
2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

1

Mobi-IoST: Mobility-aware Cloud-Fog-Edge-IoT
Collaborative Framework for

Time-Critical Applications
Shreya Ghosh, Student Member, IEEE, Anwesha Mukherjee, Student Member, IEEE,

Soumya K. Ghosh, Senior Member, IEEE and Rajkumar Buyya, Fellow, IEEE

Abstract—The design of mobility-aware framework for edge/fog computing for IoT systems with back-end cloud is gaining research
interest. In this paper, a mobility-driven cloud-fog-edge collaborative real-time framework, Mobi-IoST, has been proposed, which has
IoT, Edge, Fog and Cloud layers and exploits the mobility dynamics of the moving agent. The IoT and edge devices are considered to
be the moving agents in a 2-D space, typically over the road-network. The framework analyses the spatio-temporal mobility data (GPS
logs) along with the other contextual information and employs machine learning algorithm to predict the location of the moving agents
(IoT and Edge devices) in real-time. The accumulated spatio-temporal traces from the moving agents are modelled using probabilistic
graphical model. The major features of the proposed framework are: (i) hierarchical processing of the information using
IoT-Edge-Fog-Cloud architecture to provide better QoS in real-time applications, (ii) uses mobility information for predicting next
location of the agents to deliver processed information, and (iii) efficiently handles delay and power consumption. The performance
evaluations yield that the proposed Mobi-IoST framework has approximately 93% accuracy and reduced the delay and power by
approximately 23-26% and 37-41% respectively than the existing mobility-aware task delegation system.

Index Terms—Cloud computing, Edge computing, Fog computing, Internet of Things (IoT), Mobility analytics, Spatio-temporal data.

F

1 INTRODUCTION

The advancements of Internet of Things (IoT) have man-
ifested significant improvements on the quality of human
lives in varied aspects [1]. To facilitate real-time applications,
high-end processing and storage units are required. For
computation and storage of these large volume of raw
data generated by IoT devices, cloud computing plays a
significant role. However, the cloud-only set-up is not an
energy-efficient and delay-aware solution for handling such
a high volume of data. To address this problem, edge and
fog computing have been introduced [2]. On the other hand,
seamless connectivity due to the mobility of IoT devices
is a crucial factor to process the data in the remote cloud
servers. For time-critical applications such as health care,
connection interruption and consequently the increase in
delay in delivering the processed information, result in poor
Quality of Service (QoS). If the device gets disconnected due
to mobility, the delivery of the processed data/ informa-
tion becomes a challenge. This necessitates a hierarchical
infrastructure, where each layer (IoT, edge, fog or cloud)
either accumulates, stores and processes the information for
reducing the delay. On the other side, movement traces, i.e.,

• Shreya Ghosh and Anwesha Mukherjee are with the Department of Com-
puter Science and Engineering, Indian Institute of Technology Kharag-
pur, West Bengal, 721302, India.E-mail: shreya.cst@gmail.com, anwe-
shamukherjee2011@gmail.com

• Soumya K. Ghosh is a Professor in the Department of Computer Science
and Engineering, Indian Institute of Technology Kharagpur, West Bengal,
721302, India.E-mail: skg@cse.iitkgp.ac.in

• Rajkumar Buyya is with the CLOUDS Laboratory, School of Computing
and Information Systems, The University of Melbourne, VIC 3010,
Australia.E-mail: rbuyya@unimelb.edu.au

time-stamped location information of moving agents (say,
mobile-users or client) are accumulated on a large scale
from GPS-enabled smart phones or IoT devices. This spatio-
temporal movement information opens up diverse opportu-
nities to explore the intent of movement [3] and thus foster-
ing varied location based services, namely, efficient package
delivery [4], traffic resource management etc. Internet of
Spatial Things (IoST) brings IoT in the spatial context [5]. As
discussed before, mobility or continuous change of locations
of users is a challenging issue in task delegation or data
offloading. However, analysis of these mobility information
helps to explore the intent of the move and subsequently
extracts the frequent movement path of a user in different
contexts. If the probable location sequences of an agent in
the near future can be predicted from the historical mobility
information, then an effective and delay-aware solution for
a time-critical application can be provided.

