul[2:0])

Multiple vector registers can be grouped together, so that a single vector instruction can operate on multiple vector registers.
The term vector register group is used herein to refer to one or more vector registers used as a single operand to a vector
instruction. Vector register groups can be used to provide greater execution ef�ciency for longer application vectors, but the
main reason for their inclusion is to allow double-width or larger elements to be operated on with the same vector length as
single-width elements. The vector length multiplier, LMUL, when greater than 1, represents the default number of vector
registers that are combined to form a vector register group. Implementations must support LMUL integer values of 1, 2, 4,
and 8.

Note

The vector architecture includes instructions that take multiple source and destination vector operands with different element widths,
but the same number of elements. The effective LMUL (EMUL) of each vector operand is determined by the number of registers
required to hold the elements. For example, for a widening add operation, such as add 32-bit values to produce 64-bit results, a
double-width result requires twice the LMUL of the single-width inputs.

LMUL can also be a fractional value, reducing the number of bits used in a single vector register. Fractional LMUL is used to
increase the number of effective usable vector register groups when operating on mixed-width values.

Note

With only integer LMUL values, a loop operating on a range of sizes would have to allocate at least one whole vector register (LMUL=1)
for the narrowest data type and then would consume multiple vector registers (LMUL>1) to form a vector register group for each wider
vector operand. This can limit the number of vector register groups available. With fractional LMUL, the widest values need occupy
only a single vector register while narrower values can occupy a fraction of a single vector register, allowing all 32 architectural vector
register names to be used for different values in a vector loop even when handling mixed-width values. Fractional LMUL implies
portions of vector registers are unused, but in some cases, having more shorter register-resident vectors improves ef�ciency relative
to fewer longer register-resident vectors.

Implementations must provide fractional LMUL settings that allow the narrowest supported type to occupy a fraction of a
vector register corresponding to the ratio of the narrowest supported type’s width to that of the largest supported type’s
width. In general, the requirement is to support LMUL ≥ SEWMIN/ELEN, where SEWMIN is the narrowest supported SEW value
and ELEN is the widest supported SEW value. In the standard extensions, SEWMIN=8. For standard vector extensions with
ELEN=32, fractional LMULs of 1/2 and 1/4 must be supported. For standard vector extensions with ELEN=64, fractional
LMULs of 1/2, 1/4, and 1/8 must be supported.

Note

When LMUL < SEWMIN/ELEN, there is no guarantee an implementation would have enough bits in the fractional vector register to store
at least one element, as VLEN=ELEN is a valid implementation choice. For example, with VLEN=ELEN=32, and SEWMIN=8, an LMUL of
1/8 would only provide four bits of storage in a vector register.

For a given supported fractional LMUL setting, implementations must support SEW settings between SEWMIN and LMUL *
ELEN, inclusive.

An attempt to set an unsupported SEW and LMUL con�guration sets the vill bit in vtype.
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The use of vtype encodings with LMUL < SEWMIN/ELEN is reserved, but implementations can set vill if they do not
support these con�gurations.

Note
Requiring all implementations to set vill in this case would prohibit future use of this case in an extension, so to allow for a future
de�nition of LMUL<SEWMIN/ELEN behavior, we consider the use of this case to be reserved.

Note
It is recommended that assemblers provide a warning (not an error) if a vsetvli instruction attempts to write an LMUL <
SEWMIN/ELEN.

LMUL is set by the signed vlmul �eld in vtype (i.e., LMUL = 2vlmul[2:0]).

The derived value VLMAX = LMUL*VLEN/SEW represents the maximum number of elements that can be operated on with a
single vector instruction given the current SEW and LMUL settings as shown in the table below.

vlmul[2:0] LMUL #groups VLMAX Registers grouped with register n
1 0 0 - - - reserved
1 0 1 1/8 32 VLEN/SEW/8 v n (single register in group)
1 1 0 1/4 32 VLEN/SEW/4 v n (single register in group)
1 1 1 1/2 32 VLEN/SEW/2 v n (single register in group)
0 0 0 1 32 VLEN/SEW v n (single register in group)
0 0 1 2 16 2*VLEN/SEW v n, v n+1
0 1 0 4 8 4*VLEN/SEW v n, … , v n+3
0 1 1 8 4 8*VLEN/SEW v n, … , v n+7

When LMUL=2, the vector register group contains vector register v n and vector register v n+1, providing twice the vector
length in bits. Instructions specifying an LMUL=2 vector register group with an odd-numbered vector register are reserved.

When LMUL=4, the vector register group contains four vector registers, and instructions specifying an LMUL=4 vector register
group using vector register numbers that are not multiples of four are reserved.

When LMUL=8, the vector register group contains eight vector registers, and instructions specifying an LMUL=8 vector
register group using register numbers that are not multiples of eight are reserved.

Mask registers are always contained in a single vector register, regardless of LMUL.

3.4.3. Vector Tail Agnostic and Vector Mask Agnostic vta and vma

These two bits modify the behavior of destination tail elements and destination inactive masked-off elements respectively
during the execution of vector instructions. The tail and inactive sets contain element positions that are not receiving new
results during a vector operation, as de�ned in Section Prestart, Active, Inactive, Body, and Tail Element De�nitions.

All systems must support all four options:

vta vma Tail Elements Inactive Elements
0 0 undisturbed undisturbed
0 1 undisturbed agnostic
1 0 agnostic undisturbed
1 1 agnostic agnostic

Mask destination tail elements are always treated as tail-agnostic, regardless of the setting of vta.

When a set is marked undisturbed, the corresponding set of destination elements in a vector register group retain the value
they previously held.

When a set is marked agnostic, the corresponding set of destination elements in any vector destination operand can either
retain the value they previously held, or are overwritten with 1s. Within a single vector instruction, each destination element
can be either left undisturbed or overwritten with 1s, in any combination, and the pattern of undisturbed or overwritten with
1s is not required to be deterministic when the instruction is executed with the same inputs.
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Note
The agnostic policy was added to accommodate machines with vector register renaming. With an undisturbed policy, all elements
would have to be read from the old physical destination vector register to be copied into the new physical destination vector register.
This causes an inef�ciency when these inactive or tail values are not required for subsequent calculations.

Note
The value of all 1s instead of all 0s was chosen for the overwrite value to discourage software developers from depending on the value
written.

Note
A simple in-order implementation can ignore the settings and simply execute all vector instructions using the undisturbed policy. The
vta and vma state bits must still be provided in vtype for compatibility and to support thread migration.

Note
An out-of-order implementation can choose to implement tail-agnostic + mask-agnostic using tail-agnostic + mask-undisturbed to
reduce implementation complexity.

Note

The de�nition of agnostic result policy is left loose to accommodate migrating application threads between harts on a small in-order
core (which probably leaves agnostic regions undisturbed) and harts on a larger out-of-order core with register renaming (which
probably overwrites agnostic elements with 1s). As it might be necessary to restart in the middle, we allow arbitrary mixing of agnostic
policies within a single vector instruction. This allowed mixing of policies also enables implementations that might change policies for
different granules of a vector register, for example, using undisturbed within a granule that is actively operated on but renaming to all
1s for granules in the tail.

In addition, except for mask load instructions, any element in the tail of a mask result can also be written with the value the
mask-producing operation would have calculated with vl=VLMAX. Furthermore, for mask-logical instructions and vmsbf.m,
vmsif.m, vmsof.m mask-manipulation instructions, any element in the tail of the result can be written with the value the
mask-producing operation would have calculated with vl=VLEN, SEW=8, and LMUL=8 (i.e., all bits of the mask register can
be overwritten).

Note

Mask tails are always treated as agnostic to reduce complexity of managing mask data, which can be written at bit granularity. There
appears to be little software need to support tail-undisturbed for mask register values. Allowing mask-generating instructions to write
back the result of the instruction avoids the need for logic to mask out the tail, except mask loads cannot write memory values to
destination mask tails as this would imply accessing memory past software intent.

The assembly syntax adds two mandatory flags to the vsetvli instruction:

 ta   # Tail agnostic 
 tu   # Tail undisturbed 
 ma   # Mask agnostic 
 mu   # Mask undisturbed 

 vsetvli t0, a0, e32, m4, ta, ma   # Tail agnostic, mask agnostic 
 vsetvli t0, a0, e32, m4, tu, ma   # Tail undisturbed, mask agnostic 
 vsetvli t0, a0, e32, m4, ta, mu   # Tail agnostic, mask undisturbed 
 vsetvli t0, a0, e32, m4, tu, mu   # Tail undisturbed, mask undisturbed

Note

Prior to v0.9, when these flags were not speci�ed on a vsetvli, they defaulted to mask-undisturbed/tail-undisturbed. The use of
vsetvli without these flags is deprecated, however, and specifying a flag setting is now mandatory. The default should perhaps be
tail-agnostic/mask-agnostic, so software has to specify when it cares about the non-participating elements, but given the historical
meaning of the instruction prior to introduction of these flags, it was decided to always require them in future assembly code.

3.4.4. Vector Type Illegal vill

The vill bit is used to encode that a previous vset{i}vl{i} instruction attempted to write an unsupported value to
vtype.

Note The vill bit is held in bit XLEN-1 of the CSR to support checking for illegal values with a branch on the sign bit.

All bits of the vtype argument must be considered in determining if the value is supported by the implementation.

Note
All bits must be checked to ensure that new code assuming unsupported vector features in vtype traps instead of executing
incorrectly on an older implementation.

A vtype value with the vill bit set is an unsupported value.

If the vill bit is set, then any attempt to execute a vector instruction that depends upon vtype will raise an illegal-
instruction exception.
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Note vset{i}vl{i} and whole-register loads, stores, and moves do not depend upon vtype.

When the vill bit is set, the other XLEN-1 bits in vtype shall be zero.

3.5. Vector Length Register vl

The XLEN-bit-wide read-only vl CSR can only be updated by the vset{i}vl{i} instructions, and the fault-only-�rst vector
load instruction variants.

The vl register holds an unsigned integer specifying the number of elements to be updated with results from a vector
instruction, as further detailed in Section Prestart, Active, Inactive, Body, and Tail Element De�nitions.

Note
The number of bits implemented in vl depends on the implementation’s maximum vector length of the smallest supported type. The
smallest vector implementation with VLEN=32 and supporting SEW=8 would need at least six bits in vl to hold the values 0-32
(VLEN=32, with LMUL=8 and SEW=8, yields VLMAX=32).

3.6. Vector Byte Length vlenb

The XLEN-bit-wide read-only CSR vlenb holds the value VLEN/8, i.e., the vector register length in bytes.

Note The value in vlenb is a design-time constant in any implementation.

Note
Without this CSR, several instructions are needed to calculate VLEN in bytes, and the code has to disturb current vl and vtype
settings which require them to be saved and restored.

3.7. Vector Start Index CSR vstart

The vstart read-write CSR speci�es the index of the �rst element to be executed by a vector instruction, as described in
Section Prestart, Active, Inactive, Body, and Tail Element De�nitions.

Normally, vstart is only written by hardware on a trap on a vector instruction, with the vstart value representing the
element on which the trap was taken (either a synchronous exception or an asynchronous interrupt), and at which execution
should resume after a resumable trap is handled.

All vector instructions are de�ned to begin execution with the element number given in the vstart CSR, leaving earlier
elements in the destination vector undisturbed, and to reset the vstart CSR to zero at the end of execution.

Note All vector instructions, including vset{i}vl{i}, reset the vstart CSR to zero.

vstart is not modi�ed by vector instructions that raise illegal-instruction exceptions.

The vstart CSR is de�ned to have only enough writable bits to hold the largest element index (one less than the maximum
VLMAX).

Note
The maximum vector length is obtained with the largest LMUL setting (8) and the smallest SEW setting (8), so VLMAX_max =
8*VLEN/8 = VLEN. For example, for VLEN=256, vstart would have 8 bits to represent indices from 0 through 255.

The use of vstart values greater than the largest element index for the current SEW setting is reserved.

Note
It is recommended that implementations trap if vstart is out of bounds. It is not required to trap, as a possible future use of upper
vstart bits is to store imprecise trap information.

The vstart CSR is writable by unprivileged code, but non-zero vstart values may cause vector instructions to run
substantially slower on some implementations, so vstart should not be used by application programmers. A few vector
instructions cannot be executed with a non-zero vstart value and will raise an illegal instruction exception as de�ned
below.

Note Making vstart visible to unprivileged code supports user-level threading libraries.

Implementations are permitted to raise illegal instruction exceptions when attempting to execute a vector instruction with a
value of vstart that the implementation can never produce when executing that same instruction with the same vtype
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setting.

Note
For example, some implementations will never take interrupts during execution of a vector arithmetic instruction, instead waiting until
the instruction completes to take the interrupt. Such implementations are permitted to raise an illegal instruction exception when
attempting to execute a vector arithmetic instruction when vstart is nonzero.

Note

When migrating a software thread between two harts with different microarchitectures, the vstart value might not be supported by
the new hart microarchitecture. The runtime on the receiving hart might then have to emulate instruction execution up to the next
supported vstart element position. Alternatively, migration events can be constrained to only occur at mutually supported vstart
locations.

3.8. Vector Fixed-Point Rounding Mode Register vxrm

The vector �xed-point rounding-mode register holds a two-bit read-write rounding-mode �eld in the least-signi�cant bits
(vxrm[1:0]). The upper bits, vxrm[XLEN-1:2], should be written as zeros.

The vector �xed-point rounding-mode is given a separate CSR address to allow independent access, but is also reflected as a
�eld in vcsr.

Note A new rounding mode can be set while saving the original rounding mode using a single csrwi instruction.

The �xed-point rounding algorithm is speci�ed as follows. Suppose the pre-rounding result is v, and d bits of that result are
to be rounded off. Then the rounded result is (v >> d) + r, where r depends on the rounding mode as speci�ed in the
following table.

Table 5. vxrm encoding
vxrm[1:0] Abbreviation Rounding Mode Rounding increment, r
0 0 rnu round-to-nearest-up (add +0.5 LSB) v[d-1]
0 1 rne round-to-nearest-even v[d-1] & (v[d-2:0]≠0 | v[d])
1 0 rdn round-down (truncate) 0
1 1 rod round-to-odd (OR bits into LSB, aka "jam") !v[d] & v[d-1:0]≠0

The rounding functions:

roundoff_unsigned(v, d) = (unsigned(v) >> d) + r 
roundoff_signed(v, d) = (signed(v) >> d) + r

are used to represent this operation in the instruction descriptions below.

3.9. Vector Fixed-Point Saturation Flag vxsat

The vxsat CSR has a single read-write least-signi�cant bit (vxsat[0]) that indicates if a �xed-point instruction has had to
saturate an output value to �t into a destination format. Bits vxsat[XLEN-1:1] should be written as zeros.

The vxsat bit is mirrored in vcsr.

3.10. Vector Control and Status Register vcsr

The vxrm and vxsat separate CSRs can also be accessed via �elds in the vector control and status CSR, vcsr.

Table 6. vcsr layout
Bits Name Description
2:1 vxrm[1:0] Fixed-point rounding mode

0 vxsat Fixed-point accrued saturation flag

3.11. State of Vector Extension at Reset
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The vector extension must have a consistent state at reset. In particular, vtype and vl must have values that can be read
and then restored with a single vsetvl instruction.

Note It is recommended that at reset, vtype.vill is set, the remaining bits in vtype are zero, and vl is set to zero.

The vstart, vxrm, vxsat CSRs can have arbitrary values at reset.

Note
Most uses of the vector unit will require an initial vset{i}vl{i}, which will reset vstart. The vxrm and vxsat �elds should be
reset explicitly in software before use.

The vector registers can have arbitrary values at reset.
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4. Mapping of Vector Elements to Vector Register State

The following diagrams illustrate how different width elements are packed into the bytes of a vector register depending on
the current SEW and LMUL settings, as well as implementation VLEN. Elements are packed into each vector register with the
least-signi�cant byte in the lowest-numbered bits.

The mapping was chosen to provide the simplest and most portable model for software, but might appear to incur large
wiring cost for wider vector datapaths on certain operations. The vector instruction set was expressly designed to support
implementations that internally rearrange vector data for different SEW to reduce datapath wiring costs, while externally
preserving the simple software model.

Note
For example, microarchitectures can track the EEW with which a vector register was written, and then insert additional scrambling
operations to rearrange data if the register is accessed with a different EEW.

4.1. Mapping for LMUL = 1

When LMUL=1, elements are simply packed in order from the least-signi�cant to most-signi�cant bits of the vector register.

Note
To increase readability, vector register layouts are drawn with bytes ordered from right to left with increasing byte address. Bits within
an element are numbered in a little-endian format with increasing bit index from right to left corresponding to increasing magnitude.
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LMUL=1 examples. 

The element index is given in hexadecimal and is shown placed at the 
least-significant byte of the stored element. 

 VLEN=32b 

 Byte         3 2 1 0 

 SEW=8b       3 2 1 0 
 SEW=16b        1   0 
 SEW=32b            0 

 VLEN=64b 

 Byte        7 6 5 4 3 2 1 0 

 SEW=8b      7 6 5 4 3 2 1 0 
 SEW=16b       3   2   1   0 
 SEW=32b           1       0 
 SEW=64b                   0 

 VLEN=128b 

 Byte        F E D C B A 9 8 7 6 5 4 3 2 1 0 

 SEW=8b      F E D C B A 9 8 7 6 5 4 3 2 1 0 
 SEW=16b       7   6   5   4   3   2   1   0 
 SEW=32b           3       2       1       0 
 SEW=64b                   1               0 

 VLEN=256b 

 Byte     1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 

 SEW=8b   1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
 SEW=16b     F   E   D   C   B   A   9   8   7   6   5   4   3   2   1   0 
 SEW=32b         7       6       5       4       3       2       1       0 
 SEW=64b                 3               2               1               0

4.2. Mapping for LMUL < 1

When LMUL < 1, only the �rst LMUL*VLEN/SEW elements in the vector register are used. The remaining space in the vector
register is treated as part of the tail, and hence must obey the vta setting.

 Example, VLEN=128b, LMUL=1/4 

 Byte        F E D C B A 9 8 7 6 5 4 3 2 1 0 

 SEW=8b      - - - - - - - - - - - - 3 2 1 0 
 SEW=16b       -   -   -   -   -   -   1   0 
 SEW=32b           -       -       -       0

4.3. Mapping for LMUL > 1

When vector registers are grouped, the elements of the vector register group are packed contiguously in element order
beginning with the lowest-numbered vector register and moving to the next-highest-numbered vector register in the group
once each vector register is �lled.
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 LMUL > 1 examples 

 VLEN=32b, SEW=8b, LMUL=2 

 Byte         3 2 1 0 
 v2*n         3 2 1 0 
 v2*n+1       7 6 5 4 

 VLEN=32b, SEW=16b, LMUL=2 

 Byte         3 2 1 0 
 v2*n           1   0 
 v2*n+1         3   2 

 VLEN=32b, SEW=16b, LMUL=4 

 Byte         3 2 1 0 
 v4*n           1   0 
 v4*n+1         3   2 
 v4*n+2         5   4 
 v4*n+3         7   6 

 VLEN=32b, SEW=32b, LMUL=4 

 Byte         3 2 1 0 
 v4*n               0 
 v4*n+1             1 
 v4*n+2             2 
 v4*n+3             3 

 VLEN=64b, SEW=32b, LMUL=2 

 Byte         7 6 5 4 3 2 1 0 
 v2*n               1       0 
 v2*n+1             3       2 

 VLEN=64b, SEW=32b, LMUL=4 

 Byte         7 6 5 4 3 2 1 0 
 v4*n               1       0 
 v4*n+1             3       2 
 v4*n+2             5       4 
 v4*n+3             7       6 

 VLEN=128b, SEW=32b, LMUL=2 

 Byte        F E D C B A 9 8 7 6 5 4 3 2 1 0 
 v2*n              3       2       1       0 
 v2*n+1            7       6       5       4 

 VLEN=128b, SEW=32b, LMUL=4 

 Byte          F E D C B A 9 8 7 6 5 4 3 2 1 0 
 v4*n                3       2       1       0 
 v4*n+1              7       6       5       4 
 v4*n+2              B       A       9       8 
 v4*n+3              F       E       D       C

4.4. Mapping across Mixed-Width Operations

The vector ISA is designed to support mixed-width operations without requiring additional explicit rearrangement
instructions. The recommended software strategy when operating on multiple vectors with different precision values is to
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modify vtype dynamically to keep SEW/LMUL constant (and hence VLMAX constant).

The following example shows four different packed element widths (8b, 16b, 32b, 64b) in a VLEN=128b implementation.
The vector register grouping factor (LMUL) is increased by the relative element size such that each group can hold the same
number of vector elements (VLMAX=8 in this example) to simplify stripmining code.

Example VLEN=128b, with SEW/LMUL=16 

Byte      F E D C B A 9 8 7 6 5 4 3 2 1 0 
vn        - - - - - - - - 7 6 5 4 3 2 1 0  SEW=8b, LMUL=1/2 

vn          7   6   5   4   3   2   1   0  SEW=16b, LMUL=1 

v2*n            3       2       1       0  SEW=32b, LMUL=2 
v2*n+1          7       6       5       4 

v4*n                    1               0  SEW=64b, LMUL=4 
v4*n+1                  3               2 
v4*n+2                  5               4 
v4*n+3                  7               6

The following table shows each possible constant SEW/LMUL operating point for loops with mixed-width operations. Each
column represents a constant SEW/LMUL operating point. Entries in table are the LMUL values that yield that column’s
SEW/LMUL value for the datawidth on that row. In each column, an LMUL setting for a datawidth indicates that it can be
aligned with the other datawidths in the same column that also have an LMUL setting, such that all have the same VLMAX.

SEW/LMUL
1 2 4 8 16 32 64

SEW= 8 8 4 2 1 1/2 1/4 1/8
SEW= 16 8 4 2 1 1/2 1/4
SEW= 32 8 4 2 1 1/2
SEW= 64 8 4 2 1

Larger LMUL settings can also used to simply increase vector length to reduce instruction fetch and dispatch overheads in
cases where fewer vector register groups are needed.

4.5. Mask Register Layout

A vector mask occupies only one vector register regardless of SEW and LMUL.

Each element is allocated a single mask bit in a mask vector register. The mask bit for element i is located in bit i of the mask
register, independent of SEW or LMUL.
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5. Vector Instruction Formats

The instructions in the vector extension �t under two existing major opcodes (LOAD-FP and STORE-FP) and one new major
opcode (OP-V).

Vector loads and stores are encoded within the scalar floating-point load and store major opcodes (LOAD-FP/STORE-FP).
The vector load and store encodings repurpose a portion of the standard scalar floating-point load/store 12-bit immediate
�eld to provide further vector instruction encoding, with bit 25 holding the standard vector mask bit (see Mask Encoding).

Format for Vector Load Instructions under LOAD-FP major opcode

06711121415192024252627282931

1110000vdwidthrs1lumopvmmopmewnf

VL* unit-stridedestination of loadbase address

06711121415192024252627282931

1110000vdwidthrs1rs2vmmopmewnf

VLS* strideddestination of loadbase addressstride

06711121415192024252627282931

1110000vdwidthrs1vs2vmmopmewnf

VLX* indexeddestination of loadbase addressaddress offsets

Format for Vector Store Instructions under STORE-FP major opcode

06711121415192024252627282931

1110010vs3widthrs1sumopvmmopmewnf

VS* unit-stridestore database address

06711121415192024252627282931

1110010vs3widthrs1rs2vmmopmewnf

VSS* stridedstore database addressstride

06711121415192024252627282931

1110010vs3widthrs1vs2vmmopmewnf

VSX* indexedstore database addressaddress offsets

Formats for Vector Arithmetic Instructions under OP-V major opcode

06711121415192024252631

1110101vd000vs1vs2vmfunct6

OPIVV

06711121415192024252631

1110101vd / rd100vs1vs2vmfunct6

OPFVV

06711121415192024252631

1110101vd / rd010vs1vs2vmfunct6

OPMVV

06711121415192024252631

1110101vd110imm[4:0]vs2vmfunct6

OPIVI

06711121415192024252631

1110101vd001rs1vs2vmfunct6

OPIVX

06711121415192024252631

1110101vd101rs1vs2vmfunct6

OPFVF

06711121415192024252631

1110101vd / rd011rs1vs2vmfunct6

OPMVX

Formats for Vector Con�guration Instructions under OP-V major opcode
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0671112141519203031

1110101rd111rs1zimm[10:0]0

vsetvli

067111214151920293031

1110101rd111uimm[4:0]zimm[9:0]11

vsetivli

06711121415192024253031

1110101rd111rs1rs20000001

vsetvl

Vector instructions can have scalar or vector source operands and produce scalar or vector results, and most vector
instructions can be performed either unconditionally or conditionally under a mask.

Vector loads and stores move bit patterns between vector register elements and memory. Vector arithmetic instructions
operate on values held in vector register elements.

5.1. Scalar Operands

Scalar operands can be immediates, or taken from the x registers, the f registers, or element 0 of a vector register. Scalar
results are written to an x or f register or to element 0 of a vector register. Any vector register can be used to hold a scalar
regardless of the current LMUL setting.

Note
Z�nx ("F in X") is a proposed new ISA extension where floating-point instructions take their arguments from the integer register �le.
The vector extension is also compatible with Z�nx, where the Z�nx vector extension has vector-scalar floating-point instructions
taking their scalar argument from the x registers.

Note

We considered but did not pursue overlaying the f registers on v registers. The adopted approach reduces vector register pressure,
avoids interactions with the standard calling convention, simpli�es high-performance scalar floating-point design, and provides
compatibility with the Z�nx ISA option. Overlaying f with v would provide the advantage of lowering the number of state bits in some
implementations, but complicates high-performance designs and would prevent compatibility with the proposed Z�nx ISA option.

5.2. Vector Operands

Each vector operand has an effective element width (EEW) and an effective LMUL (EMUL) that is used to determine the size
and location of all the elements within a vector register group. By default, for most operands of most instructions, EEW=SEW
and EMUL=LMUL.

Some vector instructions have source and destination vector operands with the same number of elements but different
widths, so that EEW and EMUL differ from SEW and LMUL respectively but EEW/EMUL = SEW/LMUL. For example, most
widening arithmetic instructions have a source group with EEW=SEW and EMUL=LMUL but have a destination group with
EEW=2*SEW and EMUL=2*LMUL. Narrowing instructions have a source operand that has EEW=2*SEW and EMUL=2*LMUL
but with a destination where EEW=SEW and EMUL=LMUL.

Vector operands or results may occupy one or more vector registers depending on EMUL, but are always speci�ed using the
lowest-numbered vector register in the group. Using other than the lowest-numbered vector register to specify a vector
register group is a reserved encoding.

A destination vector register group can overlap a source vector register group only if one of the following holds:

The destination EEW equals the source EEW.

The destination EEW is smaller than the source EEW and the overlap is in the lowest-numbered part of the source
register group (e.g., when LMUL=1, vnsrl.wi v0, v0, 3 is legal, but a destination of v1 is not).

The destination EEW is greater than the source EEW, the source EMUL is at least 1, and the overlap is in the highest-
numbered part of the destination register group (e.g., when LMUL=8, vzext.vf4 v0, v6 is legal, but a source of v0,
v2, or v4 is not).

For the purpose of determining register group overlap constraints, mask elements have EEW=1.

Note The overlap constraints are designed to support resumable exceptions in machines without register renaming.
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Any instruction encoding that violates the overlap constraints is reserved.

The largest vector register group used by an instruction can not be greater than 8 vector registers (i.e., EMUL≤8), and if a
vector instruction would require greater than 8 vector registers in a group, the instruction encoding is reserved. For example,
a widening operation that produces a widened vector register group result when LMUL=8 is reserved as this would imply a
result EMUL=16.

Widened scalar values, e.g., input and output to a widening reduction operation, are held in the �rst element of a vector
register and have EMUL=1.