To address the above-mentioned challenges, in this
work, we propose a Cloud-Fog-Edge based collaborative
framework for the processing of IoT data and delivering
the result based on mobility analysis to reduce the delay. We
have considered a hierarchical mobility-based infrastructure
composed of four layers: IoT layer, edge layer, fog layer,
and cloud layer. Nowadays smart phone has become a
popular medium for ubiquitous Internet access and varied
user-specific IoT applications are accessible through smart
phones. These mobile devices serve as edge devices and
may frequently change the locations. The users of our sys-
tem utilize these time-critical IoT applications while travel-
ing across. The edge layer contains such edge devices i.e.
mobile devices. The fog layer contains the fog devices such
as RSUs (Road Side Unit) which are large cell base stations.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

2

While the IoT and the edge devices change their locations,
the RSU and the cloud data centers of the framework have
static locations. The raw data generated in the IoT layer is
sent to the edge layer, which is connected with the fog layer.
The fog layer is connected with the cloud layer where high-
end processing and mobility analysis tasks are performed.

Fig. 1: Mobi-IoST for health care application
(a): Ambulance sends health data from IoT devices to RSU.
(b): RSU sends result with the location information to cloud.
(c): Cloud predicts the nearby health care centre, shortest path
and helps to actuate traffic signal.

1.1 Motivating Scenario

We have considered a well-known time-critical application
in the domain of health care, where the proposed Mobi-IoST
framework can be deployed. The pictorial representation of
this use-case is shown in Fig. 1.

Suppose a patient, travelling in a vehicle (am), needs
continuous monitoring of her/his vital health parameters
such as blood-pressure, pulse-rate, body-temperature etc. which
are collected using IoT devices and the raw data are
sent to the RSU through a client application. The RSU
processes the information based on functional model pre-
defined by medical experts and sends the current status
as normal/abnormal to the client-app. If any abnormality
is detected, the RSU sends the data to the cloud to find
out the nearest health centre. In the developing countries
like India there is a scarcity of superspeciality hospitals at
rural regions, and the ambulances are also not equipped
with good medical facilities and there is a rare possibility
of presence of a medical expert inside the ambulance. In
such circumstances, the proposed framework can provide
a preliminary support for continuous health monitoring, as
well as can suggest nearby health centres in case of adverse
situation. Given the current location and health-data feed
from the RSU, the cloud can suggest the nearby hospital. On
the other side, based on the route followed by the vehicle,
the probable health centre also gets notified. Further, the
mobility analysis module of cloud can help to reduce the
commuting time of the vehicle by predicting less congested
path in the road-network. This can be achieved when cloud
analyses the traffic states (congestion, traffic breakdown etc.)
of the roads and notifies the RSUs of the path. The RSU
will work as a fog device. The respective RSUs can actuate
the signal synchronizing mechanism such that am can reach

avoiding the congested route as well as without waiting in
the traffic signals. Although the scenario is motivated by
the dysfunctional public health system and limited access
to improved transportation and medical care in the rural
areas, specifically in developing countries, such as India,
Mobi-IoST is beneficial for any time-critical applications. For
instance, in the time of emergency, a police-vehicle or a
fire extinguisher car needs to commute with minimal delay
avoiding the congested regions of a city. Mobi-IoST predicts
the less congested route by analyzing the traffic states in
real-time and notifies the RSUs of the route. These RSUs
actuate the signal synchronizing mechanism such that the
vehicle can reach the destination avoiding the congested
route as well as without waiting in the traffic signals. The
hierarchical placement of IoT, edge, fog devices and cloud
servers in Mobi-IoST framework facilitates an effective and
delay-aware solution for several time-critical applications.
We believe that Mobi-IoST will act as a foundation of
mobility aware network resource management for varied
location-based service planning in real-time.

1.2 Contributions

The focus of our work is to develop a cloud-fog-edge
collaborative framework which facilitates real-time IoT in-
formation processing and delivery of results based on the
mobility information analytics. The key contributions of this
paper can be summarized as follows:

• Mobi-IoST (Mobility-aware Internet of Spatial
Things) is designed for information processing and
delivering result based on the prediction of user’s
current location. The framework exploits the mobil-
ity knowledge of the agents to predict the probable
user location and delivery of processed information
at low delay and low power consumption of the user-
device.

• A novel mobility modelling network has been pro-
posed to explore the movement patterns of the user.
The huge amount of spatio-temporal trajectory data
is stored efficiently along with other contextual infor-
mation in the cloud data centre.

• A real-time mobility prediction module has been
designed to predict the location sequences of the user
effectively.

• The experimental results demonstrate that the pro-
posed system has outperformed other existing ap-
proaches in accuracy and takes much less time to
learn the patterns.

• The simulation results demonstrate that the pro-
posed framework reduces the delay in delivering in-
formation and power consumption of the mobile de-
vice (user-device) compared to the existing mobility-
aware task delegation approach.

To the best of our knowledge, this work is the first attempt to
utilize the movement knowledge to enhance the QoS for fa-
cilitating time-critical IoT applications. The rest of the paper
is structured as follows. Section 2 briefs the existing work
in related areas. We propose our framework, Mobi-IoST in
section 3 and discuss several modules of the framework.
The delay and power consumption models are discussed

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

3

Fig. 2: Hierarchical placement of IoT, Edge, Fog devices and Cloud in Mobi-IoST framework

in section 4. Section 5 demonstrates the experimental and
simulation results. The paper is concluded in section 6 along
with future directions.

2 RELATED WORK

The IoT refers to the connection of embedded devices
within an existing Internet infrastructure where the devices
are uniquely identified and the computing environment
is created [1]. The raw data collected by IoT devices are
processed inside the cloud servers. However, storing and
processing of the raw data inside the remote cloud enhances
the delay and energy consumption. To overcome this, fog
computing has been introduced [2]. The raw data of IoT
devices are processed inside the fog device instead of the
remote cloud to reduce the delay and energy consumption.
However, during data processing connection interruption
becomes a challenge if the client is a mobile device. IoT
has several sub-domains depending on its applications e.g.
Internet of Multimedia Things (IoMT), Internet of Health
Things (IoHT), Internet of Vehicles (IoV) etc [5]. IoST is
a new sub-domain of IoT, which focuses on spatial data
management [5]. IoST refers to “ubiquitous and embedded
computing devices that transmit and receive information so
often includes numerical values about a physical object that
can be represented in a geographic coordinate system for
geospatial interoperability requirements over networks”[5].
In fog-based IoT, the switch, routers etc. work as fog devices
for faster processing of the raw data collected using IoT
devices. The mobile device that usually works as an edge
device, is a connector between the IoT devices and the net-
work. However, resource hindrance is a major difficulty for
these handheld devices. Therefore, the cloud servers have to
be used by mobile devices to store their data [6]. The mobile
devices also offload heavy computations inside the cloud in
case of resource limitation and saving battery life. However,
for small amount of data processing the use of remote
cloud increases delay and power consumption of the mobile
device. Energy and latency in offloading has been focused
on several existing approaches [7], [8]. Fog computing has

also provided solutions for reducing delay and energy in the
processing of IoT data [2]. In fog computing, a hierarchical
architecture is followed, where the intermediate devices
between the end node and cloud servers participate in data
processing, and these nodes are called fog devices [2]. The
edge devices allow users to connect with the network and
transfer data accordingly to a network which is external to
the user. For transcoding massive amount of video at scale,
a cloud and edge computing based collaborative system
has been proposed in [9]. For balancing the traffic and
computing load, a method has been discussed in [10], where
the IoT devices are allocated to the base station or fog nodes
to reduce the latency.

Network connectivity is a challenge in vehicular net-
work [11]. For task offloading in such networks, edge com-
puting has been used in [11]. The mobile edge computing
servers are deployed inside the road side access points in
that case. These servers are used for offloading tasks. How-
ever, the use of access points may not be energy-efficient if
exhaustive computations have to be performed and there
are a large number of users. Based on user mobility, an
opportunistic computation offloading method has been dis-
cussed in [12]. Based on information gain, task allocation
in spatial crowdsourcing has been discussed in [13]. A
fog based architecture of spatial crowdsourcing has been
proposed in [14], where privacy-aware task allocation and
data aggregation have been focused. In [15], task offloading
to cloud and delivery of result based on serialization of
session information has been discussed. Further, there is
a need of a mechanism where the user mobility will be
predicted and result will be delivered at the optimum delay
and power consumption of the mobile device.

Given the abundance of mobility traces (GPS log) of
individuals, there are several research initiatives to extract
knowledge or meaningful information (i.e., making sense of
raw GPS log) from the huge amount of trajectory traces.
Several works are reported to predict next location from
movement traces such as GPS log, check-in data or social
network information [16], [17], [18]. There are challeng-
ing applications, namely, urban land-use classification from

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

4

Fig. 3: Working model of the proposed framework, Mobi-IoST

taxi-traces [19], categorizing users in an academic campus
[20] or catching pick-pockets from large-scale transit records
[21]. It is well known that human movement traces follow
spatio-temporal regularity. In this regard, Song et al. [22]
provide a high degree of spatio-temporal uniformity by
mining movement traces of 50,000 people for a period of
three months. All of these studies depict that since people
follow some spatio-temporal regularity in their movement
history, an appropriate and effective mobility pattern mod-
elling can help to facilitate several location-aware services.