5.3. Vector Masking

Masking is supported on many vector instructions. Element operations that are masked off (inactive) never generate
exceptions. The destination vector register elements corresponding to masked-off elements are handled with either a mask-
undisturbed or mask-agnostic policy depending on the setting of the vma bit in vtype (Section Vector Tail Agnostic and
Vector Mask Agnostic vta and vma).

The mask value used to control execution of a masked vector instruction is always supplied by vector register v0.

Note Future vector extensions may provide longer instruction encodings with space for a full mask register speci�er.

The destination vector register group for a masked vector instruction cannot overlap the source mask register (v0), unless
the destination vector register is being written with a mask value (e.g., compares) or the scalar result of a reduction. These
instruction encodings are reserved.

Note This constraint supports restart with a non-zero vstart value.

Other vector registers can be used to hold working mask values, and mask vector logical operations are provided to perform
predicate calculations.

As speci�ed in Section Vector Tail Agnostic and Vector Mask Agnostic vta and vma, mask destination values are always
treated as tail-agnostic, regardless of the setting of vta.

5.3.1. Mask Encoding

Where available, masking is encoded in a single-bit vm �eld in the instruction (inst[25]).

vm Description
0 vector result, only where v0.mask[i] = 1
1 unmasked

Vector masking is represented in assembler code as another vector operand, with .t indicating that the operation occurs
when v0.mask[i] is 1 (t for "true"). If no masking operand is speci�ed, unmasked vector execution (vm=1) is assumed.

    vop.v*    v1, v2, v3, v0.t  # enabled where v0.mask[i]=1, vm=0 
    vop.v*    v1, v2, v3        # unmasked vector operation, vm=1

Note
Even though the current vector extensions only support one vector mask register v0 and only the true form of predication, the
assembly syntax writes it out in full to be compatible with future extensions that might add a mask register speci�er and support both
true and complement mask values. The .t suf�x on the masking operand also helps to visually encode the use of a mask.

Note
The .mask suf�x is not part of the assembly syntax. We only append it in contexts where a mask vector is subscripted, e.g.,
v0.mask[i].

5.4. Prestart, Active, Inactive, Body, and Tail Element De�nitions

The destination element indices operated on during a vector instruction’s execution can be divided into three disjoint
subsets.
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The prestart elements are those whose element index is less than the initial value in the vstart register. The prestart
elements do not raise exceptions and do not update the destination vector register.

The body elements are those whose element index is greater than or equal to the initial value in the vstart register,
and less than the current vector length setting in vl. The body can be split into two disjoint subsets:

The active elements during a vector instruction’s execution are the elements within the body and where the
current mask is enabled at that element position. The active elements can raise exceptions and update the
destination vector register group.

The inactive elements are the elements within the body but where the current mask is disabled at that element
position. The inactive elements do not raise exceptions and do not update any destination vector register group
unless masked agnostic is speci�ed (vtype.vma=1), in which case inactive elements may be overwritten with 1s.

The tail elements during a vector instruction’s execution are the elements past the current vector length setting
speci�ed in vl. The tail elements do not raise exceptions, and do not update any destination vector register group
unless tail agnostic is speci�ed (vtype.vta=1), in which case tail elements may be overwritten with 1s, or with the
result of the instruction in the case of mask-producing instructions except for mask loads. When LMUL < 1, the tail
includes the elements past VLMAX that are held in the same vector register.

    for element index x 
    prestart(x) = (0 <= x < vstart) 
    body(x)     = (vstart <= x < vl) 
    tail(x)     = (vl <= x < max(VLMAX,VLEN/SEW)) 
    mask(x)     = unmasked || v0.mask[x] == 1 
    active(x)   = body(x) && mask(x) 
    inactive(x) = body(x) && !mask(x)

When vstart ≥ vl, there are no body elements, and no elements are updated in any destination vector register group,
including that no tail elements are updated with agnostic values.

Note
As a consequence, when vl=0, no elements, including agnostic elements, are updated in the destination vector register group
regardless of vstart.

Instructions that write an x register or f register do so even when vstart ≥ vl, including when vl=0.

Note
Some instructions such as vslidedown and vrgather may read indices past vl or even VLMAX in source vector register groups. The
general policy is to return the value 0 when the index is greater than VLMAX in the source vector register group.
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6. Con�guration-Setting Instructions (vsetvli/vsetivli/vsetvl)

One of the common approaches to handling a large number of elements is "stripmining" where each iteration of a loop
handles some number of elements, and the iterations continue until all elements have been processed. The RISC-V vector
speci�cation provides direct, portable support for this approach. The application speci�es the total number of elements to
be processed (the application vector length or AVL) as a candidate value for vl, and the hardware responds via a general-
purpose register with the (frequently smaller) number of elements that the hardware will handle per iteration (stored in vl),
based on the microarchitectural implementation and the vtype setting. A straightforward loop structure, shown in Example
of stripmining and changes to SEW, depicts the ease with which the code keeps track of the remaining number of elements
and the amount per iteration handled by hardware.

A set of instructions is provided to allow rapid con�guration of the values in vl and vtype to match application needs. The
vset{i}vl{i} instructions set the vtype and vl CSRs based on their arguments, and write the new value of vl into rd.

 vsetvli rd, rs1, vtypei   # rd = new vl, rs1 = AVL, vtypei = new vtype setting 
 vsetivli rd, uimm, vtypei # rd = new vl, uimm = AVL, vtypei = new vtype setting 
 vsetvl  rd, rs1, rs2      # rd = new vl, rs1 = AVL, rs2 = new vtype value

Formats for Vector Con�guration Instructions under OP-V major opcode

0671112141519203031

1110101rd111rs1zimm[10:0]0

vsetvli

067111214151920293031

1110101rd111uimm[4:0]zimm[9:0]11

vsetivli

06711121415192024253031

1110101rd111rs1rs20000001

vsetvl

6.1. vtype encoding

02356783031

vlmul[2:0]vsew[2:0]vtavmareservedvill

Note This diagram shows the layout for RV32 systems, whereas in general vill should be at bit XLEN-1.

Table 7. vtype register layout
Bits Name Description

XLEN-1 vill Illegal value if set
XLEN-2:8 0 Reserved if non-zero

7 vma Vector mask agnostic
6 vta Vector tail agnostic

5:3 vsew[2:0] Selected element width (SEW) setting
2:0 vlmul[2:0] Vector register group multiplier (LMUL) setting

The new vtype setting is encoded in the immediate �elds of vsetvli and vsetivli, and in the rs2 register for vsetvl.
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 Suggested assembler names used for vset{i}vli vtypei immediate 

 e8    # SEW=8b 
 e16   # SEW=16b 
 e32   # SEW=32b 
 e64   # SEW=64b 

 mf8  # LMUL=1/8 
 mf4  # LMUL=1/4 
 mf2  # LMUL=1/2 
 m1   # LMUL=1, assumed if m setting absent 
 m2   # LMUL=2 
 m4   # LMUL=4 
 m8   # LMUL=8 

Examples: 
    vsetvli t0, a0, e8          # SEW= 8, LMUL=1 
    vsetvli t0, a0, e8, m2      # SEW= 8, LMUL=2 
    vsetvli t0, a0, e32, mf2    # SEW=32, LMUL=1/2

The vsetvl variant operates similarly to vsetvli except that it takes a vtype value from rs2 and can be used for context
restore.

If the vtype setting is not supported by the implementation, then the vill bit is set in vtype, the remaining bits in vtype
are set to zero, and the vl register is also set to zero.

Note

Earlier drafts required a trap when setting vtype to an illegal value. However, this would have added the �rst data-dependent trap on
a CSR write to the ISA. Implementations could choose to trap when illegal values are written to vtype instead of setting vill, to
allow emulation to support new con�gurations for forward-compatibility. The current scheme supports light-weight runtime
interrogation of the supported vector unit con�gurations by checking if vill is clear for a given setting.

6.2. AVL encoding

The new vector length setting is based on AVL, which for vsetvli and vsetvl is encoded in the rs1 and rd �elds as
follows:

Table 8. AVL used in vsetvli and vsetvl instructions
rd rs1 AVL value Effect on vl
- !x0 Value in x[rs1] Normal stripmining
!x0 x0 ~0 Set vl to VLMAX
x0 x0 Value in vl register Keep existing vl (of course, vtype may change)

When rs1 is not x0, the AVL is an unsigned integer held in the x register speci�ed by rs1, and the new vl value is also
written to the x register speci�ed by rd.

When rs1=x0 but rd!=x0, the maximum unsigned integer value (~0) is used as the AVL, and the resulting VLMAX is written
to vl and also to the x register speci�ed by rd.

When rs1=x0 and rd=x0, the instruction operates as if the current vector length in vl is used as the AVL, and the resulting
value is written to vl, but not to a destination register. This form can only be used when VLMAX and hence vl is not actually
changed by the new SEW/LMUL ratio. Use of the instruction with a new SEW/LMUL ratio that would result in a change of
VLMAX is reserved. Implementations may set vill in this case.

Note

This last form of the instructions allows the vtype register to be changed while maintaining the current vl, provided VLMAX is not
reduced. This design was chosen to ensure vl would always hold a legal value for current vtype setting. The current vl value can be
read from the vl CSR. The vl value could be reduced by this instruction if the new SEW/LMUL ratio causes VLMAX to shrink, and so
this case has been reserved as it is not clear this is a generally useful operation, and implementations can otherwise assume vl is not
changed by this instruction to optimize their microarchitecture.

For the vsetivli instruction, the AVL is encoded as a 5-bit zero-extended immediate (0— 31) in the rs1 �eld.
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Note The encoding of AVL for vsetivli is the same as for regular CSR immediate values.

Note
The vsetivli instruction provides more compact code when the dimensions of vectors are small and known to �t inside the vector
registers, in which case there is no stripmining overhead.

6.3. Constraints on Setting vl

The vset{i}vl{i} instructions �rst set VLMAX according to their vtype argument, then set vl obeying the following
constraints:

1. vl = AVL if AVL ≤ VLMAX

2. ceil(AVL / 2) ≤ vl ≤ VLMAX if AVL < (2 * VLMAX)

3. vl = VLMAX if AVL ≥ (2 * VLMAX)

4. Deterministic on any given implementation for same input AVL and VLMAX values

5. These speci�c properties follow from the prior rules:

a. vl = 0 if AVL = 0

b. vl > 0 if AVL > 0

c. vl ≤ VLMAX

d. vl ≤ AVL

e. a value read from vl when used as the AVL argument to vset{i}vl{i} results in the same value in vl, provided
the resultant VLMAX equals the value of VLMAX at the time that vl was read

Note

The vl setting rules are designed to be suf�ciently strict to preserve vl behavior across register spills and context swaps for AVL ≤
VLMAX, yet flexible enough to enable implementations to improve vector lane utilization for AVL > VLMAX.

For example, this permits an implementation to set vl = ceil(AVL / 2) for VLMAX < AVL < 2*VLMAX in order to evenly
distribute work over the last two iterations of a stripmine loop. Requirement 2 ensures that the �rst stripmine iteration of reduction
loops uses the largest vector length of all iterations, even in the case of AVL < 2*VLMAX. This allows software to avoid needing to
explicitly calculate a running maximum of vector lengths observed during a stripmined loop. Requirement 2 also allows an
implementation to set vl to VLMAX for VLMAX < AVL < 2*VLMAX

6.4. Example of stripmining and changes to SEW

The SEW and LMUL settings can be changed dynamically to provide high throughput on mixed-width operations in a single
loop.
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# Example: Load 16-bit values, widen multiply to 32b, shift 32b result 
# right by 3, store 32b values. 
# On entry: 
#  a0 holds the total number of elements to process 
#  a1 holds the address of the source array 
#  a2 holds the address of the destination array 

loop:
    vsetvli a3, a0, e16, m4, ta, ma  # vtype = 16-bit integer vectors; 
                                     # also update a3 with vl (# of elements this iteration) 
    vle16.v v4, (a1)        # Get 16b vector 
    slli t1, a3, 1          # Multiply # elements this iteration by 2 bytes/source element 
    add a1, a1, t1          # Bump pointer 
    vwmul.vx v8, v4, x10    # Widening multiply into 32b in <v8--v15> 

    vsetvli x0, x0, e32, m8, ta, ma  # Operate on 32b values 
    vsrl.vi v8, v8, 3 
    vse32.v v8, (a2)        # Store vector of 32b elements 
    slli t1, a3, 2          # Multiply # elements this iteration by 4 bytes/destination element 
    add a2, a2, t1          # Bump pointer 
    sub a0, a0, a3          # Decrement count by vl 
    bnez a0, loop           # Any more?
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7. Vector Loads and Stores

Vector loads and stores move values between vector registers and memory. Vector loads and stores are masked and do not
raise exceptions on inactive elements. Masked vector loads do not update inactive elements in the destination vector
register group, unless masked agnostic is speci�ed (vtype.vma=1). Masked vector stores only update active memory
elements. All vector loads and stores may generate and accept a non-zero vstart value.

7.1. Vector Load/Store Instruction Encoding

Vector loads and stores are encoded within the scalar floating-point load and store major opcodes (LOAD-FP/STORE-FP).
The vector load and store encodings repurpose a portion of the standard scalar floating-point load/store 12-bit immediate
�eld to provide further vector instruction encoding, with bit 25 holding the standard vector mask bit (see Mask Encoding).

Format for Vector Load Instructions under LOAD-FP major opcode

06711121415192024252627282931

1110000vdwidthrs1lumopvmmopmewnf

VL* unit-stridedestination of loadbase address

06711121415192024252627282931

1110000vdwidthrs1rs2vmmopmewnf

VLS* strideddestination of loadbase addressstride

06711121415192024252627282931

1110000vdwidthrs1vs2vmmopmewnf

VLX* indexeddestination of loadbase addressaddress offsets

Format for Vector Store Instructions under STORE-FP major opcode

06711121415192024252627282931

1110010vs3widthrs1sumopvmmopmewnf

VS* unit-stridestore database address

06711121415192024252627282931

1110010vs3widthrs1rs2vmmopmewnf

VSS* stridedstore database addressstride

06711121415192024252627282931

1110010vs3widthrs1vs2vmmopmewnf

VSX* indexedstore database addressaddress offsets

Field Description
rs1[4:0] speci�es x register holding base address
rs2[4:0] speci�es x register holding stride
vs2[4:0] speci�es v register holding address offsets
vs3[4:0] speci�es v register holding store data
vd[4:0] speci�es v register destination of load
vm speci�es whether vector masking is enabled (0 = mask enabled, 1 = mask disabled)
width[2:0] speci�es size of memory elements, and distinguishes from FP scalar
mew extended memory element width. See Vector Load/Store Width Encoding
mop[1:0] speci�es memory addressing mode
nf[2:0] speci�es the number of �elds in each segment, for segment load/stores
lumop[4:0]/sumop[4:0] are additional �elds encoding variants of unit-stride instructions

Vector memory unit-stride and constant-stride operations directly encode EEW of the data to be transferred statically in the
instruction to reduce the number of vtype changes when accessing memory in a mixed-width routine. Indexed operations
use the explicit EEW encoding in the instruction to set the size of the indices used, and use SEW/LMUL to specify the data
width.

7.2. Vector Load/Store Addressing Modes
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The vector extension supports unit-stride, strided, and indexed (scatter/gather) addressing modes. Vector load/store base
registers and strides are taken from the GPR x registers.

The base effective address for all vector accesses is given by the contents of the x register named in rs1.

Vector unit-stride operations access elements stored contiguously in memory starting from the base effective address.

Vector constant-strided operations access the �rst memory element at the base effective address, and then access
subsequent elements at address increments given by the byte offset contained in the x register speci�ed by rs2.

Vector indexed operations add the contents of each element of the vector offset operand speci�ed by vs2 to the base
effective address to give the effective address of each element. The data vector register group has EEW=SEW, EMUL=LMUL,
while the offset vector register group has EEW encoded in the instruction and EMUL=(EEW/SEW)*LMUL.

The vector offset operand is treated as a vector of byte-address offsets.

Note
The indexed operations can also be used to access �elds within a vector of objects, where the vs2 vector holds pointers to the base of
the objects and the scalar x register holds the offset of the member �eld in each object. Supporting this case is why the indexed
operations were not de�ned to scale the element indices by the data EEW.

If the vector offset elements are narrower than XLEN, they are zero-extended to XLEN before adding to the base effective
address. If the vector offset elements are wider than XLEN, the least-signi�cant XLEN bits are used in the address
calculation. An implementation must raise an illegal instruction exception if the EEW is not supported for offset elements.

Note A pro�le may place an upper limit on the maximum supported index EEW (e.g., only up to XLEN) smaller than ELEN.

The vector addressing modes are encoded using the 2-bit mop[1:0] �eld.

Table 9. encoding for loads
mop [1:0] Description Opcodes
0 0 unit-stride VLE<EEW>
0 1 indexed-unordered VLUXEI<EEW>
1 0 strided VLSE<EEW>
1 1 indexed-ordered VLOXEI<EEW>

Table 10. encoding for stores
mop [1:0] Description Opcodes
0 0 unit-stride VSE<EEW>
0 1 indexed-unordered VSUXEI<EEW>
1 0 strided VSSE<EEW>
1 1 indexed-ordered VSOXEI<EEW>

Vector unit-stride and constant-stride memory accesses do not guarantee ordering between individual element accesses.
The vector indexed load and store memory operations have two forms, ordered and unordered. The indexed-ordered
variants preserve element ordering on memory accesses.

For unordered instructions (mop[1:0]!=11) there is no guarantee on element access order. If the accesses are to a strongly
ordered IO region, the element accesses can be initiated in any order.

Note To provide ordered vector accesses to a strongly ordered IO region, the ordered indexed instructions should be used.

For implementations with precise vector traps, exceptions on indexed-unordered stores must also be precise.

Additional unit-stride vector addressing modes are encoded using the 5-bit lumop and sumop �elds in the unit-stride load
and store instruction encodings respectively.
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Table 11. lumop
lumop[4:0] Description
0 0 0 0 0 unit-stride load
0 1 0 0 0 unit-stride, whole register load
0 1 0 1 1 unit-stride, mask load, EEW=8
1 0 0 0 0 unit-stride fault-only-�rst
x x x x x other encodings reserved

Table 12. sumop
sumop[4:0] Description
0 0 0 0 0 unit-stride store
0 1 0 0 0 unit-stride, whole register store
0 1 0 1 1 unit-stride, mask store, EEW=8
x x x x x other encodings reserved

The nf[2:0] �eld encodes the number of �elds in each segment. For regular vector loads and stores, nf=0, indicating that a
single value is moved between a vector register group and memory at each element position. Larger values in the nf �eld are
used to access multiple contiguous �elds within a segment as described below in Section Vector Load/Store Segment
Instructions.

The nf[2:0] �eld also encodes the number of whole vector registers to transfer for the whole vector register load/store
instructions.

7.3. Vector Load/Store Width Encoding

Vector loads and stores have an EEW encoded directly in the instruction. The corresponding EMUL is calculated as EMUL =
(EEW/SEW)*LMUL. If the EMUL would be out of range (EMUL>8 or EMUL<1/8), the instruction encoding is reserved. The
vector register groups must have legal register speci�ers for the selected EMUL, otherwise the instruction encoding is
reserved.

Vector unit-stride and constant-stride use the EEW/EMUL encoded in the instruction for the data values, while vector
indexed loads and stores use the EEW/EMUL encoded in the instruction for the index values and the SEW/LMUL encoded in
vtype for the data values.

Vector loads and stores are encoded using width values that are not claimed by the standard scalar floating-point loads and
stores.

Implementations must provide vector loads and stores with EEWs corresponding to all supported SEW settings. Vector
load/store encodings for unsupported EEW widths must raise an illegal instruction exception.
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Table 13. Width encoding for vector loads and stores.
mew width [2:0] Mem bits Data Reg bits Index bits Opcodes

Standard scalar FP x 0 0 1 16 FLEN - FLH/FSH
Standard scalar FP x 0 1 0 32 FLEN - FLW/FSW
Standard scalar FP x 0 1 1 64 FLEN - FLD/FSD
Standard scalar FP x 1 0 0 128 FLEN - FLQ/FSQ
Vector 8b element 0 0 0 0 8 8 - VLxE8/VSxE8
Vector 16b element 0 1 0 1 16 16 - VLxE16/VSxE16
Vector 32b element 0 1 1 0 32 32 - VLxE32/VSxE32
Vector 64b element 0 1 1 1 64 64 - VLxE64/VSxE64
Vector 8b index 0 0 0 0 SEW SEW 8 VLxEI8/VSxEI8
Vector 16b index 0 1 0 1 SEW SEW 16 VLxEI16/VSxEI16
Vector 32b index 0 1 1 0 SEW SEW 32 VLxEI32/VSxEI32
Vector 64b index 0 1 1 1 SEW SEW 64 VLxEI64/VSxEI64
Reserved 1 X X X - - -

Mem bits is the size of each element accessed in memory.

Data reg bits is the size of each data element accessed in register.

Index bits is the size of each index accessed in register.

The mew bit (inst[28]) when set is expected to be used to encode expanded memory sizes of 128 bits and above, but
these encodings are currently reserved.

7.4. Vector Unit-Stride Instructions

    # Vector unit-stride loads and stores 

    # vd destination, rs1 base address, vm is mask encoding (v0.t or <missing>) 
    vle8.v    vd, (rs1), vm  #    8-bit unit-stride load 
    vle16.v   vd, (rs1), vm  #   16-bit unit-stride load 
    vle32.v   vd, (rs1), vm  #   32-bit unit-stride load 
    vle64.v   vd, (rs1), vm  #   64-bit unit-stride load 

    # vs3 store data, rs1 base address, vm is mask encoding (v0.t or <missing>) 
    vse8.v    vs3, (rs1), vm  #    8-bit unit-stride store 
    vse16.v   vs3, (rs1), vm  #   16-bit unit-stride store 
    vse32.v   vs3, (rs1), vm  #   32-bit unit-stride store 
    vse64.v   vs3, (rs1), vm  #   64-bit unit-stride store

Additional unit-stride mask load and store instructions are provided to transfer mask values to/from memory. These operate
similarly to unmasked byte loads or stores (EEW=8), except that the effective vector length is evl=ceil(vl/8) (i.e. EMUL=1),
and the destination register is always written with a tail-agnostic policy.

    # Vector unit-stride mask load 
    vlm.v vd, (rs1)   #  Load byte vector of length ceil(vl/8) 

    # Vector unit-stride mask store 
    vsm.v vs3, (rs1)  #  Store byte vector of length ceil(vl/8)

vlm.v and vsm.v are encoded with the same width[2:0]=0 encoding as vle8.v and vse8.v, but are distinguished by
different lumop and sumop encodings. Since vlm.v and vsm.v operate as byte loads and stores, vstart is in units of bytes
for these instructions.
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Note
The previous assembler mnemonics vle1.v and vse1.v were confusing as length was handled differently for these instructions
versus other element load/store instructions. To avoid software churn, these older assembly mnemonics are being retained as aliases.

Note
The primary motivation to provide mask load and store is to support machines that internally rearrange data to reduce cross-datapath
wiring. However, these instructions also provide a convenient mechanism to use packed bit vectors in memory as mask values, and
also reduce the cost of mask spill/�ll by reducing need to change vl.

7.5. Vector Strided Instructions

    # Vector strided loads and stores 

    # vd destination, rs1 base address, rs2 byte stride 
    vlse8.v    vd, (rs1), rs2, vm  #    8-bit strided load 
    vlse16.v   vd, (rs1), rs2, vm  #   16-bit strided load 
    vlse32.v   vd, (rs1), rs2, vm  #   32-bit strided load 
    vlse64.v   vd, (rs1), rs2, vm  #   64-bit strided load 

    # vs3 store data, rs1 base address, rs2 byte stride 
    vsse8.v    vs3, (rs1), rs2, vm  #    8-bit strided store 
    vsse16.v   vs3, (rs1), rs2, vm  #   16-bit strided store 
    vsse32.v   vs3, (rs1), rs2, vm  #   32-bit strided store 
    vsse64.v   vs3, (rs1), rs2, vm  #   64-bit strided store

Negative and zero strides are supported.

Element accesses within a strided instruction are unordered with respect to each other.

When rs2=x0, then an implementation is allowed, but not required, to perform fewer memory operations than the number
of active elements, and may perform different numbers of memory operations across different dynamic executions of the
same static instruction.

Note
Compilers must be aware to not use the x0 form for rs2 when the immediate stride is 0 if the intent to is to require all memory
accesses are performed.

When rs2!=x0 and the value of x[rs2]=0, the implementation must perform one memory access for each active element
(but these accesses will not be ordered).

Note

As with other architectural mandates, implementations must appear to perform each memory access. Microarchitectures are free to
optimize away accesses that would not be observed by another agent, for example, in idempotent memory regions obeying RVWMO.
For non-idempotent memory regions, where by de�nition each access can be observed by a device, the optimization would not be
possible.

Note When repeating ordered vector accesses to the same memory address are required, then an ordered indexed operation can be used.

7.6. Vector Indexed Instructions
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    # Vector indexed loads and stores 

    # Vector indexed-unordered load instructions 
    # vd destination, rs1 base address, vs2 byte offsets 
    vluxei8.v    vd, (rs1), vs2, vm  # unordered  8-bit indexed load of SEW data 
    vluxei16.v   vd, (rs1), vs2, vm  # unordered 16-bit indexed load of SEW data 
    vluxei32.v   vd, (rs1), vs2, vm  # unordered 32-bit indexed load of SEW data 
    vluxei64.v   vd, (rs1), vs2, vm  # unordered 64-bit indexed load of SEW data 

    # Vector indexed-ordered load instructions 
    # vd destination, rs1 base address, vs2 byte offsets 
    vloxei8.v    vd, (rs1), vs2, vm  # ordered  8-bit indexed load of SEW data 
    vloxei16.v   vd, (rs1), vs2, vm  # ordered 16-bit indexed load of SEW data 
    vloxei32.v   vd, (rs1), vs2, vm  # ordered 32-bit indexed load of SEW data 
    vloxei64.v   vd, (rs1), vs2, vm  # ordered 64-bit indexed load of SEW data 

    # Vector indexed-unordered store instructions 
    # vs3 store data, rs1 base address, vs2 byte offsets 
    vsuxei8.v   vs3, (rs1), vs2, vm # unordered  8-bit indexed store of SEW data 
    vsuxei16.v  vs3, (rs1), vs2, vm # unordered 16-bit indexed store of SEW data 
    vsuxei32.v  vs3, (rs1), vs2, vm # unordered 32-bit indexed store of SEW data 
    vsuxei64.v  vs3, (rs1), vs2, vm # unordered 64-bit indexed store of SEW data 

    # Vector indexed-ordered store instructions 
    # vs3 store data, rs1 base address, vs2 byte offsets 
    vsoxei8.v    vs3, (rs1), vs2, vm  # ordered  8-bit indexed store of SEW data 
    vsoxei16.v   vs3, (rs1), vs2, vm  # ordered 16-bit indexed store of SEW data 
    vsoxei32.v   vs3, (rs1), vs2, vm  # ordered 32-bit indexed store of SEW data 
    vsoxei64.v   vs3, (rs1), vs2, vm  # ordered 64-bit indexed store of SEW data

Note
The assembler syntax for indexed loads and stores uses eix instead of ex to indicate the statically encoded EEW is of the index not
the data.

Note

The indexed operations mnemonics have a "U" or "O" to distinguish between unordered and ordered, while the other vector
addressing modes have no character. While this is perhaps a little less consistent, this approach minimizes disruption to existing
software, as VSXEI previously meant "ordered" - and the opcode can be retained as an alias during transition to help reduce software
churn.

7.7. Unit-stride Fault-Only-First Loads

The unit-stride fault-only-�rst load instructions are used to vectorize loops with data-dependent exit conditions ("while"
loops). These instructions execute as a regular load except that they will only take a trap caused by a synchronous exception
on element 0. If element 0 raises an exception, vl is not modi�ed, and the trap is taken. If an element > 0 raises an
exception, the corresponding trap is not taken, and the vector length vl is reduced to the index of the element that would
have raised an exception.