To this end, the Mobi-IoST framework aims to deliver
mobility-driven efficient data processing in cloud-fog-edge
based IoT setup to facilitate intelligent decision making in
real-time. One of the major aspects of the proposed frame-
work is mobility-aware service provisioning, which helps to
reduce the delay and power consumption of the user-device
as well as facilitate intelligent recommendations based on
the present location of the user-device. To the best of our
knowledge, none of the existing works have clearly depicted
the significance of mobility-aware service provisioning frame-
work in fog based IoT. In Mobi-IoST, the movement pattern
modelling and location prediction approaches are novel
propositions which deliver result in real-time. Moreover,
the experimental observations and performance analysis
show the effectiveness of Mobi-IoST in terms of accuracy,
delay and power consumption. In summary, designing and
deploying an end-to-end mobility driven framework for
efficient data processing in IoT setup is a challenging issue
in the present era.

3 MOBI-IOST FRAMEWORK

The hierarchical structure of Mobi-IoST is represented in
Fig. 2. Fig. 3 depicts the overall flow of the framework,
Mobi-IoST. IoST or Internet of Spatial Things deals with IoT
data along with spatial perspective. As depicted in Fig. 2,
in the bottom layer several IoT sensors such as accelerom-
eter, GPS, temperature, blood-pressure, proximity sensors

capture application specific data. These IoT sensors are
either present within the edge devices or connected with
the edge devices, namely, mobile phone, vehicles, which
change their locations. When any of these edge devices
needs assistance, it contacts the current RSU (the RSU under
which it currently belongs). In this work, RSU is used
as fog device and it is capable of small scale processing.
If the processing is beyond the computational capability
of the RSU, then it delegates the task to the cloud. The
top layer of the hierarchical structure consists of cloud
servers, which store spatial data, specifically, mobility traces,
location-specific information, city-structure (POI placements
and other contextual information). The cloud processing
unit executes the task and sends the result to the RSU, where
the tasks are application-specific. For example, in case of
an emergency, an ambulance needs to reach the destination
(a medical centre) without any delay. The cloud processing
unit extracts and discovers the present traffic status and pre-
dicts the path with minimum commuting time. As the cloud
storage unit has all the RSU information, it notifies all the
RSUs within the predicted path for signaling and actuating
such that the ambulance does not face any traffic congestion.
Further, for any personalized recommendation, a mobile
user can always send a request to the current RSU. Suppose,
a user captures her basic health-related data using the IoT
devices and sends a request to the RSU through the mobile
device for predicting the current health status. Furthermore,
the resources can be efficiently managed by this framework:
movement analysis module can predict variation of travel
demand apriori and notify the RSUs accordingly, while
the RSUs can decide about the dissemination of resources
(traffic or network) efficiently.

The major modules of the framework are: (i) movement
pattern modelling, (ii) predicting next location sequences,
(iii) delivery of result after processing in a timely manner.
Finally, the experimental and simulation results yield the
effectiveness of the framework.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

5

3.1 Exploring Movement Semantics from Trajectory
Traces
This section presents the methodology to model movement
patterns and predicts the next location sequences efficiently
and timely manner. Location prediction of moving agents,
such as, people, vehicles is a challenging task for varied
location-based services [23]. Specifically, in our work, loca-
tion prediction helps to locate the moving agent’s locations
in near future and subsequently data is sent to the appro-
priate RSU. Whenever a mobile device gets connected to
a RSU, the GPS log of the mobile device is extracted and
stored in the cloud dynamically.

It may be noted that location prediction depends on
several factors, namely, day of the week, time-slot of a day
and road-structure. The first step of movement behaviour
modelling is to find out the frequent pattern followed by
the users in varied contexts. For example, the path followed
by an individual differs significantly in weekends compared
to his/her weekdays’ trajectory signature. Moreover human
movements follow some intent [3] and extracting the pur-
pose behind any move is the fundamental step to predict
next location effectively. Few preliminary concepts which
are used in this paper are defined as follows:

• GPS log (G): GPS log is the collection of time-
stamped latitude, longitude information. The GPS
trajectory or trace is formed by connecting the lo-
cation information on increasing time-ordering.
Traj(p1, . . . , pn) :< p1(lat1, lon1), t1 >→<
p2(lat2, lon2), t2 > · · · →< pn(latn, lonn), tn >,
where t1 < t2 < · · · < tn.

• Stay-Point (S): Stay-point of a trajectory is defined
as a location (typically, polygon), where the moving
agent stops for a time-value δt and δt > tthresh,
and all the GPS points within δt reside in the area
areastay of the polygon, where areastay < arear .
Here, polygon is a data-type which represents spa-
tial data [24] and tthresh, arear are time-threshold
and coverage-area threshold for detecting stay-points
from the trajectory respectively. In our analysis, we
have considered the parameter values as, tthresh =
12mins and arear = 2km2.

• POI and Geo-tagged Trajectory: Point-of-interest (POI)
of a GPS location denotes the nearby landmark of a
location, such as, residential area, supermarket etc.
We have followed the POItaxonomy

1 to extract such
POI information using Google Place API. Geotagged
trajectory is generated by appending the geo-tagged
information of the stay-points within the trajectory.

• Trajectory window (TrajW): Trajectory window
stores the location sequence information between
two such stay-points in an uniform sampling rate.

Augmenting Semantic Information with GPS log:
Human movement semantics can be analysed if additional
information such as, POI, road-network structure and stay-
point information are appended with the raw GPS traces.

- Road network of the study region is extracted from
OpenStreetMap (OSM) 2. The road network is rep-

1. https://developer.foursquare.com/docs/resources/categories/
2. OpenStreetMap: https://www.openstreetmap.org

resented by a directed graph R = (V,E), where
e ⊆ |E| denotes the road-segments of the region
and v ⊆ |V | is the intersection points of such road
segments. Map-matching algorithm [25] has been
deployed, which considers both geometric and topo-
logical structure of the road-network to associate the
road-segments along with the trajectory traces.

- Each stay-point of the trajectory is geo-tagged with
the nearby POI location. Here, we have implemented
the iterative reverse geo-coding technique to extract
nearest landmark of the stay-point.

After the addition of semantic information with the raw
traces, a trajectory trace takes the form:
< pa, ta, Residential >, TrajW [(pi, ti, ex), (pi+1, ti +
δt, ex), (pi+2, ti + 2× δt, ex), . . .],
< pb, tb, SuperMarket >, TrajW [(pj , tj , ey), (pj+1, tj +
δt, ey), (pj+2, tj + 2× δt, ey), . . .],
< pc, tc, Residential >.
Here, pa, pb and pc are three stay-points with geo-tagged in-
formation residential building and supermarket. TrajW stores
the route information followed by the trajectory, where
ex, ey are the road-segments of the road-network of the
study region.

Processing of Large Mobility Datasets in Cloud
With the advances in sensor technologies and the prolifera-
tion of smartphones, a huge amount of mobility traces are
generated by moving agents. One of the major challenges
is to analyze the vast amount of data due to computational
complexity and storage limitations. To this end, we propose
to migrate the computation of mobility analysis and storage
of movement traces in the cloud for faster response. It may
be noted that the locations and coverage areas of the RSUs
need to be maintained in the cloud storage such that it can
predict the next location of the moving agent to determine
the appropriate RSU, which will serve the agent at that
time. Here, large cell base stations [26] are the RSUs. The
macrocell base station is referred to as macro RSU and
microcell base station is referred to as micro RSU. The
coverage area of macro RSU and micro RSU are 1-20km and
200m-1km respectively [26]. The framework is implemented
in Google Cloud Platform (GCP) by utilizing several storage
and computational components of GCP. In our framework,
cloud storage is of four types:

- Grid based storage of the study region: The study
region is segmented into uniform hexagonal grids
and information, such as, road structure or POIs,
RSUs are associated with each such grids. Our propo-
sition is to segment the spatial region into grids such
that each grid encloses the coverage area of at least
one micro RSU.
The grid-segmentation process initiates with the lo-
cation of one RSU. Suppose, the location of the RSU
(say, RSUi) is p = (x, y) and the length of the side of
the hexagon (gi) is a = 8m. An iterative process is de-
ployed until the complete study region is segmented
with hexagonal grids. In the first iteration, center
points of the 6 neighbouring grids of gi are calculated
and subsequently, the neighbouring hexagonal grids
are constructed.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

6

In the next step, Geohash code of all hexagonal grids
are computed. Geohash code of the grids represent
the spatial location on the earth surface using unique
alphanumeric strings. Cloud Spanner of GCP is used
to store these information which supports horizontal
scalability.