Load instructions may overwrite active destination vector register group elements past the element index at which the trap is
reported. Similarly, fault-only-�rst load instructions may update active destination elements past the element that causes
trimming of the vector length (but not past the original vector length). The values of these spurious updates do not have to
correspond to the values in memory at the addressed memory locations. Non-idempotent memory locations can only be
accessed when it is known the corresponding element load operation will not be restarted due to a trap or vector-length
trimming.

    # Vector unit-stride fault-only-first loads 

    # vd destination, rs1 base address, vm is mask encoding (v0.t or <missing>) 
    vle8ff.v    vd, (rs1), vm  #    8-bit unit-stride fault-only-first load 
    vle16ff.v   vd, (rs1), vm  #   16-bit unit-stride fault-only-first load 
    vle32ff.v   vd, (rs1), vm  #   32-bit unit-stride fault-only-first load 
    vle64ff.v   vd, (rs1), vm  #   64-bit unit-stride fault-only-first load
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strlen example using unit-stride fault-only-first instruction 

# size_t strlen(const char *str) 
# a0 holds *str 

strlen: 
    mv a3, a0             # Save start 
loop:
    vsetvli a1, x0, e8, m8, ta, ma  # Vector of bytes of maximum length 
    vle8ff.v v8, (a3)      # Load bytes 
    csrr a1, vl           # Get bytes read 
    vmseq.vi v0, v8, 0    # Set v0[i] where v8[i] = 0 
    vfirst.m a2, v0       # Find first set bit 
    add a3, a3, a1        # Bump pointer 
    bltz a2, loop         # Not found? 

    add a0, a0, a1        # Sum start + bump 
    add a3, a3, a2        # Add index 
    sub a0, a3, a0        # Subtract start address+bump 

    ret

Note

There is a security concern with fault-on-�rst loads, as they can be used to probe for valid effective addresses. The unit-stride versions
only allow probing a region immediately contiguous to a known region, and so reduce the security impact when used in unprivileged
code. However, code running in S-mode can establish arbitrary page translations that allow probing of random guest physical
addresses provided by a hypervisor. Strided and scatter/gather fault-only-�rst instructions are not provided due to lack of encoding
space, but they can also represent a larger security hole, allowing even unprivileged software to easily check multiple random pages
for accessibility without experiencing a trap. This standard does not address possible security mitigations for fault-only-�rst
instructions.

Even when an exception is not raised, implementations are permitted to process fewer than vl elements and reduce vl
accordingly, but if vstart=0 and vl>0, then at least one element must be processed.

When the fault-only-�rst instruction takes a trap due to an interrupt, implementations should not reduce vl and should
instead set a vstart value.

Note
When the fault-only-�rst instruction would trigger a debug data-watchpoint trap on an element after the �rst, implementations should
not reduce vl but instead should trigger the debug trap as otherwise the event might be lost.

7.8. Vector Load/Store Segment Instructions

The vector load/store segment instructions move multiple contiguous �elds in memory to and from consecutively numbered
vector registers.

Note
The name "segment" reflects that the items moved are subarrays with homogeneous elements. These operations can be used to
transpose arrays between memory and registers, and can support operations on "array-of-structures" datatypes by unpacking each
�eld in a structure into a separate vector register.

The three-bit nf �eld in the vector instruction encoding is an unsigned integer that contains one less than the number of
�elds per segment, NFIELDS.
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Table 14. NFIELDS Encoding
nf[2:0] NFIELDS
0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8

The EMUL setting must be such that EMUL * NFIELDS ≤ 8, otherwise the instruction encoding is reserved.

Note
The product EMUL * NFIELDS represents the number of underlying vector registers that will be touched by a segmented load or store
instruction. This constraint makes this total no larger than 1/4 of the architectural register �le, and the same as for regular operations
with EMUL=8.

Each �eld will be held in successively numbered vector register groups. When EMUL>1, each �eld will occupy a vector
register group held in multiple successively numbered vector registers, and the vector register group for each �eld must
follow the usual vector register alignment constraints (e.g., when EMUL=2 and NFIELDS=4, each �eld’s vector register group
must start at an even vector register, but does not have to start at a multiple of 8 vector register number).

If the vector register numbers accessed by the segment load or store would increment past 31, then the instruction encoding
is reserved.

Note
This constraint is to help allow for forward-compatibility with a possible future longer instruction encoding that has more addressable
vector registers.

The vl register gives the number of segments to move, which is equal to the number of elements transferred to each vector
register group. Masking is also applied at the level of whole segments.

For segment loads and stores, the individual memory accesses used to access �elds within each segment are unordered
with respect to each other even for ordered indexed segment loads and stores.

The vstart value is in units of whole segments. If a trap occurs during access to a segment, it is implementation-de�ned
whether a subset of the faulting segment’s accesses are performed before the trap is taken.

7.8.1. Vector Unit-Stride Segment Loads and Stores

The vector unit-stride load and store segment instructions move packed contiguous segments into multiple destination
vector register groups.

Note
Where the segments hold structures with heterogeneous-sized �elds, software can later unpack individual structure �elds using
additional instructions after the segment load brings data into the vector registers.

The assembler pre�xes vlseg/vsseg are used for unit-stride segment loads and stores respectively.

    # Format 
    vlseg<nf>e<eew>.v vd, (rs1), vm      # Unit-stride segment load template 
    vsseg<nf>e<eew>.v vs3, (rs1), vm     # Unit-stride segment store template 

    # Examples 
    vlseg8e8.v vd, (rs1), vm   # Load eight vector registers with eight byte fields. 

    vsseg3e32.v vs3, (rs1), vm  # Store packed vector of 3*4-byte segments from vs3,vs3+1,vs3+2 to mem

For loads, the vd register will hold the �rst �eld loaded from the segment. For stores, the vs3 register is read to provide the
�rst �eld to be stored to each segment.

36



    # Example 1 
    # Memory structure holds packed RGB pixels (24-bit data structure, 8bpp) 
    vsetvli a1, t0, e8, ta, ma 
    vlseg3e8.v v8, (a0), vm 
    # v8 holds the red pixels 
    # v9 holds the green pixels 
    # v10 holds the blue pixels 

    # Example 2 
    # Memory structure holds complex values, 32b for real and 32b for imaginary 
    vsetvli a1, t0, e32, ta, ma 
    vlseg2e32.v v8, (a0), vm 
    # v8 holds real 
    # v9 holds imaginary

There are also fault-only-�rst versions of the unit-stride instructions.

    # Template for vector fault-only-first unit-stride segment loads. 
    vlseg<nf>e<eew>ff.v vd, (rs1),  vm    # Unit-stride fault-only-first segment loads

For fault-only-�rst segment loads, if an exception is detected partway through accessing a segment, regardless of whether
the element index is zero, it is implementation-de�ned whether a subset of the segment is loaded.

These instructions may overwrite destination vector register group elements past the point at which a trap is reported or past
the point at which vector length is trimmed.

7.8.2. Vector Strided Segment Loads and Stores

Vector strided segment loads and stores move contiguous segments where each segment is separated by the byte-stride
offset given in the rs2 GPR argument.

Note Negative and zero strides are supported.

    # Format 
    vlsseg<nf>e<eew>.v vd, (rs1), rs2, vm          # Strided segment loads 
    vssseg<nf>e<eew>.v vs3, (rs1), rs2, vm         # Strided segment stores 

    # Examples 
    vsetvli a1, t0, e8, ta, ma 
    vlsseg3e8.v v4, (x5), x6   # Load bytes at addresses x5+i*x6   into v4[i], 
                              #  and bytes at addresses x5+i*x6+1 into v5[i], 
                              #  and bytes at addresses x5+i*x6+2 into v6[i]. 

    # Examples 
    vsetvli a1, t0, e32, ta, ma 
    vssseg2e32.v v2, (x5), x6   # Store words from v2[i] to address x5+i*x6 
                                #   and words from v3[i] to address x5+i*x6+4

Accesses to the �elds within each segment can occur in any order, including the case where the byte stride is such that
segments overlap in memory.

7.8.3. Vector Indexed Segment Loads and Stores

Vector indexed segment loads and stores move contiguous segments where each segment is located at an address given by
adding the scalar base address in the rs1 �eld to byte offsets in vector register vs2. Both ordered and unordered forms are
provided, where the ordered forms access segments in element order. However, even for the ordered form, accesses to the
�elds within an individual segment are not ordered with respect to each other.
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The data vector register group has EEW=SEW, EMUL=LMUL, while the index vector register group has EEW encoded in the
instruction with EMUL=(EEW/SEW)*LMUL.

    # Format 
    vluxseg<nf>ei<eew>.v vd, (rs1), vs2, vm   # Indexed-unordered segment loads 
    vloxseg<nf>ei<eew>.v vd, (rs1), vs2, vm   # Indexed-ordered segment loads 
    vsuxseg<nf>ei<eew>.v vs3, (rs1), vs2, vm  # Indexed-unordered segment stores 
    vsoxseg<nf>ei<eew>.v vs3, (rs1), vs2, vm  # Indexed-ordered segment stores 

    # Examples 
    vsetvli a1, t0, e8, ta, ma 
    vluxseg3ei32.v v4, (x5), v3   # Load bytes at addresses x5+v3[i]   into v4[i], 
                              #  and bytes at addresses x5+v3[i]+1 into v5[i], 
                              #  and bytes at addresses x5+v3[i]+2 into v6[i]. 

    # Examples 
    vsetvli a1, t0, e32, ta, ma 
    vsuxseg2ei32.v v2, (x5), v5   # Store words from v2[i] to address x5+v5[i] 
                              #   and words from v3[i] to address x5+v5[i]+4

For vector indexed segment loads, the destination vector register groups cannot overlap the source vector register group
(speci�ed by vs2), else the instruction encoding is reserved.

Note This constraint supports restart of indexed segment loads that raise exceptions partway through loading a structure.

7.9. Vector Load/Store Whole Register Instructions

Format for Vector Load Whole Register Instructions under LOAD-FP major opcode

06711121415192024252627282931

1110000vdwidthrs100010100mewnf

VL*R*destination of loadbase addresslumopvmmop

Format for Vector Store Whole Register Instructions under STORE-FP major opcode

06711121415192024252627282931

1110010vs3000rs1000101000nf

VS*R*store database addresssumopvmmopmew

These instructions load and store whole vector register groups.

Note

These instructions are intended to be used to save and restore vector registers when the type or length of the current contents of the
vector register is not known, or where modifying vl and vtype would be costly. Examples include compiler register spills, vector
function calls where values are passed in vector registers, interrupt handlers, and OS context switches. Software can determine the
number of bytes transferred by reading the vlenb register.

The load instructions have an EEW encoded in the mew and width �elds following the pattern of regular unit-stride loads.

Note

Because in-register byte layouts are identical to in-memory byte layouts, the same data is written to the destination register group
regardless of EEW. Hence, it would have suf�ced to provide only EEW=8 variants. The full set of EEW variants is provided so that the
encoded EEW can be used as a hint to indicate the destination register group will next be accessed with this EEW, which aids
implementations that rearrange data internally.

The vector whole register store instructions are encoded similar to unmasked unit-stride store of elements with EEW=8.

The nf �eld encodes how many vector registers to load and store using the NFIELDS encoding (Figure NFIELDS Encoding).
The encoded number of registers must be a power of 2 and the vector register numbers must be aligned as with a vector
register group, otherwise the instruction encoding is reserved. NFIELDS indicates the number of vector registers to transfer,
numbered successively after the base. Only NFIELDS values of 1, 2, 4, 8 are supported, with other values reserved. When
multiple registers are transferred, the lowest-numbered vector register is held in the lowest-numbered memory addresses
and successive vector register numbers are placed contiguously in memory.
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The instructions operate with an effective vector length, evl=NFIELDS*VLEN/EEW, regardless of current settings in vtype
and vl. The usual property that no elements are written if vstart ≥ vl does not apply to these instructions. Instead, no
elements are written if vstart ≥ evl.

The instructions operate similarly to unmasked unit-stride load and store instructions, with the base address passed in the
scalar x register speci�ed by rs1.

Implementations are allowed to raise a misaligned address exception on whole register loads and stores if the base address
is not naturally aligned to the larger of the size of the encoded EEW in bytes (EEW/8) or the implementation’s smallest
supported SEW size in bytes (SEWMIN/8).

Note

Allowing misaligned exceptions to be raised based on non-alignment to the encoded EEW simpli�es the implementation of these
instructions. Some subset implementations might not support smaller SEW widths, so are allowed to report misaligned exceptions for
the smallest supported SEW even if larger than encoded EEW. An extreme non-standard implementation might have SEWMIN>XLEN
for example. Software environments can mandate the minimum alignment requirements to support an ABI.

   # Format of whole register load and store instructions. 
   vl1r.v v3, (a0)       # Pseudoinstruction equal to vl1re8.v 

   vl1re8.v    v3, (a0)  # Load v3 with VLEN/8 bytes held at address in a0 
   vl1re16.v   v3, (a0)  # Load v3 with VLEN/16 halfwords held at address in a0 
   vl1re32.v   v3, (a0)  # Load v3 with VLEN/32 words held at address in a0 
   vl1re64.v   v3, (a0)  # Load v3 with VLEN/64 doublewords held at address in a0 
   vl2r.v v2, (a0)       # Pseudoinstruction equal to vl2re8.v v2, (a0) 

   vl2re8.v    v2, (a0)  # Load v2-v3 with 2*VLEN/8 bytes from address in a0 
   vl2re16.v   v2, (a0)  # Load v2-v3 with 2*VLEN/16 halfwords held at address in a0 
   vl2re32.v   v2, (a0)  # Load v2-v3 with 2*VLEN/32 words held at address in a0 
   vl2re64.v   v2, (a0)  # Load v2-v3 with 2*VLEN/64 doublewords held at address in a0 

   vl4r.v v4, (a0)       # Pseudoinstruction equal to vl4re8.v 

   vl4re8.v    v4, (a0)  # Load v4-v7 with 4*VLEN/8 bytes from address in a0 
   vl4re16.v   v4, (a0) 
   vl4re32.v   v4, (a0) 
   vl4re64.v   v4, (a0) 

   vl8r.v v8, (a0)       # Pseudoinstruction equal to vl8re8.v 

   vl8re8.v    v8, (a0)  # Load v8-v15 with 8*VLEN/8 bytes from address in a0 
   vl8re16.v   v8, (a0) 
   vl8re32.v   v8, (a0) 
   vl8re64.v   v8, (a0) 

   vs1r.v v3, (a1)      # Store v3 to address in a1 
   vs2r.v v2, (a1)      # Store v2-v3 to address in a1 
   vs4r.v v4, (a1)      # Store v4-v7 to address in a1 
   vs8r.v v8, (a1)      # Store v8-v15 to address in a1

Note Implementations should raise illegal instruction exceptions on vl<nf>r instructions for EEW values that are not supported.

Note

We have considered adding a whole register mask load instruction (vl1rm.v) but have decided to omit from initial extension. The
primary purpose would be to inform the microarchitecture that the data will be used as a mask. The same effect can be achieved with
the following code sequence, whose cost is at most four instructions. Of these, the �rst could likely be removed as vl is often already
in a scalar register, and the last might already be present if the following vector instruction needs a new SEW/LMUL. So, in best case
only two instructions (of which only one performs vector operations) are needed to synthesize the effect of the dedicated instruction:

  csrr t0, vl                # Save current vl (potentially not needed) 
  vsetvli t1, x0, e8, m8     # Maximum VLMAX 
  vlm.v v0, (a0)             # Load mask register 
  vsetvli x0, t0, <new type> # Restore vl (potentially already present)
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8. Vector Memory Alignment Constraints

If an element accessed by a vector memory instruction is not naturally aligned to the size of the element, either the element
is transferred successfully or an address misaligned exception is raised on that element.

Support for misaligned vector memory accesses is independent of an implementation’s support for misaligned scalar
memory accesses.

Note
An implementation may have neither, one, or both scalar and vector memory accesses support some or all misaligned accesses in
hardware. A separate PMA should be de�ned to determine if vector misaligned accesses are supported in the associated address
range.

Vector misaligned memory accesses follow the same rules for atomicity as scalar misaligned memory accesses.
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9. Vector Memory Consistency Model

Vector memory instructions appear to execute in program order on the local hart.

Vector memory instructions follow RVWMO at the instruction level.

Except for vector indexed-ordered loads and stores, element operations are unordered within the instruction.

Vector indexed-ordered loads and stores read and write elements from/to memory in element order respectively.

Note More formal de�nitions required.

Instructions affected by the vector length register vl have a control dependency on vl, rather than a data dependency.
Similarly, masked vector instructions have a control dependency on the source mask register, rather than a data dependency.

Note
Treating the vector length and mask as control rather than data typically matches the semantics of the corresponding scalar code,
where branch instructions ordinarily would have been used. Treating the mask as control allows masked vector load instructions to
access memory before the mask value is known, without the need for a misspeculation-recovery mechanism.

Note The behavior of vector memory instructions under the proposed RVTSO memory model (Ztso extension) is not presently de�ned.
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10. Vector Arithmetic Instruction Formats

The vector arithmetic instructions use a new major opcode (OP-V = 10101112) which neighbors OP-FP. The three-bit
funct3 �eld is used to de�ne sub-categories of vector instructions.

Formats for Vector Arithmetic Instructions under OP-V major opcode

06711121415192024252631

1110101vd000vs1vs2vmfunct6

OPIVV

06711121415192024252631

1110101vd / rd100vs1vs2vmfunct6

OPFVV

06711121415192024252631

1110101vd / rd010vs1vs2vmfunct6

OPMVV

06711121415192024252631

1110101vd110imm[4:0]vs2vmfunct6

OPIVI

06711121415192024252631

1110101vd001rs1vs2vmfunct6

OPIVX

06711121415192024252631

1110101vd101rs1vs2vmfunct6

OPFVF

06711121415192024252631

1110101vd / rd011rs1vs2vmfunct6

OPMVX

10.1. Vector Arithmetic Instruction encoding

The funct3 �eld encodes the operand type and source locations.

Table 15. funct3
funct3[2:0] Category Operands Type of scalar operand
0 0 0 OPIVV vector-vector N/A
0 0 1 OPFVV vector-vector N/A
0 1 0 OPMVV vector-vector N/A
0 1 1 OPIVI vector-immediate imm[4:0]
1 0 0 OPIVX vector-scalar GPR x register rs1
1 0 1 OPFVF vector-scalar FP f register rs1
1 1 0 OPMVX vector-scalar GPR x register rs1
1 1 1 OPCFG scalars-imms GPR x register rs1 & rs2/imm

Integer operations are performed using unsigned or two’s-complement signed integer arithmetic depending on the opcode.

Note In this discussion, �xed-point operations are considered to be integer operations.

All standard vector floating-point arithmetic operations follow the IEEE-754/2008 standard. All vector floating-point
operations use the dynamic rounding mode in the frm register. Use of the frm �eld when it contains an invalid rounding
mode by any vector floating-point instruction, even those that do not depend on the rounding mode, or when vl=0, or when
vstart ≥ vl, is reserved.

Note
All vector floating-point code will rely on a valid value in frm. Implementations can make all vector FP instructions report exceptions
when the rounding mode is invalid to simplify control logic.

42



Vector-vector operations take two vectors of operands from vector register groups speci�ed by vs2 and vs1 respectively.

Vector-scalar operations can have three possible forms. In all three forms, the vector register group operand is speci�ed by
vs2. The second scalar source operand comes from one of three alternative sources:

1. For integer operations, the scalar can be a 5-bit immediate, imm[4:0], encoded in the rs1 �eld. The value is sign-
extended to SEW bits, unless otherwise speci�ed.

2. For integer operations, the scalar can be taken from the scalar x register speci�ed by rs1. If XLEN>SEW, the least-
signi�cant SEW bits of the x register are used, unless otherwise speci�ed. If XLEN<SEW, the value from the x register is
sign-extended to SEW bits.

3. For floating-point operations, the scalar can be taken from a scalar f register. If FLEN > SEW, the value in the f registers
is checked for a valid NaN-boxed value, in which case the least-signi�cant SEW bits of the f register are used, else the
canonical NaN value is used. Vector instructions where any floating-point vector operand’s EEW is not a supported
floating-point type width (which includes when FLEN < SEW) are reserved.

Note Some instructions zero-extend the 5-bit immediate, and denote this by naming the immediate uimm in the assembly syntax.

Note

When adding a vector extension to the proposed Z�nx/Zdinx/Zhinx extensions, floating-point scalar arguments are taken from the x
registers. NaN-boxing is not supported in these extensions, and so the vector floating-point scalar value is produced using the same
rules as for an integer scalar operand (i.e., when XLEN > SEW use the lowest SEW bits, when XLEN < SEW use the sign-extended
value).

Vector arithmetic instructions are masked under control of the vm �eld.

# Assembly syntax pattern for vector binary arithmetic instructions 

# Operations returning vector results, masked by vm (v0.t, <nothing>) 
vop.vv  vd, vs2, vs1, vm  # integer vector-vector      vd[i] = vs2[i] op vs1[i] 
vop.vx  vd, vs2, rs1, vm  # integer vector-scalar      vd[i] = vs2[i] op x[rs1] 
vop.vi  vd, vs2, imm, vm  # integer vector-immediate   vd[i] = vs2[i] op imm 

vfop.vv  vd, vs2, vs1, vm # FP vector-vector operation vd[i] = vs2[i] fop vs1[i] 
vfop.vf  vd, vs2, rs1, vm # FP vector-scalar operation vd[i] = vs2[i] fop f[rs1]

Note
In the encoding, vs2 is the �rst operand, while rs1/imm is the second operand. This is the opposite to the standard scalar ordering.
This arrangement retains the existing encoding conventions that instructions that read only one scalar register, read it from rs1, and
that 5-bit immediates are sourced from the rs1 �eld.

# Assembly syntax pattern for vector ternary arithmetic instructions (multiply-add) 

# Integer operations overwriting sum input 
vop.vv vd, vs1, vs2, vm  # vd[i] = vs1[i] * vs2[i] + vd[i] 
vop.vx vd, rs1, vs2, vm  # vd[i] = x[rs1] * vs2[i] + vd[i] 

# Integer operations overwriting product input 
vop.vv vd, vs1, vs2, vm  # vd[i] = vs1[i] * vd[i] + vs2[i] 
vop.vx vd, rs1, vs2, vm  # vd[i] = x[rs1] * vd[i] + vs2[i] 

# Floating-point operations overwriting sum input 
vfop.vv vd, vs1, vs2, vm  # vd[i] = vs1[i] * vs2[i] + vd[i] 
vfop.vf vd, rs1, vs2, vm  # vd[i] = f[rs1] * vs2[i] + vd[i] 

# Floating-point operations overwriting product input 
vfop.vv vd, vs1, vs2, vm  # vd[i] = vs1[i] * vd[i] + vs2[i] 
vfop.vf vd, rs1, vs2, vm  # vd[i] = f[rs1] * vd[i] + vs2[i]

Note
For ternary multiply-add operations, the assembler syntax always places the destination vector register �rst, followed by either rs1 or
vs1, then vs2. This ordering provides a more natural reading of the assembler for these ternary operations, as the multiply operands
are always next to each other.
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10.2. Widening Vector Arithmetic Instructions

A few vector arithmetic instructions are de�ned to be widening operations where the destination vector register group has
EEW=2*SEW and EMUL=2*LMUL. These are generally given a vw* pre�x on the opcode, or vfw* for vector floating-point
instructions.

The �rst vector register group operand can be either single or double-width.

Assembly syntax pattern for vector widening arithmetic instructions 

# Double-width result, two single-width sources: 2*SEW = SEW op SEW 
vwop.vv  vd, vs2, vs1, vm  # integer vector-vector      vd[i] = vs2[i] op vs1[i] 
vwop.vx  vd, vs2, rs1, vm  # integer vector-scalar      vd[i] = vs2[i] op x[rs1] 

# Double-width result, first source double-width, second source single-width: 2*SEW = 2*SEW op SEW 
vwop.wv  vd, vs2, vs1, vm  # integer vector-vector      vd[i] = vs2[i] op vs1[i] 
vwop.wx  vd, vs2, rs1, vm  # integer vector-scalar      vd[i] = vs2[i] op x[rs1]

Note
Originally, a w suf�x was used on opcode, but this could be confused with the use of a w suf�x to mean word-sized operations in
doubleword integers, so the w was moved to pre�x.

Note
The floating-point widening operations were changed to vfw* from vwf* to be more consistent with any scalar widening floating-
point operations that will be written as fw*.

Widening instruction encodings must follow the constraints in Section Vector Operands.

10.3. Narrowing Vector Arithmetic Instructions

A few instructions are provided to convert double-width source vectors into single-width destination vectors. These
instructions convert a vector register group speci�ed by vs2 with EEW/EMUL=2*SEW/2*LMUL to a vector register group with
the current SEW/LMUL setting. Where there is a second source vector register group (speci�ed by vs1), this has the same
(narrower) width as the result (i.e., EEW=SEW).

Note
An alternative design decision would have been to treat SEW/LMUL as de�ning the size of the source vector register group. The choice
here is motivated by the belief the chosen approach will require fewer vtype changes.

Note Compare operations that set a mask register are also implicitly a narrowing operation.

A vn* pre�x on the opcode is used to distinguish these instructions in the assembler, or a vfn* pre�x for narrowing floating-
point opcodes. The double-width source vector register group is signi�ed by a w in the source operand suf�x (e.g.,
vnsra.wv)

Assembly syntax pattern for vector narrowing arithmetic instructions 

# Single-width result vd, double-width source vs2, single-width source vs1/rs1 
# SEW = 2*SEW op SEW 
vnop.wv  vd, vs2, vs1, vm  # integer vector-vector      vd[i] = vs2[i] op vs1[i] 
vnop.wx  vd, vs2, rs1, vm  # integer vector-scalar      vd[i] = vs2[i] op x[rs1]

Narrowing instruction encodings must follow the constraints in Section Vector Operands.
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11. Vector Integer Arithmetic Instructions

A set of vector integer arithmetic instructions is provided. Unless otherwise stated, integer operations wrap around on
overflow.

11.1. Vector Single-Width Integer Add and Subtract

Vector integer add and subtract are provided. Reverse-subtract instructions are also provided for the vector-scalar forms.

# Integer adds. 
vadd.vv vd, vs2, vs1, vm   # Vector-vector 
vadd.vx vd, vs2, rs1, vm   # vector-scalar 
vadd.vi vd, vs2, imm, vm   # vector-immediate 

# Integer subtract 
vsub.vv vd, vs2, vs1, vm   # Vector-vector 
vsub.vx vd, vs2, rs1, vm   # vector-scalar 

# Integer reverse subtract 
vrsub.vx vd, vs2, rs1, vm   # vd[i] = x[rs1] - vs2[i] 
vrsub.vi vd, vs2, imm, vm   # vd[i] = imm - vs2[i]

Note
A vector of integer values can be negated using a reverse-subtract instruction with a scalar operand of x0. An assembly
pseudoinstruction vneg.v vd,vs = vrsub.vx vd,vs,x0 is provided.

11.2. Vector Widening Integer Add/Subtract

The widening add/subtract instructions are provided in both signed and unsigned variants, depending on whether the
narrower source operands are �rst sign- or zero-extended before forming the double-width sum.

# Widening unsigned integer add/subtract, 2*SEW = SEW +/- SEW 
vwaddu.vv  vd, vs2, vs1, vm  # vector-vector 
vwaddu.vx  vd, vs2, rs1, vm  # vector-scalar 
vwsubu.vv  vd, vs2, vs1, vm  # vector-vector 
vwsubu.vx  vd, vs2, rs1, vm  # vector-scalar 

# Widening signed integer add/subtract, 2*SEW = SEW +/- SEW 
vwadd.vv  vd, vs2, vs1, vm  # vector-vector 
vwadd.vx  vd, vs2, rs1, vm  # vector-scalar 
vwsub.vv  vd, vs2, vs1, vm  # vector-vector 
vwsub.vx  vd, vs2, rs1, vm  # vector-scalar 

# Widening unsigned integer add/subtract, 2*SEW = 2*SEW +/- SEW 
vwaddu.wv  vd, vs2, vs1, vm  # vector-vector 
vwaddu.wx  vd, vs2, rs1, vm  # vector-scalar 
vwsubu.wv  vd, vs2, vs1, vm  # vector-vector 
vwsubu.wx  vd, vs2, rs1, vm  # vector-scalar 

# Widening signed integer add/subtract, 2*SEW = 2*SEW +/- SEW 
vwadd.wv  vd, vs2, vs1, vm  # vector-vector 
vwadd.wx  vd, vs2, rs1, vm  # vector-scalar 
vwsub.wv  vd, vs2, vs1, vm  # vector-vector 
vwsub.wx  vd, vs2, rs1, vm  # vector-scalar

Note
An integer value can be doubled in width using the widening add instructions with a scalar operand of x0. Assembly
pseudoinstructions vwcvt.x.x.v vd,vs,vm = vwadd.vx vd,vs,x0,vm and vwcvtu.x.x.v vd,vs,vm = vwaddu.vx
vd,vs,x0,vm are provided.

11.3. Vector Integer Extension
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The vector integer extension instructions zero- or sign-extend a source vector integer operand with EEW less than SEW to �ll
SEW-sized elements in the destination. The EEW of the source is 1/2, 1/4, or 1/8 of SEW, while EMUL of the source is
(EEW/SEW)*LMUL. The destination has EEW equal to SEW and EMUL equal to LMUL.

vzext.vf2 vd, vs2, vm  # Zero-extend SEW/2 source to SEW destination 
vsext.vf2 vd, vs2, vm  # Sign-extend SEW/2 source to SEW destination 
vzext.vf4 vd, vs2, vm  # Zero-extend SEW/4 source to SEW destination 
vsext.vf4 vd, vs2, vm  # Sign-extend SEW/4 source to SEW destination 
vzext.vf8 vd, vs2, vm  # Zero-extend SEW/8 source to SEW destination 
vsext.vf8 vd, vs2, vm  # Sign-extend SEW/8 source to SEW destination

If the source EEW is not a supported width, or source EMUL would be below the minimum legal LMUL, the instruction
encoding is reserved.

Note

Standard vector load instructions access memory values that are the same size as the destination register elements. Some application
code needs to operate on a range of operand widths in a wider element, for example, loading a byte from memory and adding to an
eight-byte element. To avoid having to provide the cross-product of the number of vector load instructions by the number of data
types (byte, word, halfword, and also signed/unsigned variants), we instead add explicit extension instructions that can be used if an
appropriate widening arithmetic instruction is not available.

11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions

To support multi-word integer arithmetic, instructions that operate on a carry bit are provided. For each operation (add or
subtract), two instructions are provided: one to provide the result (SEW width), and the second to generate the carry output
(single bit encoded as a mask boolean).

The carry inputs and outputs are represented using the mask register layout as described in Section Mask Register Layout.
Due to encoding constraints, the carry input must come from the implicit v0 register, but carry outputs can be written to any
vector register that respects the source/destination overlap restrictions.

vadc and vsbc add or subtract the source operands and the carry-in or borrow-in, and write the result to vector register vd.
These instructions are encoded as masked instructions (vm=0), but they operate on and write back all body elements.
Encodings corresponding to the unmasked versions (vm=1) are reserved.

vmadc and vmsbc add or subtract the source operands, optionally add the carry-in or subtract the borrow-in if masked
(vm=0), and write the result back to mask register vd. If unmasked (vm=1), there is no carry-in or borrow-in. These
instructions operate on and write back all body elements, even if masked. Because these instructions produce a mask value,
they always operate with a tail-agnostic policy.
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 # Produce sum with carry. 

 # vd[i] = vs2[i] + vs1[i] + v0.mask[i] 
 vadc.vvm   vd, vs2, vs1, v0  # Vector-vector 

 # vd[i] = vs2[i] + x[rs1] + v0.mask[i] 
 vadc.vxm   vd, vs2, rs1, v0  # Vector-scalar 

 # vd[i] = vs2[i] + imm + v0.mask[i] 
 vadc.vim   vd, vs2, imm, v0  # Vector-immediate 

 # Produce carry out in mask register format 

 # vd.mask[i] = carry_out(vs2[i] + vs1[i] + v0.mask[i]) 
 vmadc.vvm   vd, vs2, vs1, v0  # Vector-vector 

 # vd.mask[i] = carry_out(vs2[i] + x[rs1] + v0.mask[i]) 
 vmadc.vxm   vd, vs2, rs1, v0  # Vector-scalar 

 # vd.mask[i] = carry_out(vs2[i] + imm + v0.mask[i]) 
 vmadc.vim   vd, vs2, imm, v0  # Vector-immediate 

 # vd.mask[i] = carry_out(vs2[i] + vs1[i]) 
 vmadc.vv    vd, vs2, vs1      # Vector-vector, no carry-in 

 # vd.mask[i] = carry_out(vs2[i] + x[rs1]) 
 vmadc.vx    vd, vs2, rs1      # Vector-scalar, no carry-in 

 # vd.mask[i] = carry_out(vs2[i] + imm) 
 vmadc.vi    vd, vs2, imm      # Vector-immediate, no carry-in

Because implementing a carry propagation requires executing two instructions with unchanged inputs, destructive
accumulations will require an additional move to obtain correct results.

  # Example multi-word arithmetic sequence, accumulating into v4 
  vmadc.vvm v1, v4, v8, v0  # Get carry into temp register v1 
  vadc.vvm v4, v4, v8, v0   # Calc new sum 
  vmmv.m v0, v1             # Move temp carry into v0 for next word

The subtract with borrow instruction vsbc performs the equivalent function to support long word arithmetic for subtraction.
There are no subtract with immediate instructions.

47



 # Produce difference with borrow. 

 # vd[i] = vs2[i] - vs1[i] - v0.mask[i] 
 vsbc.vvm   vd, vs2, vs1, v0  # Vector-vector 

 # vd[i] = vs2[i] - x[rs1] - v0.mask[i] 
 vsbc.vxm   vd, vs2, rs1, v0  # Vector-scalar 

 # Produce borrow out in mask register format 

 # vd.mask[i] = borrow_out(vs2[i] - vs1[i] - v0.mask[i]) 
 vmsbc.vvm   vd, vs2, vs1, v0  # Vector-vector 

 # vd.mask[i] = borrow_out(vs2[i] - x[rs1] - v0.mask[i]) 
 vmsbc.vxm   vd, vs2, rs1, v0  # Vector-scalar 

 # vd.mask[i] = borrow_out(vs2[i] - vs1[i]) 
 vmsbc.vv    vd, vs2, vs1      # Vector-vector, no borrow-in 

 # vd.mask[i] = borrow_out(vs2[i] - x[rs1]) 
 vmsbc.vx    vd, vs2, rs1      # Vector-scalar, no borrow-in

For vmsbc, the borrow is de�ned to be 1 iff the difference, prior to truncation, is negative.

For vadc and vsbc, the instruction encoding is reserved if the destination vector register is v0.

Note This constraint corresponds to the constraint on masked vector operations that overwrite the mask register.

11.5. Vector Bitwise Logical Instructions

# Bitwise logical operations. 
vand.vv vd, vs2, vs1, vm   # Vector-vector 
vand.vx vd, vs2, rs1, vm   # vector-scalar 
vand.vi vd, vs2, imm, vm   # vector-immediate 

vor.vv vd, vs2, vs1, vm    # Vector-vector 
vor.vx vd, vs2, rs1, vm    # vector-scalar 
vor.vi vd, vs2, imm, vm    # vector-immediate 

vxor.vv vd, vs2, vs1, vm    # Vector-vector 
vxor.vx vd, vs2, rs1, vm    # vector-scalar 
vxor.vi vd, vs2, imm, vm    # vector-immediate

Note
With an immediate of -1, scalar-immediate forms of the vxor instruction provide a bitwise NOT operation. This is provided as an
assembler pseudoinstruction vnot.v vd,vs,vm = vxor.vi vd,vs,-1,vm.

11.6. Vector Single-Width Shift Instructions

A full set of vector shift instructions are provided, including logical shift left (sll), and logical (zero-extending srl) and
arithmetic (sign-extending sra) shift right. The data to be shifted is in the vector register group speci�ed by vs2 and the shift
amount value can come from a vector register group vs1, a scalar integer register rs1, or a zero-extended 5-bit immediate.
Only the low lg2(SEW) bits of the shift-amount value are used to control the shift amount.
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# Bit shift operations 
vsll.vv vd, vs2, vs1, vm   # Vector-vector 
vsll.vx vd, vs2, rs1, vm   # vector-scalar 
vsll.vi vd, vs2, uimm, vm   # vector-immediate 

vsrl.vv vd, vs2, vs1, vm   # Vector-vector 
vsrl.vx vd, vs2, rs1, vm   # vector-scalar 
vsrl.vi vd, vs2, uimm, vm   # vector-immediate 

vsra.vv vd, vs2, vs1, vm   # Vector-vector 
vsra.vx vd, vs2, rs1, vm   # vector-scalar 
vsra.vi vd, vs2, uimm, vm   # vector-immediate

11.7. Vector Narrowing Integer Right Shift Instructions

The narrowing right shifts extract a smaller �eld from a wider operand and have both zero-extending (srl) and sign-
extending (sra) forms. The shift amount can come from a vector register group, or a scalar x register, or a zero-extended 5-
bit immediate. The low lg2(2*SEW) bits of the shift-amount value are used (e.g., the low 6 bits for a SEW=64-bit to SEW=32-
bit narrowing operation).

 # Narrowing shift right logical, SEW = (2*SEW) >> SEW 
 vnsrl.wv vd, vs2, vs1, vm   # vector-vector 
 vnsrl.wx vd, vs2, rs1, vm   # vector-scalar 
 vnsrl.wi vd, vs2, uimm, vm   # vector-immediate 

 # Narrowing shift right arithmetic, SEW = (2*SEW) >> SEW 
 vnsra.wv vd, vs2, vs1, vm   # vector-vector 
 vnsra.wx vd, vs2, rs1, vm   # vector-scalar 
 vnsra.wi vd, vs2, uimm, vm   # vector-immediate

Note Future extensions might add support for versions that narrow to a destination that is 1/4 the width of the source.

Note
An integer value can be halved in width using the narrowing integer shift instructions with a scalar operand of x0. An assembly
pseudoinstruction is provided vncvt.x.x.w vd,vs,vm = vnsrl.wx vd,vs,x0,vm.

11.8. Vector Integer Compare Instructions

The following integer compare instructions write 1 to the destination mask register element if the comparison evaluates to
true, and 0 otherwise. The destination mask vector is always held in a single vector register, with a layout of elements as
described in Section Mask Register Layout. The destination mask vector register may be the same as the source vector mask
register (v0).
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# Set if equal 
vmseq.vv vd, vs2, vs1, vm  # Vector-vector 
vmseq.vx vd, vs2, rs1, vm  # vector-scalar 
vmseq.vi vd, vs2, imm, vm  # vector-immediate 

# Set if not equal 
vmsne.vv vd, vs2, vs1, vm  # Vector-vector 
vmsne.vx vd, vs2, rs1, vm  # vector-scalar 
vmsne.vi vd, vs2, imm, vm  # vector-immediate 

# Set if less than, unsigned 
vmsltu.vv vd, vs2, vs1, vm  # Vector-vector 
vmsltu.vx vd, vs2, rs1, vm  # Vector-scalar 

# Set if less than, signed 
vmslt.vv vd, vs2, vs1, vm  # Vector-vector 
vmslt.vx vd, vs2, rs1, vm  # vector-scalar 

# Set if less than or equal, unsigned 
vmsleu.vv vd, vs2, vs1, vm   # Vector-vector 
vmsleu.vx vd, vs2, rs1, vm   # vector-scalar 
vmsleu.vi vd, vs2, imm, vm   # Vector-immediate 

# Set if less than or equal, signed 
vmsle.vv vd, vs2, vs1, vm  # Vector-vector 
vmsle.vx vd, vs2, rs1, vm  # vector-scalar 
vmsle.vi vd, vs2, imm, vm  # vector-immediate 

# Set if greater than, unsigned 
vmsgtu.vx vd, vs2, rs1, vm   # Vector-scalar 
vmsgtu.vi vd, vs2, imm, vm   # Vector-immediate 

# Set if greater than, signed 
vmsgt.vx vd, vs2, rs1, vm    # Vector-scalar 
vmsgt.vi vd, vs2, imm, vm    # Vector-immediate 

# Following two instructions are not provided directly 
# Set if greater than or equal, unsigned 
# vmsgeu.vx vd, vs2, rs1, vm    # Vector-scalar 
# Set if greater than or equal, signed 
# vmsge.vx vd, vs2, rs1, vm    # Vector-scalar

The following table indicates how all comparisons are implemented in native machine code.
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Comparison      Assembler Mapping             Assembler Pseudoinstruction 

va < vb         vmslt{u}.vv vd, va, vb, vm 
va <= vb        vmsle{u}.vv vd, va, vb, vm 
va > vb         vmslt{u}.vv vd, vb, va, vm    vmsgt{u}.vv vd, va, vb, vm 
va >= vb        vmsle{u}.vv vd, vb, va, vm    vmsge{u}.vv vd, va, vb, vm 

va < x          vmslt{u}.vx vd, va, x, vm 
va <= x         vmsle{u}.vx vd, va, x, vm 
va > x          vmsgt{u}.vx vd, va, x, vm 
va >= x         see below 

va < i          vmsle{u}.vi vd, va, i-1, vm    vmslt{u}.vi vd, va, i, vm 
va <= i         vmsle{u}.vi vd, va, i, vm 
va > i          vmsgt{u}.vi vd, va, i, vm 
va >= i         vmsgt{u}.vi vd, va, i-1, vm    vmsge{u}.vi vd, va, i, vm 

va, vb vector register groups 
x      scalar integer register 
i      immediate

Note
The immediate forms of vmslt{u}.vi are not provided as the immediate value can be decreased by 1 and the vmsle{u}.vi
variants used instead. The vmsle.vi range is -16 to 15, resulting in an effective vmslt.vi range of -15 to 16. The vmsleu.vi range
is 0 to 15 giving an effective vmsltu.vi range of 1 to 16 (Note, vmsltu.vi with immediate 0 is not useful as it is always false).

Note

Because the 5-bit vector immediates are always sign-extended, when the high bit of the simm5 immediate is set, vmsleu.vi also
supports unsigned immediate values in the range 2SEW-16 to 2SEW-1, allowing corresponding vmsltu.vi compares against unsigned
immediates in the range 2SEW-15 to 2SEW. Note that vmsltu.vi with immediate 2SEW is not useful as it is always true.

Similarly, vmsge{u}.vi is not provided and the compare is implemented using vmsgt{u}.vi with the immediate
decremented by one. The resulting effective vmsge.vi range is -15 to 16, and the resulting effective vmsgeu.vi range is 1
to 16 (Note, vmsgeu.vi with immediate 0 is not useful as it is always true).

Note
The vmsgt forms for register scalar and immediates are provided to allow a single compare instruction to provide the correct polarity
of mask value without using additional mask logical instructions.

To reduce encoding space, the vmsge{u}.vx form is not directly provided, and so the va ≥ x case requires special
treatment.

Note

The vmsge{u}.vx could potentially be encoded in a non-orthogonal way under the unused OPIVI variant of vmslt{u}. These would
be the only instructions in OPIVI that use a scalar `x`register however. Alternatively, a further two funct6 encodings could be used,
but these would have a different operand format (writes to mask register) than others in the same group of 8 funct6 encodings. The
current PoR is to omit these instructions and to synthesize where needed as described below.

The vmsge{u}.vx operation can be synthesized by reducing the value of x by 1 and using the vmsgt{u}.vx instruction,
when it is known that this will not underflow the representation in x.

Sequences to synthesize `vmsge{u}.vx` instruction 

va >= x,  x > minimum 

   addi t0, x, -1; vmsgt{u}.vx vd, va, t0, vm

The above sequence will usually be the most ef�cient implementation, but assembler pseudoinstructions can be provided
for cases where the range of x is unknown.
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unmasked va >= x 

  pseudoinstruction: vmsge{u}.vx vd, va, x 
  expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd 

masked va >= x, vd != v0 

  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t 
  expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0 

masked va >= x, vd == v0 

  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt 
  expansion: vmslt{u}.vx vt, va, x;  vmandn.mm vd, vd, vt 

masked va >= x, any vd 

  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt 
  expansion: vmslt{u}.vx vt, va, x;  vmandn.mm vt, v0, vt;  vmandn.mm vd, vd, v0;  vmor.mm vd, vt, vd 

  The vt argument to the pseudoinstruction must name a temporary vector register that is 
  not same as vd and which will be clobbered by the pseudoinstruction

Compares effectively AND in the mask under a mask-undisturbed policy e.g,

    # (a < b) && (b < c) in two instructions when mask-undisturbed 
    vmslt.vv    v0, va, vb        # All body elements written 
    vmslt.vv    v0, vb, vc, v0.t  # Only update at set mask

Compares write mask registers, and so always operate under a tail-agnostic policy.

11.9. Vector Integer Min/Max Instructions

Signed and unsigned integer minimum and maximum instructions are supported.

# Unsigned minimum 
vminu.vv vd, vs2, vs1, vm   # Vector-vector 
vminu.vx vd, vs2, rs1, vm   # vector-scalar 

# Signed minimum 
vmin.vv vd, vs2, vs1, vm   # Vector-vector 
vmin.vx vd, vs2, rs1, vm   # vector-scalar 

# Unsigned maximum 
vmaxu.vv vd, vs2, vs1, vm   # Vector-vector 
vmaxu.vx vd, vs2, rs1, vm   # vector-scalar 

# Signed maximum 
vmax.vv vd, vs2, vs1, vm   # Vector-vector 
vmax.vx vd, vs2, rs1, vm   # vector-scalar

11.10. Vector Single-Width Integer Multiply Instructions

The single-width multiply instructions perform a SEW-bit*SEW-bit multiply to generate a 2*SEW-bit product, then return one
half of the product in the SEW-bit-wide destination. The mul versions write the low word of the product to the destination
register, while the mulh versions write the high word of the product to the destination register.
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# Signed multiply, returning low bits of product 
vmul.vv vd, vs2, vs1, vm   # Vector-vector 
vmul.vx vd, vs2, rs1, vm   # vector-scalar 

# Signed multiply, returning high bits of product 
vmulh.vv vd, vs2, vs1, vm   # Vector-vector 
vmulh.vx vd, vs2, rs1, vm   # vector-scalar 

# Unsigned multiply, returning high bits of product 
vmulhu.vv vd, vs2, vs1, vm   # Vector-vector 
vmulhu.vx vd, vs2, rs1, vm   # vector-scalar 

# Signed(vs2)-Unsigned multiply, returning high bits of product 
vmulhsu.vv vd, vs2, vs1, vm   # Vector-vector 
vmulhsu.vx vd, vs2, rs1, vm   # vector-scalar

Note
There is no vmulhus.vx opcode to return high half of unsigned-vector * signed-scalar product. The scalar can be splatted to a vector,
then a vmulhsu.vv used.

Note
The current vmulh* opcodes perform simple fractional multiplies, but with no option to scale, round, and/or saturate the result. A
possible future extension can consider variants of vmulh, vmulhu, vmulhsu that use the vxrm rounding mode when discarding low
half of product. There is no possibility of overflow in these cases.

11.11. Vector Integer Divide Instructions

The divide and remainder instructions are equivalent to the RISC-V standard scalar integer multiply/divides, with the same
results for extreme inputs.

    # Unsigned divide. 
    vdivu.vv vd, vs2, vs1, vm   # Vector-vector 
    vdivu.vx vd, vs2, rs1, vm   # vector-scalar 

    # Signed divide 
    vdiv.vv vd, vs2, vs1, vm   # Vector-vector 
    vdiv.vx vd, vs2, rs1, vm   # vector-scalar 

    # Unsigned remainder 
    vremu.vv vd, vs2, vs1, vm   # Vector-vector 
    vremu.vx vd, vs2, rs1, vm   # vector-scalar 

    # Signed remainder 
    vrem.vv vd, vs2, vs1, vm   # Vector-vector 
    vrem.vx vd, vs2, rs1, vm   # vector-scalar

Note
The decision to include integer divide and remainder was contentious. The argument in favor is that without a standard instruction,
software would have to pick some algorithm to perform the operation, which would likely perform poorly on some microarchitectures
versus others.

Note There is no instruction to perform a "scalar divide by vector" operation.

11.12. Vector Widening Integer Multiply Instructions

The widening integer multiply instructions return the full 2*SEW-bit product from an SEW-bit*SEW-bit multiply.
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# Widening signed-integer multiply 
vwmul.vv  vd, vs2, vs1, vm # vector-vector 
vwmul.vx  vd, vs2, rs1, vm # vector-scalar 

# Widening unsigned-integer multiply 
vwmulu.vv vd, vs2, vs1, vm # vector-vector 
vwmulu.vx vd, vs2, rs1, vm # vector-scalar 

# Widening signed(vs2)-unsigned integer multiply 
vwmulsu.vv vd, vs2, vs1, vm # vector-vector 
vwmulsu.vx vd, vs2, rs1, vm # vector-scalar

11.13. Vector Single-Width Integer Multiply-Add Instructions

The integer multiply-add instructions are destructive and are provided in two forms, one that overwrites the addend or
minuend (vmacc, vnmsac) and one that overwrites the �rst multiplicand (vmadd, vnmsub).

The low half of the product is added or subtracted from the third operand.

Note
sac is intended to be read as "subtract from accumulator". The opcode is vnmsac to match the (unfortunately counterintuitive)
floating-point fnmsub instruction de�nition. Similarly for the vnmsub opcode.

# Integer multiply-add, overwrite addend 
vmacc.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) + vd[i] 
vmacc.vx vd, rs1, vs2, vm    # vd[i] = +(x[rs1] * vs2[i]) + vd[i] 

# Integer multiply-sub, overwrite minuend 
vnmsac.vv vd, vs1, vs2, vm    # vd[i] = -(vs1[i] * vs2[i]) + vd[i] 
vnmsac.vx vd, rs1, vs2, vm    # vd[i] = -(x[rs1] * vs2[i]) + vd[i] 

# Integer multiply-add, overwrite multiplicand 
vmadd.vv vd, vs1, vs2, vm    # vd[i] = (vs1[i] * vd[i]) + vs2[i] 
vmadd.vx vd, rs1, vs2, vm    # vd[i] = (x[rs1] * vd[i]) + vs2[i] 

# Integer multiply-sub, overwrite multiplicand 
vnmsub.vv vd, vs1, vs2, vm    # vd[i] = -(vs1[i] * vd[i]) + vs2[i] 
vnmsub.vx vd, rs1, vs2, vm    # vd[i] = -(x[rs1] * vd[i]) + vs2[i]

11.14. Vector Widening Integer Multiply-Add Instructions

The widening integer multiply-add instructions add the full 2*SEW-bit product from a SEW-bit*SEW-bit multiply to a 2*SEW-
bit value and produce a 2*SEW-bit result. All combinations of signed and unsigned multiply operands are supported.

# Widening unsigned-integer multiply-add, overwrite addend 
vwmaccu.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) + vd[i] 
vwmaccu.vx vd, rs1, vs2, vm    # vd[i] = +(x[rs1] * vs2[i]) + vd[i] 

# Widening signed-integer multiply-add, overwrite addend 
vwmacc.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) + vd[i] 
vwmacc.vx vd, rs1, vs2, vm    # vd[i] = +(x[rs1] * vs2[i]) + vd[i] 

# Widening signed-unsigned-integer multiply-add, overwrite addend 
vwmaccsu.vv vd, vs1, vs2, vm  # vd[i] = +(signed(vs1[i]) * unsigned(vs2[i])) + vd[i] 
vwmaccsu.vx vd, rs1, vs2, vm  # vd[i] = +(signed(x[rs1]) * unsigned(vs2[i])) + vd[i] 

# Widening unsigned-signed-integer multiply-add, overwrite addend 
vwmaccus.vx vd, rs1, vs2, vm  # vd[i] = +(unsigned(x[rs1]) * signed(vs2[i])) + vd[i]

11.15. Vector Integer Merge Instructions
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The vector integer merge instructions combine two source operands based on a mask. Unlike regular arithmetic instructions,
the merge operates on all body elements (i.e., the set of elements from vstart up to the current vector length in vl).

The vmerge instructions are encoded as masked instructions (vm=0). The instructions combine two sources as follows. At
elements where the mask value is zero, the �rst operand is copied to the destination element, otherwise the second operand
is copied to the destination element. The �rst operand is always a vector register group speci�ed by vs2. The second
operand is a vector register group speci�ed by vs1 or a scalar x register speci�ed by rs1 or a 5-bit sign-extended
immediate.

vmerge.vvm vd, vs2, vs1, v0  # vd[i] = v0.mask[i] ? vs1[i] : vs2[i] 
vmerge.vxm vd, vs2, rs1, v0  # vd[i] = v0.mask[i] ? x[rs1] : vs2[i] 
vmerge.vim vd, vs2, imm, v0  # vd[i] = v0.mask[i] ? imm    : vs2[i]

11.16. Vector Integer Move Instructions

The vector integer move instructions copy a source operand to a vector register group. The vmv.v.v variant copies a vector
register group, whereas the vmv.v.x and vmv.v.i variants splat a scalar register or immediate to all active elements of the
destination vector register group. These instructions are encoded as unmasked instructions (vm=1). The �rst operand
speci�er (vs2) must contain v0, and any other vector register number in vs2 is reserved.

vmv.v.v vd, vs1 # vd[i] = vs1[i] 
vmv.v.x vd, rs1 # vd[i] = x[rs1] 
vmv.v.i vd, imm # vd[i] = imm

Note Mask values can be widened into SEW-width elements using a sequence vmv.v.i vd, 0; vmerge.vim vd, vd, 1, v0.

Note The vector integer move instructions share the encoding with the vector merge instructions, but with vm=1 and vs2=v0.

The form vmv.v.v vd, vd, which leaves body elements unchanged, can be used to indicate that the register will next be
used with an EEW equal to SEW.

Note
Implementations that internally reorganize data according to EEW can shuffle the internal representation according to SEW.
Implementations that do not internally reorganize data can dynamically elide this instruction, and treat as a NOP.

Note
The vmv.v.v vd. vd instruction is not a RISC-V HINT as a tail-agnostic setting may cause an architectural state change on some
implementations.
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12. Vector Fixed-Point Arithmetic Instructions

The preceding set of integer arithmetic instructions is extended to support �xed-point arithmetic.

A �xed-point number is a two’s-complement signed or unsigned integer interpreted as the numerator in a fraction with an
implicit denominator. The �xed-point instructions are intended to be applied to the numerators; it is the responsibility of
software to manage the denominators. An N-bit element can hold two’s-complement signed integers in the range -2N-1… 
+2N-1-1, and unsigned integers in the range 0 …  +2N-1. The �xed-point instructions help preserve precision in narrow
operands by supporting scaling and rounding, and can handle overflow by saturating results into the destination format
range.

Note The widening integer operations described above can also be used to avoid overflow.

12.1. Vector Single-Width Saturating Add and Subtract

Saturating forms of integer add and subtract are provided, for both signed and unsigned integers. If the result would
overflow the destination, the result is replaced with the closest representable value, and the vxsat bit is set.