- Road network information storage: This module
stores the road network information, namely, connec-
tions among different road-segments and road-type
(highway, lane etc.). The information is stored in an
adjacency matrix format, where each vertex maintains
a list of outgoing edges (outdegree of the vertex). The
data-type of the list is polyline, which is a spatial-data
type [24] and represents the road-segments on the
map.

- RSU information storage: It stores the list of RSUs
along with the unique-id, coverage area, location (lat-
itude, longitude) and other information such as, type
(micro RSU or macro RSU) etc. Cloud BigQuery of
GCP is utilized to store the road network information
and RSU information as well.

- Frequent path storage: The frequent path followed
by individual moving agents are extracted and mod-
elled in our work. Details are presented in section
3.1.1. Cloud Bigtable of GCP is utilized to store the
road network information.

The computational cost of the mobility traces is huge
since it deals with time-series data with very high sampling
rate. The key challenge is to reduce the processing time of
the location prediction, and therefore, an efficient scheme
is required. Here, we have deployed a hash-based indexing
scheme, where nearby locations are stored in the subsequent
buckets of the hash-table.

3.1.1 Movement behaviour modelling
In this section, we discuss how movement behaviour of
users can be modelled to explore the frequent paths fol-
lowed by them in different contexts. The process of semantic
enrichment of GPS log of users has already been discussed
in section 3.1. Here, we propose User movement graph, a
multi-layer graphical model to model the users’ movement
patterns from the spatio-temporal context. The objective
to use the multi-layer network is that human movement
patterns typically depend on temporal variations (weekdays
or weekends, morning or evening), road networks and
stay-points. All of these information need to be encoded
and interconnections of the information cannot be properly
captured in a single layer.

User movement graph (MG): User movement graph is
defined as MG = (N,L, la), where N denotes the nodes,
L denotes the links and label is represented by la. The user
movement graph has four labels:

• Road network: The layer 1 consists of road network
information, where nodes are intersection points of
road-segments.

• RSU network: The RSU information (location and
coverage area) is stored in layer 2.

• Stay-point information: The stay-point information
including location and type of stay-point are stored
in layer 3.

• Frequent path: The movement paths frequently fol-
lowed by the user is stored in layer 4.

It may be noted that each layer is interconnected with each
other. As the construction of layer 1, layer 2 and layer 3 are
straight forward, we discuss the frequent pattern mining
process of layer 4 in detail.

The frequent path network of layer 4 is represented by
probabilistic graphical model or Dynamic Bayesian network
FPN(V,E,Υ) where V is the set of stay-points, E denotes
the direction of visit among different stay-points and Υ is
the network quantify parameter. The key intuitive to uti-
lize probabilistic graphical model is that the visit sequence
of a person somewhat follows conditional dependency. In
simple words, whether a person will visit location l1 or
l2 at t + 1, depends on her present stay-point at t. In this
work, we have considered both spatial location and temporal
span of a visit-sequence to model FPN of user movement
graph. Each node (stay-points: v ⊆ V) of the network is
conditionally independent of its non-descendants given its
parent node (Pa(v)). Suppose, a visit-sequence is given as
V = (V1, . . . , VN), the probability distribution is computed
as follows:

P (V) =

N∏
i=1

P (Vi|Pa(Vi)) (1)

FPN captures the dynamic nature of the mobility infor-
mation by representing multiple copies of the spatial-
information, one for each time-slice Vt = (V1,t . . . , Vd,t).
Subsequently, the transition distribution from one state
to other (P (Vt+1|Vt)) is computed from two time-slice
Bayesian network. The spatial location information (Vt) is
typically divided into two sets, namely, unobserved state
variables (St) and the observed state variables (Lt, in our
case, location information from RSUs). The joint probabil-
ity distribution is calculated by unrolling two time-slice
Bayesian networks:

P (S0, . . . , ST , L0, . . . , LT) =

P (S0)P (L0|S0)
T∏

t=1

P (St|St−1)P (Lt|St)
(2)

It may be noted that we have represented the stay-points as
grid-location and transition from one state to another state
signifies that the agent is moving from one grid to another.