# Saturating adds of unsigned integers. 
vsaddu.vv vd, vs2, vs1, vm   # Vector-vector 
vsaddu.vx vd, vs2, rs1, vm   # vector-scalar 
vsaddu.vi vd, vs2, imm, vm   # vector-immediate 

# Saturating adds of signed integers. 
vsadd.vv vd, vs2, vs1, vm   # Vector-vector 
vsadd.vx vd, vs2, rs1, vm   # vector-scalar 
vsadd.vi vd, vs2, imm, vm   # vector-immediate 

# Saturating subtract of unsigned integers. 
vssubu.vv vd, vs2, vs1, vm   # Vector-vector 
vssubu.vx vd, vs2, rs1, vm   # vector-scalar 

# Saturating subtract of signed integers. 
vssub.vv vd, vs2, vs1, vm   # Vector-vector 
vssub.vx vd, vs2, rs1, vm   # vector-scalar

12.2. Vector Single-Width Averaging Add and Subtract

The averaging add and subtract instructions right shift the result by one bit and round off the result according to the setting
in vxrm. Both unsigned and signed versions are provided. For vaaddu and vaadd there can be no overflow in the result. For
vasub and vasubu, overflow is ignored and the result wraps around.

Note For vasub, overflow occurs only when subtracting the smallest number from the largest number under rnu or rne rounding.
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# Averaging add 

# Averaging adds of unsigned integers. 
vaaddu.vv vd, vs2, vs1, vm   # roundoff_unsigned(vs2[i] + vs1[i], 1) 
vaaddu.vx vd, vs2, rs1, vm   # roundoff_unsigned(vs2[i] + x[rs1], 1) 

# Averaging adds of signed integers. 
vaadd.vv vd, vs2, vs1, vm   # roundoff_signed(vs2[i] + vs1[i], 1) 
vaadd.vx vd, vs2, rs1, vm   # roundoff_signed(vs2[i] + x[rs1], 1) 

# Averaging subtract 

# Averaging subtract of unsigned integers. 
vasubu.vv vd, vs2, vs1, vm   # roundoff_unsigned(vs2[i] - vs1[i], 1) 
vasubu.vx vd, vs2, rs1, vm   # roundoff_unsigned(vs2[i] - x[rs1], 1) 

# Averaging subtract of signed integers. 
vasub.vv vd, vs2, vs1, vm   # roundoff_signed(vs2[i] - vs1[i], 1) 
vasub.vx vd, vs2, rs1, vm   # roundoff_signed(vs2[i] - x[rs1], 1)

12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation

The signed fractional multiply instruction produces a 2*SEW product of the two SEW inputs, then shifts the result right by
SEW-1 bits, rounding these bits according to vxrm, then saturates the result to �t into SEW bits. If the result causes
saturation, the vxsat bit is set.

# Signed saturating and rounding fractional multiply 
# See vxrm  description for rounding calculation 
vsmul.vv vd, vs2, vs1, vm  # vd[i] = clip(roundoff_signed(vs2[i]*vs1[i], SEW-1)) 
vsmul.vx vd, vs2, rs1, vm  # vd[i] = clip(roundoff_signed(vs2[i]*x[rs1], SEW-1))

Note

When multiplying two N-bit signed numbers, the largest magnitude is obtained for -2N-1 * -2N-1 producing a result +22N-2, which has a
single (zero) sign bit when held in 2N bits. All other products have two sign bits in 2N bits. To retain greater precision in N result bits,
the product is shifted right by one bit less than N, saturating the largest magnitude result but increasing result precision by one bit for
all other products.

Note
We do not provide an equivalent fractional multiply where one input is unsigned, as these would retain all upper SEW bits and would
not need to saturate. This operation is partly covered by the vmulhu and vmulhsu instructions, for the case where rounding is simply
truncation (rdn).

12.4. Vector Single-Width Scaling Shift Instructions

These instructions shift the input value right, and round off the shifted out bits according to vxrm. The scaling right shifts
have both zero-extending (vssrl) and sign-extending (vssra) forms. The data to be shifted is in the vector register group
speci�ed by vs2 and the shift amount value can come from a vector register group vs1, a scalar integer register rs1, or a
zero-extended 5-bit immediate. Only the low lg2(SEW) bits of the shift-amount value are used to control the shift amount.

 # Scaling shift right logical 
 vssrl.vv vd, vs2, vs1, vm   # vd[i] = roundoff_unsigned(vs2[i], vs1[i]) 
 vssrl.vx vd, vs2, rs1, vm   # vd[i] = roundoff_unsigned(vs2[i], x[rs1]) 
 vssrl.vi vd, vs2, uimm, vm  # vd[i] = roundoff_unsigned(vs2[i], uimm) 

 # Scaling shift right arithmetic 
 vssra.vv vd, vs2, vs1, vm   # vd[i] = roundoff_signed(vs2[i],vs1[i]) 
 vssra.vx vd, vs2, rs1, vm   # vd[i] = roundoff_signed(vs2[i], x[rs1]) 
 vssra.vi vd, vs2, uimm, vm  # vd[i] = roundoff_signed(vs2[i], uimm)

12.5. Vector Narrowing Fixed-Point Clip Instructions
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The vnclip instructions are used to pack a �xed-point value into a narrower destination. The instructions support rounding,
scaling, and saturation into the �nal destination format. The source data is in the vector register group speci�ed by vs2. The
scaling shift amount value can come from a vector register group vs1, a scalar integer register rs1, or a zero-extended 5-bit
immediate. The low lg2(2*SEW) bits of the vector or scalar shift-amount value (e.g., the low 6 bits for a SEW=64-bit to
SEW=32-bit narrowing operation) are used to control the right shift amount, which provides the scaling.

# Narrowing unsigned clip 
#                                SEW                            2*SEW   SEW 
 vnclipu.wv vd, vs2, vs1, vm  # vd[i] = clip(roundoff_unsigned(vs2[i], vs1[i])) 
 vnclipu.wx vd, vs2, rs1, vm  # vd[i] = clip(roundoff_unsigned(vs2[i], x[rs1])) 
 vnclipu.wi vd, vs2, uimm, vm # vd[i] = clip(roundoff_unsigned(vs2[i], uimm)) 

# Narrowing signed clip 
 vnclip.wv vd, vs2, vs1, vm   # vd[i] = clip(roundoff_signed(vs2[i], vs1[i])) 
 vnclip.wx vd, vs2, rs1, vm   # vd[i] = clip(roundoff_signed(vs2[i], x[rs1])) 
 vnclip.wi vd, vs2, uimm, vm  # vd[i] = clip(roundoff_signed(vs2[i], uimm))

For vnclipu/vnclip, the rounding mode is speci�ed in the vxrm CSR. Rounding occurs around the least-signi�cant bit of
the destination and before saturation.

For vnclipu, the shifted rounded source value is treated as an unsigned integer and saturates if the result would overflow
the destination viewed as an unsigned integer.

Note

There is no single instruction that can saturate a signed value into an unsigned destination. A sequence of two vector instructions that
�rst removes negative numbers by performing a max against 0 using vmax then clips the resulting unsigned value into the destination
using vnclipu can be used if setting vxsat value for negative numbers is not required. A vsetvli is required inbetween these two
instructions to change SEW.

For vnclip, the shifted rounded source value is treated as a signed integer and saturates if the result would overflow the
destination viewed as a signed integer.

If any destination element is saturated, the vxsat bit is set in the vxsat register.
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13. Vector Floating-Point Instructions

The standard vector floating-point instructions treat elements as IEEE-754/2008-compatible values. If the EEW of a vector
floating-point operand does not correspond to a supported IEEE floating-point type, the instruction encoding is reserved.

Note
Whether floating-point is supported, and for which element widths, is determined by the speci�c vector extension. The current set of
extensions include support for 32-bit and 64-bit floating-point values. When 16-bit and 128-bit element widths are added, they will
be also be treated as IEEE-754/2008-compatible values. Other floating-point formats may be supported in future extensions.

Vector floating-point instructions require the presence of base scalar floating-point extensions corresponding to the
supported vector floating-point element widths.

Note
In particular, future vector extensions supporting 16-bit half-precision floating-point values will also require some scalar half-
precision floating-point support.

If the floating-point unit status �eld mstatus.FS is Off then any attempt to execute a vector floating-point instruction will
raise an illegal instruction exception. Any vector floating-point instruction that modi�es any floating-point extension state
(i.e., floating-point CSRs or f registers) must set mstatus.FS to Dirty.

If the hypervisor extension is implemented and V=1, the vsstatus.FS �eld is additionally in effect for vector floating-point
instructions. If vsstatus.FS or mstatus.FS is Off then any attempt to execute a vector floating-point instruction will
raise an illegal instruction exception. Any vector floating-point instruction that modi�es any floating-point extension state
(i.e., floating-point CSRs or f registers) must set both mstatus.FS and vsstatus.FS to Dirty.

The vector floating-point instructions have the same behavior as the scalar floating-point instructions with regard to NaNs.

Scalar values for floating-point vector-scalar operations are sourced as described in Section Vector Arithmetic Instruction
encoding.

13.1. Vector Floating-Point Exception Flags

A vector floating-point exception at any active floating-point element sets the standard FP exception flags in the fflags
register. Inactive elements do not set FP exception flags.

13.2. Vector Single-Width Floating-Point Add/Subtract Instructions

    # Floating-point add 
    vfadd.vv vd, vs2, vs1, vm   # Vector-vector 
    vfadd.vf vd, vs2, rs1, vm   # vector-scalar 

    # Floating-point subtract 
    vfsub.vv vd, vs2, vs1, vm   # Vector-vector 
    vfsub.vf vd, vs2, rs1, vm   # Vector-scalar vd[i] = vs2[i] - f[rs1] 
    vfrsub.vf vd, vs2, rs1, vm  # Scalar-vector vd[i] = f[rs1] - vs2[i]

13.3. Vector Widening Floating-Point Add/Subtract Instructions

# Widening FP add/subtract, 2*SEW = SEW +/- SEW 
vfwadd.vv vd, vs2, vs1, vm  # vector-vector 
vfwadd.vf vd, vs2, rs1, vm  # vector-scalar 
vfwsub.vv vd, vs2, vs1, vm  # vector-vector 
vfwsub.vf vd, vs2, rs1, vm  # vector-scalar 

# Widening FP add/subtract, 2*SEW = 2*SEW +/- SEW 
vfwadd.wv  vd, vs2, vs1, vm  # vector-vector 
vfwadd.wf  vd, vs2, rs1, vm  # vector-scalar 
vfwsub.wv  vd, vs2, vs1, vm  # vector-vector 
vfwsub.wf  vd, vs2, rs1, vm  # vector-scalar
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13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions

    # Floating-point multiply 
    vfmul.vv vd, vs2, vs1, vm   # Vector-vector 
    vfmul.vf vd, vs2, rs1, vm   # vector-scalar 

    # Floating-point divide 
    vfdiv.vv vd, vs2, vs1, vm   # Vector-vector 
    vfdiv.vf vd, vs2, rs1, vm   # vector-scalar 

    # Reverse floating-point divide vector = scalar / vector 
    vfrdiv.vf vd, vs2, rs1, vm  # scalar-vector, vd[i] = f[rs1]/vs2[i]

13.5. Vector Widening Floating-Point Multiply

# Widening floating-point multiply 
vfwmul.vv    vd, vs2, vs1, vm # vector-vector 
vfwmul.vf    vd, vs2, rs1, vm # vector-scalar

13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions

All four varieties of fused multiply-add are provided, and in two destructive forms that overwrite one of the operands, either
the addend or the �rst multiplicand.

# FP multiply-accumulate, overwrites addend 
vfmacc.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) + vd[i] 
vfmacc.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vs2[i]) + vd[i] 

# FP negate-(multiply-accumulate), overwrites subtrahend 
vfnmacc.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vs2[i]) - vd[i] 
vfnmacc.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vs2[i]) - vd[i] 

# FP multiply-subtract-accumulator, overwrites subtrahend 
vfmsac.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) - vd[i] 
vfmsac.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vs2[i]) - vd[i] 

# FP negate-(multiply-subtract-accumulator), overwrites minuend 
vfnmsac.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vs2[i]) + vd[i] 
vfnmsac.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vs2[i]) + vd[i] 

# FP multiply-add, overwrites multiplicand 
vfmadd.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vd[i]) + vs2[i] 
vfmadd.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vd[i]) + vs2[i] 

# FP negate-(multiply-add), overwrites multiplicand 
vfnmadd.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vd[i]) - vs2[i] 
vfnmadd.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vd[i]) - vs2[i] 

# FP multiply-sub, overwrites multiplicand 
vfmsub.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vd[i]) - vs2[i] 
vfmsub.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vd[i]) - vs2[i] 

# FP negate-(multiply-sub), overwrites multiplicand 
vfnmsub.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vd[i]) + vs2[i] 
vfnmsub.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vd[i]) + vs2[i]

Note
While we considered using the two unused rounding modes in the scalar FP FMA encoding to provide a few non-destructive FMAs,
these would complicate microarchitectures by being the only maskable operation with three inputs and separate output.
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13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions

The widening floating-point fused multiply-add instructions all overwrite the wide addend with the result. The multiplier
inputs are all SEW wide, while the addend and destination is 2*SEW bits wide.

# FP widening multiply-accumulate, overwrites addend 
vfwmacc.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) + vd[i] 
vfwmacc.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vs2[i]) + vd[i] 

# FP widening negate-(multiply-accumulate), overwrites addend 
vfwnmacc.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vs2[i]) - vd[i] 
vfwnmacc.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vs2[i]) - vd[i] 

# FP widening multiply-subtract-accumulator, overwrites addend 
vfwmsac.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) - vd[i] 
vfwmsac.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vs2[i]) - vd[i] 

# FP widening negate-(multiply-subtract-accumulator), overwrites addend 
vfwnmsac.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vs2[i]) + vd[i] 
vfwnmsac.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vs2[i]) + vd[i]

13.8. Vector Floating-Point Square-Root Instruction

This is a unary vector-vector instruction.

    # Floating-point square root 
    vfsqrt.v vd, vs2, vm   # Vector-vector square root

13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction

    # Floating-point reciprocal square-root estimate to 7 bits. 
    vfrsqrt7.v vd, vs2, vm

This is a unary vector-vector instruction that returns an estimate of 1/sqrt(x) accurate to 7 bits.

Note
An earlier draft version had used the assembler name vfrsqrte7 but this was deemed to cause confusion with the ex notation for
element width. The earlier name can be retained as alias in tool chains for backward compatibility.

The following table describes the instruction’s behavior for all classes of floating-point inputs:

Input Output Exceptions raised
-∞ ≤ x < -0.0 canonical NaN NV
-0.0 -∞ DZ
+0.0 +∞ DZ
+0.0 < x < +∞ estimate of 1/sqrt(x)
+∞ +0.0
qNaN canonical NaN
sNaN canonical NaN NV

Note All positive normal and subnormal inputs produce normal outputs.

Note The output value is independent of the dynamic rounding mode.

For the non-exceptional cases, the low bit of the exponent and the six high bits of signi�cand (after the leading one) are
concatenated and used to address the following table. The output of the table becomes the seven high bits of the result
signi�cand (after the leading one); the remainder of the result signi�cand is zero. Subnormal inputs are normalized and the
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exponent adjusted appropriately before the lookup. The output exponent is chosen to make the result approximate the
reciprocal of the square root of the argument.

More precisely, the result is computed as follows. Let the normalized input exponent be equal to the input exponent if the
input is normal, or 0 minus the number of leading zeros in the signi�cand otherwise. If the input is subnormal, the
normalized input signi�cand is given by shifting the input signi�cand left by 1 minus the normalized input exponent,
discarding the leading 1 bit. The output exponent equals floor((3*B - 1 - the normalized input exponent) / 2). The output sign
equals the input sign.

The following table gives the seven MSBs of the output signi�cand as a function of the LSB of the normalized input exponent
and the six MSBs of the normalized input signi�cand; the other bits of the output signi�cand are zero.
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Table 16. vfrsqrt7.v common-case lookup table contents
exp[0] sig[MSB -: 6] sig_out[MSB -: 7]
0 0 52

1 51
2 50
3 48
4 47
5 46
6 44
7 43
8 42
9 41
10 40
11 39
12 38
13 36
14 35
15 34
16 33
17 32
18 31
19 30
20 30
21 29
22 28
23 27
24 26
25 25
26 24
27 23
28 23
29 22
30 21
31 20
32 19
33 19
34 18
35 17
36 16
37 16
38 15
39 14
40 14
41 13
42 12
43 12
44 11
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45 10
46 10
47 9
48 9
49 8
50 7
51 7
52 6
53 6
54 5
55 4
56 4
57 3
58 3
59 2
60 2
61 1
62 1
63 0

1 0 127
1 125
2 123
3 121
4 119
5 118
6 116
7 114
8 113
9 111
10 109
11 108
12 106
13 105
14 103
15 102
16 100
17 99
18 97
19 96
20 95
21 93
22 92
23 91
24 90
25 88
26 87
27 86
28 85
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29 84
30 83
31 82
32 80
33 79
34 78
35 77
36 76
37 75
38 74
39 73
40 72
41 71
42 70
43 70
44 69
45 68
46 67
47 66
48 65
49 64
50 63
51 63
52 62
53 61
54 60
55 59
56 59
57 58
58 57
59 56
60 56
61 55
62 54
63 53

Note
For example, when SEW=32, vfrsqrt7(0x00718abc (≈ 1.043e-38)) = 0x5f080000 (≈ 9.800e18), and vfrsqrt7(0x7f765432 (≈
3.274e38)) = 0x1f820000 (≈ 5.506e-20).

Note
The 7 bit accuracy was chosen as it requires 0,1,2,3 Newton-Raphson iterations to converge to close to bfloat16, FP16, FP32, FP64
accuracy respectively. Future instructions can be de�ned with greater estimate accuracy.

13.10. Vector Floating-Point Reciprocal Estimate Instruction

    # Floating-point reciprocal estimate to 7 bits. 
    vfrec7.v vd, vs2, vm

Note
An earlier draft version had used the assembler name vfrece7 but this was deemed to cause confusion with ex notation for element
width. The earlier name can be retained as alias in tool chains for backward compatibility.

This is a unary vector-vector instruction that returns an estimate of 1/x accurate to 7 bits.
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The following table describes the instruction’s behavior for all classes of floating-point inputs, where B is the exponent bias:

Input (x) Rounding Mode Output (y ≈ 1/x) Exceptions raised
-∞ any -0.0

-2B+1 < x ≤ -2B (normal) any -2-(B+1) ≥ y > -2-B (subnormal, sig=01… )

-2B < x ≤ -2B-1 (normal) any -2-B ≥ y > -2-B+1 (subnormal, sig=1… )

-2B-1 < x ≤ -2-B+1 (normal) any -2-B+1 ≥ y > -2B-1 (normal)

-2-B+1 < x ≤ -2-B (subnormal, sig=1… ) any -2B-1 ≥ y > -2B (normal)

-2-B < x ≤ -2-(B+1) (subnormal, sig=01… ) any -2B ≥ y > -2B+1 (normal)

-2-(B+1) < x < -0.0 (subnormal, sig=00… ) RUP, RTZ greatest-mag. negative �nite value NX, OF

-2-(B+1) < x < -0.0 (subnormal, sig=00… ) RDN, RNE, RMM -∞ NX, OF

-0.0 any -∞ DZ
+0.0 any +∞ DZ

+0.0 < x < 2-(B+1) (subnormal, sig=00… ) RUP, RNE, RMM +∞ NX, OF

+0.0 < x < 2-(B+1) (subnormal, sig=00… ) RDN, RTZ greatest �nite value NX, OF

2-(B+1) ≤ x < 2-B (subnormal, sig=01… ) any 2B+1 > y ≥ 2B (normal)

2-B ≤ x < 2-B+1 (subnormal, sig=1… ) any 2B > y ≥ 2B-1 (normal)

2-B+1 ≤ x < 2B-1 (normal) any 2B-1 > y ≥ 2-B+1 (normal)

2B-1 ≤ x < 2B (normal) any 2-B+1 > y ≥ 2-B (subnormal, sig=1… )

2B ≤ x < 2B+1 (normal) any 2-B > y ≥ 2-(B+1) (subnormal, sig=01… )
+∞ any +0.0
qNaN any canonical NaN
sNaN any canonical NaN NV

Note
Subnormal inputs with magnitude at least 2-(B+1) produce normal outputs; other subnormal inputs produce in�nite outputs. Normal
inputs with magnitude at least 2B-1 produce subnormal outputs; other normal inputs produce normal outputs.

Note The output value depends on the dynamic rounding mode when the overflow exception is raised.

For the non-exceptional cases, the seven high bits of signi�cand (after the leading one) are used to address the following
table. The output of the table becomes the seven high bits of the result signi�cand (after the leading one); the remainder of
the result signi�cand is zero. Subnormal inputs are normalized and the exponent adjusted appropriately before the lookup.
The output exponent is chosen to make the result approximate the reciprocal of the argument, and subnormal outputs are
denormalized accordingly.

More precisely, the result is computed as follows. Let the normalized input exponent be equal to the input exponent if the
input is normal, or 0 minus the number of leading zeros in the signi�cand otherwise. The normalized output exponent equals
(2*B - 1 - the normalized input exponent). If the normalized output exponent is outside the range [-1, 2*B], the result
corresponds to one of the exceptional cases in the table above.

If the input is subnormal, the normalized input signi�cand is given by shifting the input signi�cand left by 1 minus the
normalized input exponent, discarding the leading 1 bit. Otherwise, the normalized input signi�cand equals the input
signi�cand. The following table gives the seven MSBs of the normalized output signi�cand as a function of the seven MSBs of
the normalized input signi�cand; the other bits of the normalized output signi�cand are zero.
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Table 17. vfrec7.v common-case lookup table contents
sig[MSB -: 7] sig_out[MSB -: 7]
0 127
1 125
2 123
3 121
4 119
5 117
6 116
7 114
8 112
9 110
10 109
11 107
12 105
13 104
14 102
15 100
16 99
17 97
18 96
19 94
20 93
21 91
22 90
23 88
24 87
25 85
26 84
27 83
28 81
29 80
30 79
31 77
32 76
33 75
34 74
35 72
36 71
37 70
38 69
39 68
40 66
41 65
42 64
43 63
44 62
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45 61
46 60
47 59
48 58
49 57
50 56
51 55
52 54
53 53
54 52
55 51
56 50
57 49
58 48
59 47
60 46
61 45
62 44
63 43
64 42
65 41
66 40
67 40
68 39
69 38
70 37
71 36
72 35
73 35
74 34
75 33
76 32
77 31
78 31
79 30
80 29
81 28
82 28
83 27
84 26
85 25
86 25
87 24
88 23
89 23
90 22
91 21
92 21
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93 20
94 19
95 19
96 18
97 17
98 17
99 16
100 15
101 15
102 14
103 14
104 13
105 12
106 12
107 11
108 11
109 10
110 9
111 9
112 8
113 8
114 7
115 7
116 6
117 5
118 5
119 4
120 4
121 3
122 3
123 2
124 2
125 1
126 1
127 0

If the normalized output exponent is 0 or -1, the result is subnormal: the output exponent is 0, and the output signi�cand is
given by concatenating a 1 bit to the left of the normalized output signi�cand, then shifting that quantity right by 1 minus the
normalized output exponent. Otherwise, the output exponent equals the normalized output exponent, and the output
signi�cand equals the normalized output signi�cand. The output sign equals the input sign.

Note
For example, when SEW=32, vfrec7(0x00718abc (≈ 1.043e-38)) = 0x7e900000 (≈ 9.570e37), and vfrec7(0x7f765432 (≈ 3.274e38))
= 0x00214000 (≈ 3.053e-39).

Note
The 7 bit accuracy was chosen as it requires 0,1,2,3 Newton-Raphson iterations to converge to close to bfloat16, FP16, FP32, FP64
accuracy respectively. Future instructions can be de�ned with greater estimate accuracy.

13.11. Vector Floating-Point MIN/MAX Instructions

The vector floating-point vfmin and vfmax instructions have the same behavior as the corresponding scalar floating-point
instructions in version 2.2 of the RISC-V F/D/Q extension.
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    # Floating-point minimum 
    vfmin.vv vd, vs2, vs1, vm   # Vector-vector 
    vfmin.vf vd, vs2, rs1, vm   # vector-scalar 

    # Floating-point maximum 
    vfmax.vv vd, vs2, vs1, vm   # Vector-vector 
    vfmax.vf vd, vs2, rs1, vm   # vector-scalar

13.12. Vector Floating-Point Sign-Injection Instructions

Vector versions of the scalar sign-injection instructions. The result takes all bits except the sign bit from the vector vs2
operands.

    vfsgnj.vv vd, vs2, vs1, vm   # Vector-vector 
    vfsgnj.vf vd, vs2, rs1, vm   # vector-scalar 

    vfsgnjn.vv vd, vs2, vs1, vm  # Vector-vector 
    vfsgnjn.vf vd, vs2, rs1, vm  # vector-scalar 

    vfsgnjx.vv vd, vs2, vs1, vm  # Vector-vector 
    vfsgnjx.vf vd, vs2, rs1, vm  # vector-scalar

Note
A vector of floating-point values can be negated using a sign-injection instruction with both source operands set to the same vector
operand. An assembly pseudoinstruction is provided: vfneg.v vd,vs = vfsgnjn.vv vd,vs,vs.

Note
The absolute value of a vector of floating-point elements can be calculated using a sign-injection instruction with both source
operands set to the same vector operand. An assembly pseudoinstruction is provided: vfabs.v vd,vs = vfsgnjx.vv vd,vs,vs.

13.13. Vector Floating-Point Compare Instructions

These vector FP compare instructions compare two source operands and write the comparison result to a mask register. The
destination mask vector is always held in a single vector register, with a layout of elements as described in Section Mask
Register Layout. The destination mask vector register may be the same as the source vector mask register (v0). Compares
write mask registers, and so always operate under a tail-agnostic policy.

The compare instructions follow the semantics of the scalar floating-point compare instructions. vmfeq and vmfne raise the
invalid operation exception only on signaling NaN inputs. vmflt, vmfle, vmfgt, and vmfge raise the invalid operation
exception on both signaling and quiet NaN inputs. vmfne writes 1 to the destination element when either operand is NaN,
whereas the other compares write 0 when either operand is NaN.
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    # Compare equal 
    vmfeq.vv vd, vs2, vs1, vm  # Vector-vector 
    vmfeq.vf vd, vs2, rs1, vm  # vector-scalar 

    # Compare not equal 
    vmfne.vv vd, vs2, vs1, vm  # Vector-vector 
    vmfne.vf vd, vs2, rs1, vm  # vector-scalar 

    # Compare less than 
    vmflt.vv vd, vs2, vs1, vm  # Vector-vector 
    vmflt.vf vd, vs2, rs1, vm  # vector-scalar 

    # Compare less than or equal 
    vmfle.vv vd, vs2, vs1, vm  # Vector-vector 
    vmfle.vf vd, vs2, rs1, vm  # vector-scalar 

    # Compare greater than 
    vmfgt.vf vd, vs2, rs1, vm  # vector-scalar 

    # Compare greater than or equal 
    vmfge.vf vd, vs2, rs1, vm  # vector-scalar

Comparison      Assembler Mapping             Assembler pseudoinstruction 

va < vb         vmflt.vv vd, va, vb, vm 
va <= vb        vmfle.vv vd, va, vb, vm 
va > vb         vmflt.vv vd, vb, va, vm    vmfgt.vv vd, va, vb, vm 
va >= vb        vmfle.vv vd, vb, va, vm    vmfge.vv vd, va, vb, vm 

va < f          vmflt.vf vd, va, f, vm 
va <= f         vmfle.vf vd, va, f, vm 
va > f          vmfgt.vf vd, va, f, vm 
va >= f         vmfge.vf vd, va, f, vm 

va, vb vector register groups 
f      scalar floating-point register

Note Providing all forms is necessary to correctly handle unordered compares for NaNs.

Note
C99 floating-point quiet compares can be implemented by masking the signaling compares when either input is NaN, as follows. When
the comparand is a non-NaN constant, the middle two instructions can be omitted.

    # Example of implementing isgreater() 
    vmfeq.vv v0, va, va        # Only set where A is not NaN. 
    vmfeq.vv v1, vb, vb        # Only set where B is not NaN. 
    vmand.mm v0, v0, v1        # Only set where A and B are ordered, 
    vmfgt.vv v0, va, vb, v0.t  #  so only set flags on ordered values.

Note
In the above sequence, it is tempting to mask the second vmfeq instruction and remove the vmand instruction, but this more ef�cient
sequence incorrectly fails to raise the invalid exception when an element of va contains a quiet NaN and the corresponding element in
vb contains a signaling NaN.

13.14. Vector Floating-Point Classify Instruction

This is a unary vector-vector instruction that operates in the same way as the scalar classify instruction.

    vfclass.v vd, vs2, vm   # Vector-vector

The 10-bit mask produced by this instruction is placed in the least-signi�cant bits of the result elements. The upper (SEW-
10) bits of the result are �lled with zeros. The instruction is only de�ned for SEW=16b and above, so the result will always �t
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in the destination elements.

13.15. Vector Floating-Point Merge Instruction

A vector-scalar floating-point merge instruction is provided, which operates on all body elements from vstart up to the
current vector length in vl regardless of mask value.

The vfmerge.vfm instruction is encoded as a masked instruction (vm=0). At elements where the mask value is zero, the
�rst vector operand is copied to the destination element, otherwise a scalar floating-point register value is copied to the
destination element.

vfmerge.vfm vd, vs2, rs1, v0  # vd[i] = v0.mask[i] ? f[rs1] : vs2[i]

13.16. Vector Floating-Point Move Instruction

The vector floating-point move instruction splats a floating-point scalar operand to a vector register group. The instruction
copies a scalar f register value to all active elements of a vector register group. This instruction is encoded as a masked
instruction (vm=1). The instruction must have the vs2 �eld set to v0, with all other values for vs2 reserved.

vfmv.v.f vd, rs1  # vd[i] = f[rs1]

Note The vfmv.v.f instruction shares the encoding with the vfmerge.vfm instruction, but with vm=1 and vs2=v0.

13.17. Single-Width Floating-Point/Integer Type-Convert Instructions

Conversion operations are provided to convert to and from floating-point values and unsigned and signed integers, where
both source and destination are SEW wide.

vfcvt.xu.f.v vd, vs2, vm       # Convert float to unsigned integer. 
vfcvt.x.f.v  vd, vs2, vm       # Convert float to signed integer. 

vfcvt.rtz.xu.f.v vd, vs2, vm   # Convert float to unsigned integer, truncating. 
vfcvt.rtz.x.f.v  vd, vs2, vm   # Convert float to signed integer, truncating. 

vfcvt.f.xu.v vd, vs2, vm       # Convert unsigned integer to float. 
vfcvt.f.x.v  vd, vs2, vm       # Convert signed integer to float.

The conversions follow the same rules on exceptional conditions as the scalar conversion instructions. The conversions use
the dynamic rounding mode in frm, except for the rtz variants, which round towards zero.

Note
The rtz variants are provided to accelerate truncating conversions from floating-point to integer, as is common in languages like C
and Java.

13.18. Widening Floating-Point/Integer Type-Convert Instructions

A set of conversion instructions is provided to convert between narrower integer and floating-point datatypes to a type of
twice the width.

vfwcvt.xu.f.v vd, vs2, vm       # Convert float to double-width unsigned integer. 
vfwcvt.x.f.v  vd, vs2, vm       # Convert float to double-width signed integer. 

vfwcvt.rtz.xu.f.v vd, vs2, vm   # Convert float to double-width unsigned integer, truncating. 
vfwcvt.rtz.x.f.v  vd, vs2, vm   # Convert float to double-width signed integer, truncating. 

vfwcvt.f.xu.v vd, vs2, vm       # Convert unsigned integer to double-width float. 
vfwcvt.f.x.v  vd, vs2, vm       # Convert signed integer to double-width float. 

vfwcvt.f.f.v vd, vs2, vm        # Convert single-width float to double-width float.
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These instructions have the same constraints on vector register overlap as other widening instructions (see Widening Vector
Arithmetic Instructions).

Note A double-width IEEE floating-point value can always represent a single-width integer exactly.

Note A double-width IEEE floating-point value can always represent a single-width IEEE floating-point value exactly.

Note
A full set of floating-point widening conversions is not supported as single instructions, but any widening conversion can be
implemented as several doubling steps with equivalent results and no additional exception flags raised.

13.19. Narrowing Floating-Point/Integer Type-Convert Instructions

A set of conversion instructions is provided to convert wider integer and floating-point datatypes to a type of half the width.

vfncvt.xu.f.w vd, vs2, vm       # Convert double-width float to unsigned integer. 
vfncvt.x.f.w  vd, vs2, vm       # Convert double-width float to signed integer. 

vfncvt.rtz.xu.f.w vd, vs2, vm   # Convert double-width float to unsigned integer, truncating. 
vfncvt.rtz.x.f.w  vd, vs2, vm   # Convert double-width float to signed integer, truncating. 

vfncvt.f.xu.w vd, vs2, vm       # Convert double-width unsigned integer to float. 
vfncvt.f.x.w  vd, vs2, vm       # Convert double-width signed integer to float. 

vfncvt.f.f.w vd, vs2, vm        # Convert double-width float to single-width float. 
vfncvt.rod.f.f.w vd, vs2, vm    # Convert double-width float to single-width float, 
                                #  rounding towards odd.

These instructions have the same constraints on vector register overlap as other narrowing instructions (see Narrowing
Vector Arithmetic Instructions).

Note
A full set of floating-point narrowing conversions is not supported as single instructions. Conversions can be implemented in a
sequence of halving steps. Results are equivalently rounded and the same exception flags are raised if all but the last halving step use
round-towards-odd (vfncvt.rod.f.f.w). Only the �nal step should use the desired rounding mode.
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14. Vector Reduction Operations

Vector reduction operations take a vector register group of elements and a scalar held in element 0 of a vector register, and
perform a reduction using some binary operator, to produce a scalar result in element 0 of a vector register. The scalar input
and output operands are held in element 0 of a single vector register, not a vector register group, so any vector register can
be the scalar source or destination of a vector reduction regardless of LMUL setting.

The destination vector register can overlap the source operands, including the mask register.

Note
Vector reductions read and write the scalar operand and result into element 0 of a vector register instead of a scalar register to avoid a
loss of decoupling with the scalar processor, and to support future polymorphic use with future types not supported in the scalar unit.

Inactive elements from the source vector register group are excluded from the reduction, but the scalar operand is always
included regardless of the mask values.

The other elements in the destination vector register ( 0 < index < VLEN/SEW) are considered the tail and are managed with
the current tail agnostic/undisturbed policy.

If vl=0, no operation is performed and the destination register is not updated.

Note

This choice of behavior for vl=0 reduces implementation complexity as it is consistent with other operations on vector register state.
For the common case that the source and destination scalar operand are the same vector register, this behavior also produces the
expected result. For the uncommon case that the source and destination scalar operand are in different vector registers, this
instruction will not copy the source into the destination when vl=0. However, it is expected that in most of these cases it will be
statically known that vl is not zero. In other cases, a check for vl=0 will have to be added to ensure that the source scalar is copied to
the destination (e.g., by explicitly setting vl=1 and performing a register-register copy).

Traps on vector reduction instructions are always reported with a vstart of 0. Vector reduction operations raise an illegal
instruction exception if vstart is non-zero.

The assembler syntax for a reduction operation is vredop.vs, where the .vs suf�x denotes the �rst operand is a vector
register group and the second operand is a scalar stored in element 0 of a vector register.

14.1. Vector Single-Width Integer Reduction Instructions

All operands and results of single-width reduction instructions have the same SEW width. Overflows wrap around on
arithmetic sums.

    # Simple reductions, where [*] denotes all active elements: 
    vredsum.vs  vd, vs2, vs1, vm   # vd[0] =  sum( vs1[0] , vs2[*] ) 
    vredmaxu.vs vd, vs2, vs1, vm   # vd[0] = maxu( vs1[0] , vs2[*] ) 
    vredmax.vs  vd, vs2, vs1, vm   # vd[0] =  max( vs1[0] , vs2[*] ) 
    vredminu.vs vd, vs2, vs1, vm   # vd[0] = minu( vs1[0] , vs2[*] ) 
    vredmin.vs  vd, vs2, vs1, vm   # vd[0] =  min( vs1[0] , vs2[*] ) 
    vredand.vs  vd, vs2, vs1, vm   # vd[0] =  and( vs1[0] , vs2[*] ) 
    vredor.vs   vd, vs2, vs1, vm   # vd[0] =   or( vs1[0] , vs2[*] ) 
    vredxor.vs  vd, vs2, vs1, vm   # vd[0] =  xor( vs1[0] , vs2[*] )

14.2. Vector Widening Integer Reduction Instructions

The unsigned vwredsumu.vs instruction zero-extends the SEW-wide vector elements before summing them, then adds the
2*SEW-width scalar element, and stores the result in a 2*SEW-width scalar element.

The vwredsum.vs instruction sign-extends the SEW-wide vector elements before summing them.

For both vwredsumu.vs and vwredsum.vs, overflows wrap around.
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    # Unsigned sum reduction into double-width accumulator 
    vwredsumu.vs vd, vs2, vs1, vm   # 2*SEW = 2*SEW + sum(zero-extend(SEW)) 

    # Signed sum reduction into double-width accumulator 
    vwredsum.vs  vd, vs2, vs1, vm   # 2*SEW = 2*SEW + sum(sign-extend(SEW))

14.3. Vector Single-Width Floating-Point Reduction Instructions

    # Simple reductions. 
    vfredosum.vs vd, vs2, vs1, vm # Ordered sum 
    vfredusum.vs vd, vs2, vs1, vm # Unordered sum 
    vfredmax.vs  vd, vs2, vs1, vm # Maximum value 
    vfredmin.vs  vd, vs2, vs1, vm # Minimum value

Note Older assembler mnemonic vfredsum is retained as alias for vfredusum.

14.3.1. Vector Ordered Single-Width Floating-Point Sum Reduction

The vfredosum instruction must sum the floating-point values in element order, starting with the scalar in vs1[0]--that is,
it performs the computation:

 vd[0] = `(((vs1[0] + vs2[0]) + vs2[1]) + ...) + vs2[vl-1]`

where each addition operates identically to the scalar floating-point instructions in terms of raising exception flags and
generating or propagating special values.

Note The ordered reduction supports compiler autovectorization, while the unordered FP sum allows for faster implementations.

When the operation is masked (vm=0), the masked-off elements do not affect the result or the exception flags.

Note
If no elements are active, no additions are performed, so the scalar in vs1[0] is simply copied to the destination register, without
canonicalizing NaN values and without setting any exception flags. This behavior preserves the handling of NaNs, exceptions, and
rounding when autovectorizing a scalar summation loop.

14.3.2. Vector Unordered Single-Width Floating-Point Sum Reduction

The unordered sum reduction instruction, vfredusum, provides an implementation more freedom in performing the
reduction.

The implementation must produce a result equivalent to a reduction tree composed of binary operator nodes, with the inputs
being elements from the source vector register group (vs2) and the source scalar value (vs1[0]). Each operator in the tree
accepts two inputs and produces one result. Each operator �rst computes an exact sum as a RISC-V scalar floating-point
addition with in�nite exponent range and precision, then converts this exact sum to a floating-point format with range and
precision each at least as great as the element floating-point format indicated by SEW, rounding using the currently active
floating-point dynamic rounding mode. A different floating-point range and precision may be chosen for the result of each
operator. A node where one input is derived only from elements masked-off or beyond the active vector length may either
treat that input as the additive identity of the appropriate EEW or simply copy the other input to its output. The rounded
result from the root node in the tree is converted (rounded again, using the dynamic rounding mode) to the standard floating-
point format indicated by SEW. An implementation is allowed to add an additional additive identity to the �nal result.

The additive identity is +0.0 when rounding down (towards -∞) or -0.0 for all other rounding modes.

The reduction tree structure must be deterministic for a given value in vtype and vl.

Note

As a consequence of this de�nition, implementations need not propagate NaN payloads through the reduction tree when no elements
are active. In particular, if no elements are active and the scalar input is NaN, implementations are permitted to canonicalize the NaN
and, if the NaN is signaling, set the invalid exception flag. Implementations are alternatively permitted to pass through the original
NaN and set no exception flags, as with vfredosum.
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Note The vfredosum instruction is a valid implementation of the vfredusum instruction.

14.3.3. Vector Single-Width Floating-Point Max and Min Reductions

Note
Floating-point max and min reductions should return the same �nal value and raise the same exception flags regardless of operation
order.

Note
If no elements are active, the scalar in vs1[0] is simply copied to the destination register, without canonicalizing NaN values and
without setting any exception flags.

14.4. Vector Widening Floating-Point Reduction Instructions

Widening forms of the sum reductions are provided that read and write a double-width reduction result.

 # Simple reductions. 
 vfwredosum.vs vd, vs2, vs1, vm # Ordered sum 
 vfwredusum.vs vd, vs2, vs1, vm # Unordered sum

Note Older assembler mnemonic vfwredsum is retained as alias for vfwredusum.

The reduction of the SEW-width elements is performed as in the single-width reduction case, with the elements in vs2
promoted to 2*SEW bits before adding to the 2*SEW-bit accumulator.

Note
vfwredosum.vs handles inactive elements and NaN payloads analogously to vfredosum.vs; vfwredusum.vs does so analogously
to vfredusum.vs.
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15. Vector Mask Instructions

Several instructions are provided to help operate on mask values held in a vector register.

15.1. Vector Mask-Register Logical Instructions

Vector mask-register logical operations operate on mask registers. Each element in a mask register is a single bit, so these
instructions all operate on single vector registers regardless of the setting of the vlmul �eld in vtype. They do not change
the value of vlmul. The destination vector register may be the same as either source vector register.

As with other vector instructions, the elements with indices less than vstart are unchanged, and vstart is reset to zero
after execution. Vector mask logical instructions are always unmasked, so there are no inactive elements, and the encodings
with vm=0 are reserved. Mask elements past vl, the tail elements, are always updated with a tail-agnostic policy.

    vmand.mm vd, vs2, vs1   # vd.mask[i] =   vs2.mask[i] &&  vs1.mask[i] 
    vmnand.mm vd, vs2, vs1  # vd.mask[i] = !(vs2.mask[i] &&  vs1.mask[i]) 
    vmandn.mm vd, vs2, vs1  # vd.mask[i] =   vs2.mask[i] && !vs1.mask[i] 
    vmxor.mm  vd, vs2, vs1  # vd.mask[i] =   vs2.mask[i] ^^  vs1.mask[i] 
    vmor.mm  vd, vs2, vs1   # vd.mask[i] =   vs2.mask[i] ||  vs1.mask[i] 
    vmnor.mm  vd, vs2, vs1  # vd.mask[i] = !(vs2.mask[i] ||  vs1.mask[i]) 
    vmorn.mm  vd, vs2, vs1  # vd.mask[i] =   vs2.mask[i] || !vs1.mask[i] 
    vmxnor.mm vd, vs2, vs1  # vd.mask[i] = !(vs2.mask[i] ^^  vs1.mask[i])

Note
The previous assembler mnemonics vmandnot and vmornot have been changed to vmandn and vmorn to be consistent with the
equivalent scalar instructions. The old vmandnot and vmornot mnemonics can be retained as assembler aliases for compatibility.

Several assembler pseudoinstructions are de�ned as shorthand for common uses of mask logical operations:

    vmmv.m vd, vs  => vmand.mm vd, vs, vs   # Copy mask register 
    vmclr.m vd     => vmxor.mm vd, vd, vd   # Clear mask register 
    vmset.m vd     => vmxnor.mm vd, vd, vd  # Set mask register 
    vmnot.m vd, vs => vmnand.mm vd, vs, vs  # Invert bits

Note
The vmmv.m instruction was previously called vmcpy.m, but with new layout it is more consistent to name as a "mv" because bits are
copied without interpretation. The vmcpy.m assembler pseudoinstruction can be retained for compatibility.

The set of eight mask logical instructions can generate any of the 16 possibly binary logical functions of the two input masks:

inputs
0 0 1 1 src1
0 1 0 1 src2
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output instruction pseudoinstruction
0 0 0 0 vmxor.mm vd, vd, vd vmclr.m vd
1 0 0 0 vmnor.mm vd, src1, src2
0 1 0 0 vmandn.mm vd, src2, src1
1 1 0 0 vmnand.mm vd, src1, src1 vmnot.m vd, src1
0 0 1 0 vmandn.mm vd, src1, src2
1 0 1 0 vmnand.mm vd, src2, src2 vmnot.m vd, src2
0 1 1 0 vmxor.mm vd, src1, src2
1 1 1 0 vmnand.mm vd, src1, src2
0 0 0 1 vmand.mm vd, src1, src2
1 0 0 1 vmxnor.mm vd, src1, src2
0 1 0 1 vmand.mm vd, src2, src2 vmmv.m vd, src2
1 1 0 1 vmorn.mm vd, src2, src1
0 0 1 1 vmand.mm vd, src1, src1 vmmv.m vd, src1
1 0 1 1 vmorn.mm vd, src1, src2
1 1 1 1 vmxnor.mm vd, vd, vd vmset.m vd

Note
The vector mask logical instructions are designed to be easily fused with a following masked vector operation to effectively expand the
number of predicate registers by moving values into v0 before use.

15.2. Vector count population in mask vcpop.m

    vcpop.m rd, vs2, vm

Note
This instruction previously had the assembler mnemonic vpopc.m but was renamed to be consistent with the scalar instruction. The
assembler instruction alias vpopc.m is being retained for software compatibility.

The source operand is a single vector register holding mask register values as described in Section Mask Register Layout.

The vcpop.m instruction counts the number of mask elements of the active elements of the vector source mask register that
have the value 1 and writes the result to a scalar x register.

The operation can be performed under a mask, in which case only the masked elements are counted.

 vcpop.m rd, vs2, v0.t # x[rd] = sum_i ( vs2.mask[i] && v0.mask[i] )

The vcpop.m instruction writes x[rd] even if vl=0 (with the value 0, since no mask elements are active).

Traps on vcpop.m are always reported with a vstart of 0. The vcpop.m instruction will raise an illegal instruction
exception if vstart is non-zero.

15.3. vfirst �nd-�rst-set mask bit

    vfirst.m rd, vs2, vm

The vfirst instruction �nds the lowest-numbered active element of the source mask vector that has the value 1 and writes
that element’s index to a GPR. If no active element has the value 1, -1 is written to the GPR.

Note
Software can assume that any negative value (highest bit set) corresponds to no element found, as vector lengths will never exceed
2(XLEN-1) on any implementation.

The vfirst.m instruction writes x[rd] even if vl=0 (with the value -1, since no mask elements are active).

Traps on vfirst are always reported with a vstart of 0. The vfirst instruction will raise an illegal instruction exception if
vstart is non-zero.
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15.4. vmsbf.m set-before-�rst mask bit

    vmsbf.m vd, vs2, vm 

 # Example 

     7 6 5 4 3 2 1 0   Element number 

     1 0 0 1 0 1 0 0   v3 contents 
                       vmsbf.m v2, v3 
     0 0 0 0 0 0 1 1   v2 contents 

     1 0 0 1 0 1 0 1   v3 contents 
                       vmsbf.m v2, v3 
     0 0 0 0 0 0 0 0   v2 

     0 0 0 0 0 0 0 0   v3 contents 
                       vmsbf.m v2, v3 
     1 1 1 1 1 1 1 1   v2 

     1 1 0 0 0 0 1 1   v0 vcontents 
     1 0 0 1 0 1 0 0   v3 contents 
                       vmsbf.m v2, v3, v0.t 
     0 1 x x x x 1 1   v2 contents

The vmsbf.m instruction takes a mask register as input and writes results to a mask register. The instruction writes a 1 to all
active mask elements before the �rst active source element that is a 1, then writes a 0 to that element and all following
active elements. If there is no set bit in the active elements of the source vector, then all active elements in the destination
are written with a 1.

The tail elements in the destination mask register are updated under a tail-agnostic policy.

Traps on vmsbf.m are always reported with a vstart of 0. The vmsbf instruction will raise an illegal instruction exception if
vstart is non-zero.

The destination register cannot overlap the source register and, if masked, cannot overlap the mask register ('v0').

15.5. vmsif.m set-including-�rst mask bit

The vector mask set-including-�rst instruction is similar to set-before-�rst, except it also includes the element with a set bit.

    vmsif.m vd, vs2, vm 

 # Example 

     7 6 5 4 3 2 1 0   Element number 

     1 0 0 1 0 1 0 0   v3 contents 
                       vmsif.m v2, v3 
     0 0 0 0 0 1 1 1   v2 contents 

     1 0 0 1 0 1 0 1   v3 contents 
                       vmsif.m v2, v3 
     0 0 0 0 0 0 0 1   v2 

     1 1 0 0 0 0 1 1   v0 vcontents 
     1 0 0 1 0 1 0 0   v3 contents 
                       vmsif.m v2, v3, v0.t 
     1 1 x x x x 1 1   v2 contents

The tail elements in the destination mask register are updated under a tail-agnostic policy.
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Traps on vmsif.m are always reported with a vstart of 0. The vmsif instruction will raise an illegal instruction exception if
vstart is non-zero.

The destination register cannot overlap the source register and, if masked, cannot overlap the mask register ('v0').

15.6. vmsof.m set-only-�rst mask bit

The vector mask set-only-�rst instruction is similar to set-before-�rst, except it only sets the �rst element with a bit set, if
any.

    vmsof.m vd, vs2, vm 

 # Example 

     7 6 5 4 3 2 1 0   Element number 

     1 0 0 1 0 1 0 0   v3 contents 
                       vmsof.m v2, v3 
     0 0 0 0 0 1 0 0   v2 contents 

     1 0 0 1 0 1 0 1   v3 contents 
                       vmsof.m v2, v3 
     0 0 0 0 0 0 0 1   v2 

     1 1 0 0 0 0 1 1   v0 vcontents 
     1 1 0 1 0 1 0 0   v3 contents 
                       vmsof.m v2, v3, v0.t 
     0 1 x x x x 0 0   v2 contents

The tail elements in the destination mask register are updated under a tail-agnostic policy.

Traps on vmsof.m are always reported with a vstart of 0. The vmsof instruction will raise an illegal instruction exception if
vstart is non-zero.

The destination register cannot overlap the source register and, if masked, cannot overlap the mask register ('v0').

15.7. Example using vector mask instructions

The following is an example of vectorizing a data-dependent exit loop.

  # char* strcpy(char *dst, const char* src) 
strcpy: 
      mv a2, a0             # Copy dst 
      li t0, -1             # Infinite AVL 
loop:
    vsetvli x0, t0, e8, m8, ta, ma  # Max length vectors of bytes 
    vle8ff.v v8, (a1)        # Get src bytes 
      csrr t1, vl           # Get number of bytes fetched 
    vmseq.vi v1, v8, 0      # Flag zero bytes 
    vfirst.m a3, v1         # Zero found? 
      add a1, a1, t1        # Bump pointer 
    vmsif.m v0, v1          # Set mask up to and including zero byte. 
    vse8.v v8, (a2), v0.t    # Write out bytes 
      add a2, a2, t1        # Bump pointer 
      bltz a3, loop         # Zero byte not found, so loop 

      ret
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  # char* strncpy(char *dst, const char* src, size_t n) 
strncpy: 
      mv a3, a0             # Copy dst 
loop:
    vsetvli x0, a2, e8, m8, ta, ma   # Vectors of bytes. 
    vle8ff.v v8, (a1)        # Get src bytes 
    vmseq.vi v1, v8, 0      # Flag zero bytes 
      csrr t1, vl           # Get number of bytes fetched 
    vfirst.m a4, v1         # Zero found? 
    vmsbf.m v0, v1          # Set mask up to before zero byte. 
    vse8.v v8, (a3), v0.t    # Write out non-zero bytes 
      bgez a4, zero_tail    # Zero remaining bytes. 
      sub a2, a2, t1        # Decrement count. 
      add a3, a3, t1        # Bump dest pointer 
      add a1, a1, t1        # Bump src pointer 
      bnez a2, loop         # Anymore? 

      ret 

zero_tail: 
    sub a2, a2, a4          # Subtract count on non-zero bytes. 
    add a3, a3, a4          # Advance past non-zero bytes. 
    vsetvli t1, a2, e8, m8, ta, ma   # Vectors of bytes. 
    vmv.v.i v0, 0           # Splat zero. 

zero_loop: 
    vse8.v v0, (a3)          # Store zero. 
      sub a2, a2, t1        # Decrement count. 
      add a3, a3, t1        # Bump pointer 
      vsetvli t1, a2, e8, m8, ta, ma   # Vectors of bytes. 
      bnez a2, zero_loop    # Anymore? 

      ret

15.8. Vector Iota Instruction

The viota.m instruction reads a source vector mask register and writes to each element of the destination vector register
group the sum of all the bits of elements in the mask register whose index is less than the element, e.g., a parallel pre�x sum
of the mask values.

This instruction can be masked, in which case only the enabled elements contribute to the sum.

 viota.m vd, vs2, vm 

 # Example 

     7 6 5 4 3 2 1 0   Element number 

     1 0 0 1 0 0 0 1   v2 contents 
                       viota.m v4, v2 # Unmasked 
     2 2 2 1 1 1 1 0   v4 result 

     1 1 1 0 1 0 1 1   v0 contents 
     1 0 0 1 0 0 0 1   v2 contents 
     2 3 4 5 6 7 8 9   v4 contents 
                       viota.m v4, v2, v0.t # Masked, vtype.vma=0 
     1 1 1 5 1 7 1 0   v4 results

The result value is zero-extended to �ll the destination element if SEW is wider than the result. If the result value would
overflow the destination SEW, the least-signi�cant SEW bits are retained.
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Traps on viota.m are always reported with a vstart of 0, and execution is always restarted from the beginning when
resuming after a trap handler. An illegal instruction exception is raised if vstart is non-zero.

The destination register group cannot overlap the source register and, if masked, cannot overlap the mask register (v0).

The viota.m instruction can be combined with memory scatter instructions (indexed stores) to perform vector compress
functions.

    # Compact non-zero elements from input memory array to output memory array 
    #
    # size_t compact_non_zero(size_t n, const int* in, int* out) 
    # { 
    #   size_t i; 
    #   size_t count = 0; 
    #   int *p = out; 
    #
    #   for (i=0; i<n; i++) 
    #   { 
    #       const int v = *in++; 
    #       if (v != 0) 
    #           *p++ = v; 
    #   } 
    #
    #   return (size_t) (p - out); 
    # } 
    #
    # a0 = n 
    # a1 = &in 
    # a2 = &out 

compact_non_zero: 
    li a6, 0                      # Clear count of non-zero elements 
loop:
    vsetvli a5, a0, e32, m8, ta, ma   # 32-bit integers 
    vle32.v v8, (a1)               # Load input vector 
      sub a0, a0, a5               # Decrement number done 
      slli a5, a5, 2               # Multiply by four bytes 
    vmsne.vi v0, v8, 0             # Locate non-zero values 
      add a1, a1, a5               # Bump input pointer 
    vcpop.m a5, v0                 # Count number of elements set in v0 
    viota.m v16, v0                # Get destination offsets of active elements 
      add a6, a6, a5               # Accumulate number of elements 
    vsll.vi v16, v16, 2, v0.t      # Multiply offsets by four bytes 
      slli a5, a5, 2               # Multiply number of non-zero elements by four bytes 
    vsuxei32.v v8, (a2), v16, v0.t # Scatter using scaled viota results under mask 
      add a2, a2, a5               # Bump output pointer 
      bnez a0, loop                # Any more? 

      mv a0, a6                    # Return count 
      ret

15.9. Vector Element Index Instruction

The vid.v instruction writes each element’s index to the destination vector register group, from 0 to vl-1.

    vid.v vd, vm  # Write element ID to destination.