Next, we deploy a spatio-temporal trajectory clustering
(TrajCS) on FPN which captures the signature or fre-
quently visited paths of the individual. The process follows
a hierarchical top-down approach, and based on the dis-
tance measure new clusters are generated and appended
in the list. The trajectory clustering distance measure is
computed as follows:
TrajCS(Si, Sj) =

0 if(i == 0)
or(j == 0)

TrajCS(Si−1, Sj−1) if((Si == Sj)
+C ×Min(TScorei , TScorej) and(si+1) 6= (sj+1))
MAX(TrajCS(Si−1, Sj),

T rajCS(Si, Sj−1)) if(si 6= sj)

(3)

where Si represents a set of locations, si denotes one GPS
point of the set Si and C is the parameter to augment the

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

7

Algorithm 1 : Frequent path mining - A trajectory clustering approach

Input: Set of trajectory T , stay-points S
Output: Frequent path network < FPN(V,E,Υ) > . Frequent path network for each individual

1: clus, S, V,E ← NULL;
2: for each trajectoty window tr ∈ T do
3: for each unvisited stay − point s ∈ S do
4: V.append(s) . Create new node
5: visited← s
6: Υ : CPT ← Create ConditionalProbabilityTable(s)
7: t← extractTemporal(s) . Temporal information of the stay-point
8: E.append(genEdge(S, t)) . genEdge creates directed edge based on frequency of the visit and temporal information
9: end for

10: end for
11: for each path trp ∈ FPN do . Path represents the successive sequence of stay-points
12: Ne← ExtractTrajW (trp, FPN) . Extract trajectory-windows within spatio-temporal locality
13: D ← computeLCSS(Ne, trp)
14: if D > thresh then
15: Ignore Ne
16: end if
17: if D ≤ thresh then
18: Create new cluster clust
19: clustt.append(Ne, trp) . Appending new cluster in the list
20: visited← Ne
21: Modify CPT (clustt) . Modify the CPT of all nodes in clustt calculating the frequency of visit
22: end if
23: end for

probability of the path taken. Tscore computes the temporal
similarity between two different stay-points of the trajectory
and TrajCS method is recursively called for extracting the
signature pattern. The proposed distance measure appends
temporal information with the conventional Longest Com-
mon Sub-Sequence (LCSS) clustering method [27]. Algorithm
1 describes the basic steps of generating FPN from the
trajectory traces of agents.

This section describes how users’ frequent movement
patterns are extracted and stored along with other contex-
tual information. Furthermore, the trajectory clustering and
multi-layer graphical model help to effectively model the
movement behaviour of agents in the cloud server.

3.1.2 Next location sequence prediction from mobility infor-
mation
This helps to calculate the probable path visit by the user
apriori. The location prediction task is formulated as fol-
lows: Given the historical observations of a moving agent m and
the current location L at time t, predict the agent’s anticipated
location sequences (S) following δ time-instances

Typically, the task is formulated as information retrieval
task considering the fact that people’s movement patterns
follow spatio-temporal regularity and effective movement
behaviour modelling leads to accurate location prediction.
Here, we have deployed Hidden Markov model (HMM) (say
χ) based prediction technique with two kinds of stochastic
variables, state variables (hidden) and observable variables. Each
individual’s movement is modelled as kth order Markov
chain and the transition from one place to another place is
modelled based on MG and χ.

Algorithm 2 describes the basic steps of location pre-
diction. The first step map locates the current location (grid
location) of the moving agent and then the model predicts
the sequences of locations based on the context and finally,
update process updates the result based on the current input

from the mobile device. It may be noted that the order (k) of
the markov chain is dependent on the user’s frequent move-
ment pattern and extracted from FPN of user movement
graph (MG).

P (si|si−1, si−2, . . . , s1) = P (si|si−1, . . . , si−k) (4)

In the next step, forward algorithm [28] is deployed to find
out the sequences of stay-points, given as:

P (Lk|χ) =

seqmax∑
i=1

[

k∏
j=1

P (L(j)|Si(j))

∗ P (Si(j)|Si(j − 1), Si(j − 2), ..., 1)]

(5)

where, seqmax and Si(j) represent the maximum num-
ber of hidden state sequences and hidden states. Here,
model is represented as k-order markov chain where the next
location depends on k recent observations. Next, a variant
of verterbi algorithm using time-relationships is deployed to
discover the possible sequences of states. The transition and
emission probabilities of χ are computed by adjusting the
model parameters. An iterative version of forward backward
algorithm is implemented to produce the sequences effec-
tively.