The instruction can be masked. Masking does not change the index value written to active elements.

The vs2 �eld of the instruction must be set to v0, otherwise the encoding is reserved.
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The result value is zero-extended to �ll the destination element if SEW is wider than the result. If the result value would
overflow the destination SEW, the least-signi�cant SEW bits are retained.

Note Microarchitectures can implement vid.v instruction using the same datapath as viota.m but with an implicit set mask source.
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16. Vector Permutation Instructions

A range of permutation instructions are provided to move elements around within the vector registers.

16.1. Integer Scalar Move Instructions

The integer scalar read/write instructions transfer a single value between a scalar x register and element 0 of a vector
register. The instructions ignore LMUL and vector register groups.

vmv.x.s rd, vs2  # x[rd] = vs2[0] (vs1=0) 
vmv.s.x vd, rs1  # vd[0] = x[rs1] (vs2=0)

The vmv.x.s instruction copies a single SEW-wide element from index 0 of the source vector register to a destination
integer register. If SEW > XLEN, the least-signi�cant XLEN bits are transferred and the upper SEW-XLEN bits are ignored. If
SEW < XLEN, the value is sign-extended to XLEN bits.

Note vmv.x.s performs its operation even if vstart ≥ vl or vl=0.

The vmv.s.x instruction copies the scalar integer register to element 0 of the destination vector register. If SEW < XLEN, the
least-signi�cant bits are copied and the upper XLEN-SEW bits are ignored. If SEW > XLEN, the value is sign-extended to SEW
bits. The other elements in the destination vector register ( 0 < index < VLEN/SEW) are treated as tail elements using the
current tail agnostic/undisturbed policy. If vstart ≥ vl, no operation is performed and the destination register is not
updated.

Note As a consequence, when vl=0, no elements are updated in the destination vector register group, regardless of vstart.

The encodings corresponding to the masked versions (vm=0) of vmv.x.s and vmv.s.x are reserved.

16.2. Floating-Point Scalar Move Instructions

The floating-point scalar read/write instructions transfer a single value between a scalar f register and element 0 of a vector
register. The instructions ignore LMUL and vector register groups.

vfmv.f.s rd, vs2  # f[rd] = vs2[0] (rs1=0) 
vfmv.s.f vd, rs1  # vd[0] = f[rs1] (vs2=0)

The vfmv.f.s instruction copies a single SEW-wide element from index 0 of the source vector register to a destination
scalar floating-point register.

Note vfmv.f.s performs its operation even if vstart ≥ vl or vl=0.

The vfmv.s.f instruction copies the scalar floating-point register to element 0 of the destination vector register. The other
elements in the destination vector register ( 0 < index < VLEN/SEW) are treated as tail elements using the current tail
agnostic/undisturbed policy. If vstart ≥ vl, no operation is performed and the destination register is not updated.

Note As a consequence, when vl=0, no elements are updated in the destination vector register group, regardless of vstart.

The encodings corresponding to the masked versions (vm=0) of vfmv.f.s and vfmv.s.f are reserved.

16.3. Vector Slide Instructions

The slide instructions move elements up and down a vector register group.

Note
The slide operations can be implemented much more ef�ciently than using the arbitrary register gather instruction. Implementations
may optimize certain OFFSET values for vslideup and vslidedown. In particular, power-of-2 offsets may operate substantially
faster than other offsets.
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For all of the vslideup, vslidedown, v[f]slide1up, and v[f]slide1down instructions, if vstart ≥ vl, the instruction
performs no operation and leaves the destination vector register unchanged.

Note As a consequence, when vl=0, no elements are updated in the destination vector register group, regardless of vstart.

The tail agnostic/undisturbed policy is followed for tail elements.

The slide instructions may be masked, with mask element i controlling whether destination element i is written. The mask
undisturbed/agnostic policy is followed for inactive elements.

16.3.1. Vector Slideup Instructions

 vslideup.vx vd, vs2, rs1, vm        # vd[i+rs1] = vs2[i] 
 vslideup.vi vd, vs2, uimm, vm       # vd[i+uimm] = vs2[i]

For vslideup, the value in vl speci�es the maximum number of destination elements that are written. The start index
(OFFSET) for the destination can be either speci�ed using an unsigned integer in the x register speci�ed by rs1, or a 5-bit
immediate, zero-extended to XLEN bits. If XLEN > SEW, OFFSET is not truncated to SEW bits. Destination elements OFFSET
through vl-1 are written if unmasked and if OFFSET < vl.

   vslideup behavior for destination elements 

   OFFSET is amount to slideup, either from x register or a 5-bit immediate 

                    0 <  i < max(vstart, OFFSET)  Unchanged 
  max(vstart, OFFSET) <= i < vl                   vd[i] = vs2[i-OFFSET] if v0.mask[i] enabled 
                   vl <= i < VLMAX                Follow tail policy

The destination vector register group for vslideup cannot overlap the source vector register group, otherwise the
instruction encoding is reserved.

Note The non-overlap constraint avoids WAR hazards on the input vectors during execution, and enables restart with non-zero vstart.

16.3.2. Vector Slidedown Instructions

 vslidedown.vx vd, vs2, rs1, vm       # vd[i] = vs2[i+rs1] 
 vslidedown.vi vd, vs2, uimm, vm      # vd[i] = vs2[i+uimm]

For vslidedown, the value in vl speci�es the maximum number of destination elements that are written. The remaining
elements past vl are handled according to the current tail policy (Section Vector Tail Agnostic and Vector Mask Agnostic vta
and vma).

The start index (OFFSET) for the source can be either speci�ed using an unsigned integer in the x register speci�ed by rs1,
or a 5-bit immediate, zero-extended to XLEN bits. If XLEN > SEW, OFFSET is not truncated to SEW bits.

  vslidedown behavior for source elements for element i in slide 
                   0 <= i+OFFSET < VLMAX   src[i] = vs2[i+OFFSET] 
               VLMAX <= i+OFFSET           src[i] = 0 

  vslidedown behavior for destination element i in slide 
                   0 <  i < vstart         Unchanged 
              vstart <= i < vl             vd[i] = src[i] if v0.mask[i] enabled 
                  vl <= i < VLMAX          Follow tail policy

16.3.3. Vector Slide1up
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Variants of slide are provided that only move by one element but which also allow a scalar integer value to be inserted at the
vacated element position.

 vslide1up.vx  vd, vs2, rs1, vm        # vd[0]=x[rs1], vd[i+1] = vs2[i] 
 vfslide1up.vf vd, vs2, rs1, vm        # vd[0]=f[rs1], vd[i+1] = vs2[i]

The vslide1up instruction places the x register argument at location 0 of the destination vector register group, provided
that element 0 is active, otherwise the destination element update follows the current mask agnostic/undisturbed policy. If
XLEN < SEW, the value is sign-extended to SEW bits. If XLEN > SEW, the least-signi�cant bits are copied over and the high
SEW-XLEN bits are ignored.

The remaining active vl-1 elements are copied over from index i in the source vector register group to index i+1 in the
destination vector register group.

The vl register speci�es the maximum number of destination vector register elements updated with source values, and
remaining elements past vl are handled according to the current tail policy (Section Vector Tail Agnostic and Vector Mask
Agnostic vta and vma).

   vslide1up behavior 

                    i < vstart  unchanged 
                0 = i = vstart  vd[i] = x[rs1] if v0.mask[i] enabled 
  max(vstart, 1) <= i < vl      vd[i] = vs2[i-1] if v0.mask[i] enabled 
              vl <= i < VLMAX   Follow tail policy

The vslide1up instruction requires that the destination vector register group does not overlap the source vector register
group. Otherwise, the instruction encoding is reserved.

The vfslide1up instruction is de�ned analogously, but sources its scalar argument from an f register.

16.3.4. Vector Slide1down Instruction

The vslide1down instruction copies the �rst vl-1 active elements values from index i+1 in the source vector register group
to index i in the destination vector register group.

The vl register speci�es the maximum number of destination vector register elements written with source values, and
remaining elements past vl are handled according to the current tail policy (Section Vector Tail Agnostic and Vector Mask
Agnostic vta and vma).

 vslide1down.vx  vd, vs2, rs1, vm      # vd[i] = vs2[i+1], vd[vl-1]=x[rs1] 
 vfslide1down.vf vd, vs2, rs1, vm      # vd[i] = vs2[i+1], vd[vl-1]=f[rs1]

The vslide1down instruction places the x register argument at location vl-1 in the destination vector register, provided
that element vl-1 is active, otherwise the destination element is unchanged. If XLEN < SEW, the value is sign-extended to
SEW bits. If XLEN > SEW, the least-signi�cant bits are copied over and the high SEW-XLEN bits are ignored.

   vslide1down behavior 

                       i < vstart  unchanged 
             vstart <= i < vl-1    vd[i] = vs2[i+1] if v0.mask[i] enabled 
             vstart <= i = vl-1    vd[vl-1] = x[rs1] if v0.mask[i] enabled 
                 vl <= i < VLMAX   Follow tail policy

The vfslide1down instruction is de�ned analogously, but sources its scalar argument from an f register.

Note
The vslide1down instruction can be used to load values into a vector register without using memory and without disturbing other
vector registers. This provides a path for debuggers to modify the contents of a vector register, albeit slowly, with multiple repeated
vslide1down invocations.
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16.4. Vector Register Gather Instructions

The vector register gather instructions read elements from a �rst source vector register group at locations given by a second
source vector register group. The index values in the second vector are treated as unsigned integers. The source vector can
be read at any index < VLMAX regardless of vl. The maximum number of elements to write to the destination register is
given by vl, and the remaining elements past vl are handled according to the current tail policy (Section Vector Tail Agnostic
and Vector Mask Agnostic vta and vma). The operation can be masked, and the mask undisturbed/agnostic policy is
followed for inactive elements.

vrgather.vv vd, vs2, vs1, vm     # vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]]; 
vrgatherei16.vv vd, vs2, vs1, vm # vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]];

The vrgather.vv form uses SEW/LMUL for both the data and indices. The vrgatherei16.vv form uses SEW/LMUL for
the data in vs2 but EEW=16 and EMUL = (16/SEW)*LMUL for the indices in vs1.

Note
When SEW=8, vrgather.vv can only reference vector elements 0-255. The vrgatherei16 form can index 64K elements, and can
also be used to reduce the register capacity needed to hold indices when SEW > 16.

If an element index is out of range ( vs1[i] ≥ VLMAX ) then zero is returned for the element value.

Vector-scalar and vector-immediate forms of the register gather are also provided. These read one element from the source
vector at the given index, and write this value to the active elements of the destination vector register. The index value in the
scalar register and the immediate, zero-extended to XLEN bits, are treated as unsigned integers. If XLEN > SEW, the index
value is not truncated to SEW bits.

Note These forms allow any vector element to be "splatted" to an entire vector.

vrgather.vx vd, vs2, rs1, vm  # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[x[rs1]] 
vrgather.vi vd, vs2, uimm, vm # vd[i] =  (uimm >= VLMAX)  ? 0 : vs2[uimm]

For any vrgather instruction, the destination vector register group cannot overlap with the source vector register groups,
otherwise the instruction encoding is reserved.

16.5. Vector Compress Instruction

The vector compress instruction allows elements selected by a vector mask register from a source vector register group to
be packed into contiguous elements at the start of the destination vector register group.

  vcompress.vm vd, vs2, vs1  # Compress into vd elements of vs2 where vs1 is enabled

The vector mask register speci�ed by vs1 indicates which of the �rst vl elements of vector register group vs2 should be
extracted and packed into contiguous elements at the beginning of vector register vd. The remaining elements of vd are
treated as tail elements according to the current tail policy (Section Vector Tail Agnostic and Vector Mask Agnostic vta and
vma).

    Example use of vcompress instruction 

        8 7 6 5 4 3 2 1 0   Element number 

        1 1 0 1 0 0 1 0 1   v0 
        8 7 6 5 4 3 2 1 0   v1 
        1 2 3 4 5 6 7 8 9   v2 

                                vcompress.vm v2, v1, v0 
        1 2 3 4 8 7 5 2 0   v2

vcompress is encoded as an unmasked instruction (vm=1). The equivalent masked instruction (vm=0) is reserved.

87



The destination vector register group cannot overlap the source vector register group or the source mask register, otherwise
the instruction encoding is reserved.

A trap on a vcompress instruction is always reported with a vstart of 0. Executing a vcompress instruction with a non-
zero vstart raises an illegal instruction exception.

Note
Although possible, vcompress is one of the more dif�cult instructions to restart with a non-zero vstart, so assumption is
implementations will choose not do that but will instead restart from element 0. This does mean elements in destination register after
vstart will already have been updated.

16.5.1. Synthesizing vdecompress

There is no inverse vdecompress provided, as this operation can be readily synthesized using iota and a masked vrgather:

    Desired functionality of 'vdecompress' 
      7 6 5 4 3 2 1 0     # vid 

            e d c b a     # packed vector of 5 elements 
      1 0 0 1 1 1 0 1     # mask vector of 8 elements 
      p q r s t u v w     # destination register before vdecompress 

      e q r d c b v a     # result of vdecompress

     # v0 holds mask 
     # v1 holds packed data 
     # v11 holds input expanded vector and result 
     viota.m v10, v0                 # Calc iota from mask in v0 
     vrgather.vv v11, v1, v10, v0.t  # Expand into destination

   p q r s t u v w    # v11 destination register 
         e d c b a    # v1 source vector 
   1 0 0 1 1 1 0 1    # v0 mask vector 

   4 4 4 3 2 1 1 0    # v10 result of viota.m 
   e q r d c b v a    # v11 destination after vrgather using viota.m under mask

16.6. Whole Vector Register Move

The vmv<nr>r.v instructions copy whole vector registers (i.e., all VLEN bits) and can copy whole vector register groups. The
nr value in the opcode is the number of individual vector registers, NREG, to copy. The instructions operate as if EEW=SEW,
EMUL = NREG, effective length evl= EMUL * VLEN/SEW.

Note These instructions are intended to aid compilers to shuffle vector registers without needing to know or change vl or vtype.

Note
The usual property that no elements are written if vstart ≥ vl does not apply to these instructions. Instead, no elements are written
if vstart ≥ evl.

Note
If vd is equal to vs2 the instruction is an architectural NOP, but is treated as a hint to implementations that rearrange data internally
that the register group will next be accessed with an EEW equal to SEW.

The instruction is encoded as an OPIVI instruction. The number of vector registers to copy is encoded in the low three bits of
the simm �eld (simm[2:0]) using the same encoding as the nf[2:0] �eld for memory instructions (Figure NFIELDS
Encoding), i.e., simm[2:0] = NREG-1.

The value of NREG must be 1, 2, 4, or 8, and values of simm[4:0] other than 0, 1, 3, and 7 are reserved.

Note A future extension may support other numbers of registers to be moved.

Note
The instruction uses the same funct6 encoding as the vsmul instruction but with an immediate operand, and only the unmasked
version (vm=1). This encoding is chosen as it is close to the related vmerge encoding, and it is unlikely the vsmul instruction would
bene�t from an immediate form.
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    vmv<nr>r.v vd, vs2  # General form 

    vmv1r.v v1, v2   #  Copy v1=v2 
    vmv2r.v v10, v12 #  Copy v10=v12; v11=v13 
    vmv4r.v v4, v8   #  Copy v4=v8; v5=v9; v6=v10; v7=v11 
    vmv8r.v v0, v8   #  Copy v0=v8; v1=v9; ...;  v7=v15

The source and destination vector register numbers must be aligned appropriately for the vector register group size, and
encodings with other vector register numbers are reserved.

Note A future extension may relax the vector register alignment restrictions.
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17. Exception Handling

On a trap during a vector instruction (caused by either a synchronous exception or an asynchronous interrupt), the existing
*epc CSR is written with a pointer to the trapping vector instruction, while the vstart CSR contains the element index on
which the trap was taken.

Note

We chose to add a vstart CSR to allow resumption of a partially executed vector instruction to reduce interrupt latencies and to
simplify forward-progress guarantees. This is similar to the scheme in the IBM 3090 vector facility. To ensure forward progress
without the vstart CSR, implementations would have to guarantee an entire vector instruction can always complete atomically
without generating a trap. This is particularly dif�cult to ensure in the presence of strided or scatter/gather operations and demand-
paged virtual memory.

17.1. Precise vector traps

Note We assume most supervisor-mode environments with demand-paging will require precise vector traps.

Precise vector traps require that:

1. all instructions older than the trapping vector instruction have committed their results

2. no instructions newer than the trapping vector instruction have altered architectural state

3. any operations within the trapping vector instruction affecting result elements preceding the index in the vstart CSR
have committed their results

4. no operations within the trapping vector instruction affecting elements at or following the vstart CSR have altered
architectural state except if restarting and completing the affected vector instruction will nevertheless produce the
correct �nal state.

We relax the last requirement to allow elements following vstart to have been updated at the time the trap is reported,
provided that re-executing the instruction from the given vstart will correctly overwrite those elements.

In idempotent memory regions, vector store instructions may have updated elements in memory past the element causing a
synchronous trap. Non-idempotent memory regions must not have been updated for indices equal to or greater than the
element that caused a synchronous trap during a vector store instruction.

Except where noted above, vector instructions are allowed to overwrite their inputs, and so in most cases, the vector
instruction restart must be from the vstart element index. However, there are a number of cases where this overwrite is
prohibited to enable execution of the vector instructions to be idempotent and hence restartable from an earlier index
location.

Implementations must ensure forward progress can be eventually guaranteed for the element or segment reported by
vstart.

17.2. Imprecise vector traps

Imprecise vector traps are traps that are not precise. In particular, instructions newer than *epc may have committed
results, and instructions older than *epc may have not completed execution. Imprecise traps are primarily intended to be
used in situations where reporting an error and terminating execution is the appropriate response.

Note
A pro�le might specify that interrupts are precise while other traps are imprecise. We assume many embedded implementations will
generate only imprecise traps for vector instructions on fatal errors, as they will not require resumable traps.

Imprecise traps shall report the faulting element in vstart for traps caused by synchronous vector exceptions.

There is no support for imprecise traps in the current standard extensions.

17.3. Selectable precise/imprecise traps
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Some pro�les may choose to provide a privileged mode bit to select between precise and imprecise vector traps. Imprecise
mode would run at high-performance but possibly make it dif�cult to discern error causes, while precise mode would run
more slowly, but support debugging of errors albeit with a possibility of not experiencing the same errors as in imprecise
mode.

This mechanism is not de�ned in the current standard extensions.

17.4. Swappable traps

Another trap mode can support swappable state in the vector unit, where on a trap, special instructions can save and restore
the vector unit microarchitectural state, to allow execution to continue correctly around imprecise traps.

This mechanism is not de�ned in the current standard extensions.

Note
A future extension might de�ne a standard way of saving and restoring opaque microarchitectural state from a vector unit
implementation to support context switching with imprecise traps.
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18. Standard Vector Extensions

This section describes the standard vector extensions to be proposed for public review. A set of smaller extensions intended
for embedded use are named with a "Zve" pre�x, while a larger vector extension designed for application processors is
named as a single-letter V extension. A set of vector length extension names with pre�x "Zvl" are also provided.

The initial vector extensions are designed to act as a base for additional vector extensions in various domains, including
cryptography and machine learning.

18.1. Zvl*: Minimum Vector Length Standard Extensions

All standard vector extensions have a minimum required VLEN as described below. A set of vector length extensions are
provided to increase the minimum vector length of a vector extension.

Note
The vector length extensions can be used to either specify additional software or architecture pro�le requirements, or to advertise
hardware capabilities.

Table 18. Vector length extensions
Extension Minimum VLEN
Zvl32b 32
Zvl64b 64
Zvl128b 128
Zvl256b 256
Zvl512b 512
Zvl1024b 1024

Note Longer vector length extensions should follow the same pattern.

Note Every vector length extension effectively includes all shorter vector length extensions.

Note
The syntax for extension names is being revised, and these names are subject to change. The trailing "b" will be required to
disambiguate numeric �elds from version numbers.

Note
Explicit use of the Zvl32b extension string is not required for any standard vector extension as they all effectively mandate at least this
minimum, but the string can be useful when stating hardware capabilities.

18.2. Zve*: Vector Extensions for Embedded Processors

The following �ve standard extensions are de�ned to provide varying degrees of vector support and are intended for use with
embedded processors. Any of these extensions can be added to base ISAs with XLEN=32 or XLEN=64. The table lists the
minimum VLEN and supported EEWs for each extension as well as what floating-point types are supported.

Table 19. Embedded vector extensions
Extension Minimum VLEN Supported EEW FP32 FP64
Zve32x 32 8, 16, 32 N N
Zve32f 32 8, 16, 32 Y N
Zve64x 64 8, 16, 32, 64 N N
Zve64f 64 8, 16, 32, 64 Y N
Zve64d 64 8, 16, 32, 64 Y Y

All Zve* extensions have precise traps.

Note There is currently no standard support for handling imprecise traps, so standard extensions have to provide precise traps.

All Zve* extensions provide support for EEW of 8, 16, and 32, and Zve64* extensions also support EEW of 64.

All Zve* extensions support the vector con�guration instructions (Section Con�guration-Setting Instructions
(vsetvli/vsetivli/vsetvl)).
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All Zve* extensions support all vector load and store instructions (Section Vector Loads and Stores), except Zve64*
extensions do not support EEW=64 for index values when XLEN=32.

All Zve* extensions support all vector integer instructions (Section Vector Integer Arithmetic Instructions), except that the
vmulh integer multiply variants that return the high word of the product (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx,
vmulhsu.vv, vmulhsu.vx) are not included for EEW=64 in Zve64*.

Note Producing the high-word of a product can take substantial additional gates for large EEW.

All Zve* extensions support all vector �xed-point arithmetic instructions (Vector Fixed-Point Arithmetic Instructions), except
that vsmul.vv and vsmul.vx are not supported for EEW=64 in Zve64*.

Note As with vmulh, vsmul requires a large amount of additional logic, and 64-bit �xed-point multiplies are relatively rare.

All Zve* extensions support all vector integer single-width and widening reduction operations (Sections Vector Single-Width
Integer Reduction Instructions, Vector Widening Integer Reduction Instructions).

All Zve* extensions support all vector mask instructions (Section Vector Mask Instructions).

All Zve* extensions support all vector permutation instructions (Section Vector Permutation Instructions), except that
Zve32x and Zve64x do not implement the floating-point scalar move instructions.

The Zve32f and Zve64f extensions require the scalar processor to implement the F extension or the proposed Z�nx
extension, and implement all vector floating-point instructions (Section Vector Floating-Point Instructions) for floating-point
operands with EEW=32 (i.e., no widening floating-point operations), and conversion instructions are provided to and from all
supported integer EEWs. Vector single-width floating-point reduction operations (Vector Single-Width Floating-Point
Reduction Instructions) for EEW=32 are supported.

The Zve64d extension requires the scalar processor to implement the D extension or the proposed Zdinx extension, and
implement all vector floating-point instructions (Section Vector Floating-Point Instructions) for floating-point operands with
EEW=32 or EEW=64 (including widening instructions and conversions between FP32 and FP64). Vector single-width
floating-point reductions (Vector Single-Width Floating-Point Reduction Instructions) for EEW=32 and EEW=64 are
supported as well as widening reductions from FP32 to FP64.

18.3. V: Vector Extension for Application Processors

The single-letter V extension is intended for use in application processor pro�les.

The misa.v bit is set for implementations providing misa and supporting V.

The V vector extension has precise traps.

The V vector extension requires Zvl128b.

Note

The value of 128 was chosen as a compromise for application processors. Providing a larger VLEN allows stripmining code to be elided
in some cases for short vectors, but also increases the size of the minimum implementation. Note that larger LMUL can be used to
avoid stripmining for longer known-size application vectors at the cost of having fewer available vector register groups. For example,
an LMUL of 8 allows vectors of up to sixteen 64-bit elements to be processed without stripmining using four vector register groups.

The V extension supports EEW of 8, 16, and 32, and 64.

The V extension supports the vector con�guration instructions (Section Con�guration-Setting Instructions
(vsetvli/vsetivli/vsetvl)).

The V extension supports all vector load and store instructions (Section Vector Loads and Stores), except the V extension
does not support EEW=64 for index values when XLEN=32.

The V extension supports all vector integer instructions (Section Vector Integer Arithmetic Instructions).

The V extension supports all vector �xed-point arithmetic instructions (Vector Fixed-Point Arithmetic Instructions).
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The V extension supports all vector integer single-width and widening reduction operations (Sections Vector Single-Width
Integer Reduction Instructions, Vector Widening Integer Reduction Instructions).

The V extension supports all vector mask instructions (Section Vector Mask Instructions).

The V extension supports all vector permutation instructions (Section Vector Permutation Instructions).

The V extension requires the scalar processor implements the F and D extensions, and implements all vector floating-point
instructions (Section Vector Floating-Point Instructions) for floating-point operands with EEW=32 or EEW=64 (including
widening instructions and conversions between FP32 and FP64). Vector single-width floating-point reductions (Vector
Single-Width Floating-Point Reduction Instructions) for EEW=32 and EEW=64 are supported as well as widening reductions
from FP32 to FP64.
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19. Vector Instruction Listing

Integer Integer FP
funct3 funct3 funct3
OPIVV V OPMVV V OPFVV V
OPIVX X OPMVX X OPFVF F
OPIVI I

funct6 funct6 funct6
000000 V X I vadd 000000 V vredsum 000000 V F vfadd
000001 000001 V vredand 000001 V vfredusum
000010 V X vsub 000010 V vredor 000010 V F vfsub
000011 X I vrsub 000011 V vredxor 000011 V vfredosum
000100 V X vminu 000100 V vredminu 000100 V F vfmin
000101 V X vmin 000101 V vredmin 000101 V vfredmin
000110 V X vmaxu 000110 V vredmaxu 000110 V F vfmax
000111 V X vmax 000111 V vredmax 000111 V vfredmax
001000 001000 V X vaaddu 001000 V F vfsgnj
001001 V X I vand 001001 V X vaadd 001001 V F vfsgnjn
001010 V X I vor 001010 V X vasubu 001010 V F vfsgnjx
001011 V X I vxor 001011 V X vasub 001011
001100 V X I vrgather 001100 001100
001101 001101 001101
001110 X I vslideup 001110 X vslide1up 001110 F vfslide1up
001110 V vrgatherei16
001111 X I vslidedown 001111 X vslide1down 001111 F vfslide1down

funct6 funct6 funct6
010000 V X I vadc 010000 V VWXUNARY0 010000 V VWFUNARY0

010000 X VRXUNARY0 010000 F VRFUNARY0
010001 V X I vmadc 010001 010001
010010 V X vsbc 010010 V VXUNARY0 010010 V VFUNARY0
010011 V X vmsbc 010011 010011 V VFUNARY1
010100 010100 V VMUNARY0 010100
010101 010101 010101
010110 010110 010110
010111 V X I vmerge/vmv 010111 V vcompress 010111 F vfmerge/vfmv
011000 V X I vmseq 011000 V vmandnot 011000 V F vmfeq
011001 V X I vmsne 011001 V vmand 011001 V F vmfle
011010 V X vmsltu 011010 V vmor 011010
011011 V X vmslt 011011 V vmxor 011011 V F vmflt
011100 V X I vmsleu 011100 V vmornot 011100 V F vmfne
011101 V X I vmsle 011101 V vmnand 011101 F vmfgt
011110 X I vmsgtu 011110 V vmnor 011110
011111 X I vmsgt 011111 V vmxnor 011111 F vmfge
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funct6 funct6 funct6
100000 V X I vsaddu 100000 V X vdivu 100000 V F vfdiv
100001 V X I vsadd 100001 V X vdiv 100001 F vfrdiv
100010 V X vssubu 100010 V X vremu 100010
100011 V X vssub 100011 V X vrem 100011
100100 100100 V X vmulhu 100100 V F vfmul
100101 V X I vsll 100101 V X vmul 100101
100110 100110 V X vmulhsu 100110
100111 V X vsmul 100111 V X vmulh 100111 F vfrsub

I vmv<nr>r
101000 V X I vsrl 101000 101000 V F vfmadd
101001 V X I vsra 101001 V X vmadd 101001 V F vfnmadd
101010 V X I vssrl 101010 101010 V F vfmsub
101011 V X I vssra 101011 V X vnmsub 101011 V F vfnmsub
101100 V X I vnsrl 101100 101100 V F vfmacc
101101 V X I vnsra 101101 V X vmacc 101101 V F vfnmacc
101110 V X I vnclipu 101110 101110 V F vfmsac
101111 V X I vnclip 101111 V X vnmsac 101111 V F vfnmsac

funct6 funct6 funct6
110000 V vwredsumu 110000 V X vwaddu 110000 V F vfwadd
110001 V vwredsum 110001 V X vwadd 110001 V vfwredusum
110010 110010 V X vwsubu 110010 V F vfwsub
110011 110011 V X vwsub 110011 V vfwredosum
110100 110100 V X vwaddu.w 110100 V F vfwadd.w
110101 110101 V X vwadd.w 110101
110110 110110 V X vwsubu.w 110110 V F vfwsub.w
110111 110111 V X vwsub.w 110111
111000 111000 V X vwmulu 111000 V F vfwmul
111001 111001 111001
111010 111010 V X vwmulsu 111010
111011 111011 V X vwmul 111011
111100 111100 V X vwmaccu 111100 V F vfwmacc
111101 111101 V X vwmacc 111101 V F vfwnmacc
111110 111110 X vwmaccus 111110 V F vfwmsac
111111 111111 V X vwmaccsu 111111 V F vfwnmsac
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Table 20. VRXUNARY0 encoding space
vs2
00000 vmv.s.x

Table 21. VWXUNARY0 encoding space
vs1
00000 vmv.x.s
10000 vpopc
10001 v�rst

Table 22. VXUNARY0 encoding space
vs1
00010 vzext.vf8
00011 vsext.vf8
00100 vzext.vf4
00101 vsext.vf4
00110 vzext.vf2
00111 vsext.vf2

Table 23. VRFUNARY0 encoding space
vs2
00000 vfmv.s.f

Table 24. VWFUNARY0 encoding space
vs1
00000 vfmv.f.s
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Table 25. VFUNARY0 encoding space
vs1 name
single-width converts
00000 vfcvt.xu.f.v
00001 vfcvt.x.f.v
00010 vfcvt.f.xu.v
00011 vfcvt.f.x.v
00110 vfcvt.rtz.xu.f.v
00111 vfcvt.rtz.x.f.v

widening converts
01000 vfwcvt.xu.f.v
01001 vfwcvt.x.f.v
01010 vfwcvt.f.xu.v
01011 vfwcvt.f.x.v
01100 vfwcvt.f.f.v
01110 vfwcvt.rtz.xu.f.v
01111 vfwcvt.rtz.x.f.v

narrowing converts
10000 vfncvt.xu.f.w
10001 vfncvt.x.f.w
10010 vfncvt.f.xu.w
10011 vfncvt.f.x.w
10100 vfncvt.f.f.w
10101 vfncvt.rod.f.f.w
10110 vfncvt.rtz.xu.f.w
10111 vfncvt.rtz.x.f.w

Table 26. VFUNARY1 encoding space
vs1 name
00000 vfsqrt.v
00100 vfrsqrt7.v
00101 vfrec7.v
10000 vfclass.v

Table 27. VMUNARY0 encoding space
vs1
00001 vmsbf
00010 vmsof
00011 vmsif
10000 viota
10001 vid
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Appendix A: Vector Assembly Code Examples

The following are provided as non-normative text to help explain the vector ISA.

A.1. Vector-vector add example

    # vector-vector add routine of 32-bit integers 
    # void vvaddint32(size_t n, const int*x, const int*y, int*z) 
    # { for (size_t i=0; i<n; i++) { z[i]=x[i]+y[i]; } } 
    #
    # a0 = n, a1 = x, a2 = y, a3 = z 
    # Non-vector instructions are indented 
vvaddint32: 
    vsetvli t0, a0, e32, ta, ma  # Set vector length based on 32-bit vectors 
    vle32.v v0, (a1)         # Get first vector 
      sub a0, a0, t0         # Decrement number done 
      slli t0, t0, 2         # Multiply number done by 4 bytes 
      add a1, a1, t0         # Bump pointer 
    vle32.v v1, (a2)         # Get second vector 
      add a2, a2, t0         # Bump pointer 
    vadd.vv v2, v0, v1       # Sum vectors 
    vse32.v v2, (a3)         # Store result 
      add a3, a3, t0         # Bump pointer 
      bnez a0, vvaddint32    # Loop back 
      ret                    # Finished

A.2. Example with mixed-width mask and compute.

# Code using one width for predicate and different width for masked 
# compute. 
#   int8_t a[]; int32_t b[], c[]; 
#   for (i=0;  i<n; i++) { b[i] =  (a[i] < 5) ? c[i] : 1; } 
# 
# Mixed-width code that keeps SEW/LMUL=8 
  loop: 
    vsetvli a4, a0, e8, m1, ta, ma   # Byte vector for predicate calc 
    vle8.v v1, (a1)               # Load a[i] 
      add a1, a1, a4              # Bump pointer. 
    vmslt.vi v0, v1, 5            # a[i] < 5? 

    vsetvli x0, a0, e32, m4, ta, mu  # Vector of 32-bit values. 
      sub a0, a0, a4              # Decrement count 
    vmv.v.i v4, 1                 # Splat immediate to destination 
    vle32.v v4, (a3), v0.t        # Load requested elements of C, others undisturbed 
      sll t1, a4, 2 
      add a3, a3, t1              # Bump pointer. 
    vse32.v v4, (a2)              # Store b[i]. 
      add a2, a2, t1              # Bump pointer. 
      bnez a0, loop               # Any more?

A.3. Memcpy example
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    # void *memcpy(void* dest, const void* src, size_t n) 
    # a0=dest, a1=src, a2=n 
    #
  memcpy: 
      mv a3, a0 # Copy destination 
  loop: 
    vsetvli t0, a2, e8, m8, ta, ma   # Vectors of 8b 
    vle8.v v0, (a1)               # Load bytes 
      add a1, a1, t0              # Bump pointer 
      sub a2, a2, t0              # Decrement count 
    vse8.v v0, (a3)               # Store bytes 
      add a3, a3, t0              # Bump pointer 
      bnez a2, loop               # Any more? 
      ret                         # Return

A.4. Conditional example

# (int16) z[i] = ((int8) x[i] < 5) ? (int16) a[i] : (int16) b[i]; 
# 

loop:
    vsetvli t0, a0, e8, m1, ta, ma # Use 8b elements. 
    vle8.v v0, (a1)         # Get x[i] 
      sub a0, a0, t0        # Decrement element count 
      add a1, a1, t0        # x[i] Bump pointer 
    vmslt.vi v0, v0, 5      # Set mask in v0 
    vsetvli t0, a0, e16, m2, ta, mu  # Use 16b elements. 
      slli t0, t0, 1        # Multiply by 2 bytes 
    vle16.v v2, (a2), v0.t  # z[i] = a[i] case 
    vmnot.m v0, v0          # Invert v0 
      add a2, a2, t0        # a[i] bump pointer 
    vle16.v v2, (a3), v0.t  # z[i] = b[i] case 
      add a3, a3, t0        # b[i] bump pointer 
    vse16.v v2, (a4)        # Store z 
      add a4, a4, t0        # z[i] bump pointer 
      bnez a0, loop

A.5. SAXPY example
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# void 
# saxpy(size_t n, const float a, const float *x, float *y) 
# { 
#   size_t i; 
#   for (i=0; i<n; i++) 
#     y[i] = a * x[i] + y[i]; 
# } 
# 
# register arguments: 
#     a0      n 
#     fa0     a 
#     a1      x 
#     a2      y 

saxpy: 
    vsetvli a4, a0, e32, m8, ta, ma 
    vle32.v v0, (a1) 
    sub a0, a0, a4 
    slli a4, a4, 2 
    add a1, a1, a4 
    vle32.v v8, (a2) 
    vfmacc.vf v8, fa0, v0 
    vse32.v v8, (a2) 
    add a2, a2, a4 
    bnez a0, saxpy 
    ret

A.6. SGEMM example
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# RV64IDV system 
# 
# void 
# sgemm_nn(size_t n, 
#          size_t m, 
#          size_t k, 
#          const float*a,   // m * k matrix 
#          size_t lda, 
#          const float*b,   // k * n matrix 
#          size_t ldb, 
#          float*c,         // m * n matrix 
#          size_t ldc) 
# 
#  c += a*b (alpha=1, no transpose on input matrices) 
#  matrices stored in C row-major order 

#define n a0 
#define m a1 
#define k a2 
#define ap a3 
#define astride a4 
#define bp a5 
#define bstride a6 
#define cp a7 
#define cstride t0 
#define kt t1 
#define nt t2 
#define bnp t3 
#define cnp t4 
#define akp t5 
#define bkp s0 
#define nvl s1 
#define ccp s2 
#define amp s3 

# Use args as additional temporaries 
#define ft12 fa0 
#define ft13 fa1 
#define ft14 fa2 
#define ft15 fa3 

# This version holds a 16*VLMAX block of C matrix in vector registers 
# in inner loop, but otherwise does not cache or TLB tiling. 

sgemm_nn: 
    addi sp, sp, -FRAMESIZE 
    sd s0, OFFSET(sp) 
    sd s1, OFFSET(sp) 
    sd s2, OFFSET(sp) 

    # Check for zero size matrices 
    beqz n, exit 
    beqz m, exit 
    beqz k, exit 

    # Convert elements strides to byte strides. 
    ld cstride, OFFSET(sp)   # Get arg from stack frame 
    slli astride, astride, 2 
    slli bstride, bstride, 2 
    slli cstride, cstride, 2 

    slti t6, m, 16 
    bnez t6, end_rows 
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c_row_loop: # Loop across rows of C blocks 

    mv nt, n  # Initialize n counter for next row of C blocks 

    mv bnp, bp # Initialize B n-loop pointer to start 
    mv cnp, cp # Initialize C n-loop pointer 

c_col_loop: # Loop across one row of C blocks 
    vsetvli nvl, nt, e32, ta, ma  # 32-bit vectors, LMUL=1 

    mv akp, ap   # reset pointer into A to beginning 
    mv bkp, bnp # step to next column in B matrix 

    # Initalize current C submatrix block from memory. 
    vle32.v  v0, (cnp); add ccp, cnp, cstride; 
    vle32.v  v1, (ccp); add ccp, ccp, cstride; 
    vle32.v  v2, (ccp); add ccp, ccp, cstride; 
    vle32.v  v3, (ccp); add ccp, ccp, cstride; 
    vle32.v  v4, (ccp); add ccp, ccp, cstride; 
    vle32.v  v5, (ccp); add ccp, ccp, cstride; 
    vle32.v  v6, (ccp); add ccp, ccp, cstride; 
    vle32.v  v7, (ccp); add ccp, ccp, cstride; 
    vle32.v  v8, (ccp); add ccp, ccp, cstride; 
    vle32.v  v9, (ccp); add ccp, ccp, cstride; 
    vle32.v v10, (ccp); add ccp, ccp, cstride; 
    vle32.v v11, (ccp); add ccp, ccp, cstride; 
    vle32.v v12, (ccp); add ccp, ccp, cstride; 
    vle32.v v13, (ccp); add ccp, ccp, cstride; 
    vle32.v v14, (ccp); add ccp, ccp, cstride; 
    vle32.v v15, (ccp) 

    mv kt, k # Initialize inner loop counter 

    # Inner loop scheduled assuming 4-clock occupancy of vfmacc instruction and single-issue pipeline 
    # Software pipeline loads 
    flw ft0, (akp); add amp, akp, astride; 
    flw ft1, (amp); add amp, amp, astride; 
    flw ft2, (amp); add amp, amp, astride; 
    flw ft3, (amp); add amp, amp, astride; 
    # Get vector from B matrix 
    vle32.v v16, (bkp) 

    # Loop on inner dimension for current C block 
 k_loop: 
    vfmacc.vf v0, ft0, v16 
    add bkp, bkp, bstride 
    flw ft4, (amp) 
    add amp, amp, astride 
    vfmacc.vf v1, ft1, v16 
    addi kt, kt, -1    # Decrement k counter 
    flw ft5, (amp) 
    add amp, amp, astride 
    vfmacc.vf v2, ft2, v16 
    flw ft6, (amp) 
    add amp, amp, astride 
    flw ft7, (amp) 
    vfmacc.vf v3, ft3, v16 
    add amp, amp, astride 
    flw ft8, (amp) 
    add amp, amp, astride 
    vfmacc.vf v4, ft4, v16 
    flw ft9, (amp) 
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    add amp, amp, astride 
    vfmacc.vf v5, ft5, v16 
    flw ft10, (amp) 
    add amp, amp, astride 
    vfmacc.vf v6, ft6, v16 
    flw ft11, (amp) 
    add amp, amp, astride 
    vfmacc.vf v7, ft7, v16 
    flw ft12, (amp) 
    add amp, amp, astride 
    vfmacc.vf v8, ft8, v16 
    flw ft13, (amp) 
    add amp, amp, astride 
    vfmacc.vf v9, ft9, v16 
    flw ft14, (amp) 
    add amp, amp, astride 
    vfmacc.vf v10, ft10, v16 
    flw ft15, (amp) 
    add amp, amp, astride 
    addi akp, akp, 4            # Move to next column of a 
    vfmacc.vf v11, ft11, v16 
    beqz kt, 1f                 # Don't load past end of matrix 
    flw ft0, (akp) 
    add amp, akp, astride 
1:  vfmacc.vf v12, ft12, v16 
    beqz kt, 1f 
    flw ft1, (amp) 
    add amp, amp, astride 
1:  vfmacc.vf v13, ft13, v16 
    beqz kt, 1f 
    flw ft2, (amp) 
    add amp, amp, astride 
1:  vfmacc.vf v14, ft14, v16 
    beqz kt, 1f                 # Exit out of loop 
    flw ft3, (amp) 
    add amp, amp, astride 
    vfmacc.vf v15, ft15, v16 
    vle32.v v16, (bkp)            # Get next vector from B matrix, overlap loads with jump stalls 
    j k_loop 

1:  vfmacc.vf v15, ft15, v16 

    # Save C matrix block back to memory 
    vse32.v  v0, (cnp); add ccp, cnp, cstride; 
    vse32.v  v1, (ccp); add ccp, ccp, cstride; 
    vse32.v  v2, (ccp); add ccp, ccp, cstride; 
    vse32.v  v3, (ccp); add ccp, ccp, cstride; 
    vse32.v  v4, (ccp); add ccp, ccp, cstride; 
    vse32.v  v5, (ccp); add ccp, ccp, cstride; 
    vse32.v  v6, (ccp); add ccp, ccp, cstride; 
    vse32.v  v7, (ccp); add ccp, ccp, cstride; 
    vse32.v  v8, (ccp); add ccp, ccp, cstride; 
    vse32.v  v9, (ccp); add ccp, ccp, cstride; 
    vse32.v v10, (ccp); add ccp, ccp, cstride; 
    vse32.v v11, (ccp); add ccp, ccp, cstride; 
    vse32.v v12, (ccp); add ccp, ccp, cstride; 
    vse32.v v13, (ccp); add ccp, ccp, cstride; 
    vse32.v v14, (ccp); add ccp, ccp, cstride; 
    vse32.v v15, (ccp) 

    # Following tail instructions should be scheduled earlier in free slots during C block save. 
    # Leaving here for clarity. 

    # Bump pointers for loop across blocks in one row 
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    slli t6, nvl, 2 
    add cnp, cnp, t6                         # Move C block pointer over 
    add bnp, bnp, t6                         # Move B block pointer over 
    sub nt, nt, nvl                          # Decrement element count in n dimension 
    bnez nt, c_col_loop                      # Any more to do? 

    # Move to next set of rows 
    addi m, m, -16  # Did 16 rows above 
    slli t6, astride, 4  # Multiply astride by 16 
    add ap, ap, t6         # Move A matrix pointer down 16 rows 
    slli t6, cstride, 4  # Multiply cstride by 16 
    add cp, cp, t6         # Move C matrix pointer down 16 rows 

    slti t6, m, 16 
    beqz t6, c_row_loop 

    # Handle end of matrix with fewer than 16 rows. 
    # Can use smaller versions of above decreasing in powers-of-2 depending on code-size concerns. 
end_rows: 
    # Not done. 

exit:
    ld s0, OFFSET(sp) 
    ld s1, OFFSET(sp) 
    ld s2, OFFSET(sp) 
    addi sp, sp, FRAMESIZE 
    ret

A.7. Division approximation example

# v1 = v1 / v2 to almost 23 bits of precision. 

vfrec7.v v3, v2             # Estimate 1/v2 
  li t0, 0x40000000 
vmv.v.x v4, t0              # Splat 2.0 
vfnmsac.vv v4, v2, v3       # 2.0 - v2 * est(1/v2) 
vfmul.vv v3, v3, v4         # Better estimate of 1/v2 
vmv.v.x v4, t0              # Splat 2.0 
vfnmsac.vv v4, v2, v3       # 2.0 - v2 * est(1/v2) 
vfmul.vv v3, v3, v4         # Better estimate of 1/v2 
vfmul.vv v1, v1, v3         # Estimate of v1/v2

A.8. Square root approximation example
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# v1 = sqrt(v1) to almost 23 bits of precision. 

  fmv.w.x ft0, x0           # Mask off zero inputs 
vmfne.vf v0, v1, ft0        #   to avoid div by zero 
vfrsqrt7.v v2, v1, v0.t     # Estimate 1/sqrt(x) 
vmfne.vf v0, v2, ft0, v0.t  # Additionally mask off +inf inputs 
  li t0, 0xbf000000 
  fmv.w.x ft0, t0           # -0.5 
vfmul.vf v3, v1, ft0, v0.t  # -0.5 * x 
vfmul.vv v4, v2, v2, v0.t   # est * est 
  li t0, 0x3fc00000 
vmv.v.x v5, t0, v0.t        # Splat 1.5 
vfmadd.vv v4, v3, v5, v0.t  # 1.5 - 0.5 * x * est * est 
vfmul.vv v1, v1, v4, v0.t   # estimate to 14 bits 
vfmul.vv v4, v1, v1, v0.t   # est * est 
vfmadd.vv v4, v3, v5, v0.t  # 1.5 - 0.5 * x * est * est 
vfmul.vv v1, v1, v4, v0.t   # estimate to 23 bits

A.9. C standard library strcmp example

  # int strcmp(const char *src1, const char* src2) 
strcmp: 
    ##  Using LMUL=2, but same register names work for larger LMULs 
    li t1, 0                # Initial pointer bump 
loop:
    vsetvli t0, x0, e8, m2, ta, ma  # Max length vectors of bytes 
    add a0, a0, t1          # Bump src1 pointer 
    vle8ff.v v8, (a0)       # Get src1 bytes 
    add a1, a1, t1          # Bump src2 pointer 
    vle8ff.v v16, (a1)      # Get src2 bytes 

    vmseq.vi v0, v8, 0      # Flag zero bytes in src1 
    vmsne.vv v1, v8, v16    # Flag if src1 != src2 
    vmor.mm v0, v0, v1      # Combine exit conditions 

    vfirst.m a2, v0         # ==0 or != ? 
    csrr t1, vl             # Get number of bytes fetched 

    bltz a2, loop           # Loop if all same and no zero byte 

    add a0, a0, a2          # Get src1 element address 
    lbu a3, (a0)            # Get src1 byte from memory 

    add a1, a1, a2          # Get src2 element address 
    lbu a4, (a1)            # Get src2 byte from memory 

    sub a0, a3, a4          # Return value. 

    ret
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Appendix B: Calling Convention (Not authoritative - Placeholder Only)

Note
This Appendix is only a placeholder to help explain the conventions used in the code examples, and is not considered frozen or part of
the rati�cation process. The of�cial RISC-V psABI document is being expanded to specify the vector calling conventions.

In the RISC-V psABI, the vector registers v0-v31 are all caller-saved. The vl and vtype CSRs are also caller-saved.

Procedures may assume that vstart is zero upon entry. Procedures may assume that vstart is zero upon return from a
procedure call.

Note
Application software should normally not write vstart explicitly. Any procedure that does explicitly write vstart to a nonzero value
must zero vstart before either returning or calling another procedure.

The vxrm and vxsat �elds of vcsr have thread storage duration.

Executing a system call causes all caller-saved vector registers (v0-v31, vl, vtype) and vstart to become unspeci�ed.

Note This scheme allows system calls that cause context switches to avoid saving and later restoring the vector registers.

Note
Most OSes will choose to either leave these registers intact or reset them to their initial state to avoid leaking information across
process boundaries.
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Appendix C: Fractional Lmul example

This appendix presents a non-normative example to help explain where compilers can make good use of the fractional LMUL
feature.

Consider the following (admittedly contrived) loop written in C:

void add_ref(long N, 
    signed char *restrict c_c, signed char *restrict c_a, signed char *restrict c_b, 
    long *restrict l_c, long *restrict l_a, long *restrict l_b, 
    long *restrict l_d, long *restrict l_e, long *restrict l_f, 
    long *restrict l_g, long *restrict l_h, long *restrict l_i, 
    long *restrict l_j, long *restrict l_k, long *restrict l_l, 
    long *restrict l_m) { 
  long i; 
  for (i = 0; i < N; i++) { 
    c_c[i] = c_a[i] + c_b[i]; // Note this 'char' addition that creates a mixed type situation 
    l_c[i] = l_a[i] + l_b[i]; 
    l_f[i] = l_d[i] + l_e[i]; 
    l_i[i] = l_g[i] + l_h[i]; 
    l_l[i] = l_k[i] + l_j[i]; 
    l_m[i] += l_m[i] + l_c[i] + l_f[i] + l_i[i] + l_l[i]; 
  } 
}

The example loop has a high register pressure due to the many input variables and temporaries required. The compiler
realizes there are two datatypes within the loop: an 8-bit 'char' and a 64-bit 'long *'. Without fractional LMUL, the compiler
would be forced to use LMUL=1 for the 8-bit computation and LMUL=8 for the 64-bit computation(s), to have equal number
of elements on all computations within the same loop iteration. Under LMUL=8, only 4 registers are available to the register
allocator. Given the large number of 64-bit variables and temporaries required in this loop, the compiler ends up generating a
lot of spill code. The code below demonstrates this effect:
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.LBB0_4:                                # %vector.body 
                                        # =>This Inner Loop Header: Depth=1 
 add s9, a2, s6 
 vsetvli s1, zero, e8,m1,ta,mu 
 vle8.v v25, (s9) 
 add s1, a3, s6 
 vle8.v v26, (s1) 
 vadd.vv v25, v26, v25 
 add s1, a1, s6 
 vse8.v v25, (s1) 
 add s9, a5, s10 
 vsetvli s1, zero, e64,m8,ta,mu 
 vle64.v v8, (s9) 
 add s1, a6, s10 
 vle64.v v16, (s1) 
 add s1, a7, s10 
 vle64.v v24, (s1) 
 add s1, s3, s10 
 vle64.v v0, (s1) 
 sd a0, -112(s0) 
 ld a0, -128(s0) 
 vs8r.v v0, (a0) # Spill LMUL=8 
 add s9, t6, s10 
 add s11, t5, s10 
 add ra, t2, s10 
 add s1, t3, s10 
 vle64.v v0, (s9) 
 ld s9, -136(s0) 
 vs8r.v v0, (s9) # Spill LMUL=8 
 vle64.v v0, (s11) 
 ld s9, -144(s0) 
 vs8r.v v0, (s9) # Spill LMUL=8 
 vle64.v v0, (ra) 
 ld s9, -160(s0) 
 vs8r.v v0, (s9) # Spill LMUL=8 
 vle64.v v0, (s1) 
 ld s1, -152(s0) 
 vs8r.v v0, (s1) # Spill LMUL=8 
 vadd.vv v16, v16, v8 
 ld s1, -128(s0) 
 vl8r.v v8, (s1) # Reload LMUL=8 
 vadd.vv v8, v8, v24 
 ld s1, -136(s0) 
 vl8r.v v24, (s1) # Reload LMUL=8 
 ld s1, -144(s0) 
 vl8r.v v0, (s1) # Reload LMUL=8 
 vadd.vv v24, v0, v24 
 ld s1, -128(s0) 
 vs8r.v v24, (s1) # Spill LMUL=8 
 ld s1, -152(s0) 
 vl8r.v v0, (s1) # Reload LMUL=8 
 ld s1, -160(s0) 
 vl8r.v v24, (s1) # Reload LMUL=8 
 vadd.vv v0, v0, v24 
 add s1, a4, s10 
 vse64.v v16, (s1) 
 add s1, s2, s10 
 vse64.v v8, (s1) 
 vadd.vv v8, v8, v16 
 add s1, t4, s10 
 ld s9, -128(s0) 
 vl8r.v v16, (s9) # Reload LMUL=8 
 vse64.v v16, (s1) 
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 add s9, t0, s10 
 vadd.vv v8, v8, v16 
 vle64.v v16, (s9) 
 add s1, t1, s10 
 vse64.v v0, (s1) 
 vadd.vv v8, v8, v0 
 vsll.vi v16, v16, 1 
 vadd.vv v8, v8, v16 
 vse64.v v8, (s9) 
 add s6, s6, s7 
 add s10, s10, s8 
 bne s6, s4, .LBB0_4

If instead of using LMUL=1 for the 8-bit computation, the compiler is allowed to use a fractional LMUL=1/2, then the 64-bit
computations can be performed using LMUL=4 (note that the same ratio of 64-bit elements and 8-bit elements is preserved
as in the previous example). Now the compiler has 8 available registers to perform register allocation, resulting in no spill
code, as shown in the loop below:
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.LBB0_4:                                # %vector.body 
                                        # =>This Inner Loop Header: Depth=1 
 add s9, a2, s6 
 vsetvli s1, zero, e8,mf2,ta,mu // LMUL=1/2 ! 
 vle8.v v25, (s9) 
 add s1, a3, s6 
 vle8.v v26, (s1) 
 vadd.vv v25, v26, v25 
 add s1, a1, s6 
 vse8.v v25, (s1) 
 add s9, a5, s10 
 vsetvli s1, zero, e64,m4,ta,mu // LMUL=4 
 vle64.v v28, (s9) 
 add s1, a6, s10 
 vle64.v v8, (s1) 
 vadd.vv v28, v8, v28 
 add s1, a7, s10 
 vle64.v v8, (s1) 
 add s1, s3, s10 
 vle64.v v12, (s1) 
 add s1, t6, s10 
 vle64.v v16, (s1) 
 add s1, t5, s10 
 vle64.v v20, (s1) 
 add s1, a4, s10 
 vse64.v v28, (s1) 
 vadd.vv v8, v12, v8 
 vadd.vv v12, v20, v16 
 add s1, t2, s10 
 vle64.v v16, (s1) 
 add s1, t3, s10 
 vle64.v v20, (s1) 
 add s1, s2, s10 
 vse64.v v8, (s1) 
 add s9, t4, s10 
 vadd.vv v16, v20, v16 
 add s11, t0, s10 
 vle64.v v20, (s11) 
 vse64.v v12, (s9) 
 add s1, t1, s10 
 vse64.v v16, (s1) 
 vsll.vi v20, v20, 1 
 vadd.vv v28, v8, v28 
 vadd.vv v28, v28, v12 
 vadd.vv v28, v28, v16 
 vadd.vv v28, v28, v20 
 vse64.v v28, (s11) 
 add s6, s6, s7 
 add s10, s10, s8 
 bne s6, s4, .LBB0_4
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