Three types of location prediction tasks have been car-
ried out in this work: (i) location sequence prediction in a
specific time-threshold, (ii) predicting appropriate POI (say,
health-care center) and the path and finally, (iii) given the
destination and present location of the agent predicting the
path with less commuting time based on the traffic states
of the road-network. The location sequence prediction in
specific time-thresholds is computed directly from χ on
MG. The POI and path prediction is carried out by over-
lapping the road-network structure (layer 1 of MG) and
frequent path pattern (layer 4 of MG). Finally, given source
and destination, the markov model is used along with the

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

8

Algorithm 2 : Location prediction - map and update process

Input: User movement graph MG, Present location s, Trajectory log T
Output: < s′, Edge− list > . sequence of next location sequences

1: function MAPPER(s,MG, T) :
2: j ← geo− hascode(s) . extract the grids where trajectory points placed
3: E′ ← extract pattern(MG, j) . extract the frequent trajectory patterns within the grid
4: for all ti ∈ T do
5: L← predictLoc[χ(ti, s)] . HMM based prediction
6: p← ComputeProb(s, arraylist[L, t]) . Compute transition probability for all patterns in partcular time-stamp
7: dist← ComputeTrajCS(E′, ti) . Compute the trajCS distance for each such pattern
8: s′ ← SORT (arraylist[p], arraylist[dist]) . Predicted location with maximum probability
9: end for

10: Print < s′ : arraylist(E′
0) >

11: function Update(s, arraylist[s′]) : . If sudden change in mobility pattern observed
12: for all ti do
13: for all ea ∈ arraylist[s′] do
14: Append trajectory window Tre containing ea in FPN
15: ModifyCPT (ea, ti) . Modify CPT of all nodes with outgoing/incoming edge ea
16: ModifyProb(ea, ti) . Modify transition matrix of all sequences containing ea
17: Mapper(s,MG, Tre)
18: end for
19: end for

traffic-state of the region, where s1 and sn are specified.
It may be noted that our algorithm (Algorithm 2) is self-
adaptive, i.e., the update function (also, refer ’Update’ arrow
of Fig. 3) changes the modelling algorithm in case any of the
prediction result fails.

3.2 Delivery of Result after Data Processing

The IoT devices are connected with the edge device, e.g.
the sensors within the mobile device. With the increasing
availability of smartphones, we have considered mobile
devices as the edge devices. If the mobile device is able to
process the raw data received from the IoT devices, it does
the same by working as an edge device and generates the
result. Otherwise, the mobile device sends the data to the
RSU, which will act as a fog device. Each RSU maintains a
look-up table, which holds the mobile device IDs present
under its coverage. The International Mobile Equipment
Identity (IMEI) number is considered as the mobile device
ID. The RSU after receiving the raw data from the mobile
device, checks its current load and ability to process the
data. In this regard, two cases appear as follows:

• If the RSU’s current load is same as the maximum
load it can handle or an exhaustive computation is
required to perform which is beyond the capability of
the RSU, it forwards the data to the cloud along with
the device ID and the request ID. After processing
the data, the cloud finds the current location of the
device based on the user’s geo-location information
(refer section 3.1). Based on the current location of the
device, the cloud identifies the RSU under which the
mobile device is currently located. The cloud sends
the result to the RSU along with the device ID and
the request ID. The RSU forwards the result to the
mobile device.

• If the RSU is able to process the raw data and its
current load is less than the maximum load it can
handle, the RSU processes the data and sends the
result to the mobile device. However, as the device is

in mobility, it may be possible that the RSU finishes
processing and the mobile device moves away. In
such a case, the RSU sends the result to the cloud
along with the request ID and the device ID. The
current location of the device is predicted by the
cloud based on the user’s geo-location information.
Based on the current location of the device, the cloud
identifies the RSU under which the mobile device is
currently located. The cloud sends the result to the
RSU along with the device ID and the request ID.
The RSU forwards the result to the mobile device.

In our approach as the mobility information is updated
dynamically, the probability of the presence of the mobile
device under the predicted RSU is high. However, if the
device losses connection with the network for a long du-
ration, there is a probability that the mobile is not located
under the coverage of the predicted RSU. In such cases,
after receiving the result from the cloud, the predicted
RSU sends feedback to the cloud that the mobile device is
not present under its coverage. By this time, if the mobile
device gets connected with a RSU, it will send a request for
the result with the request ID to the RSU. The RSU then
forwards it to the cloud. The cloud then sends the result to
the mobile device through the RSU and updates the user
mobility information accordingly. Algorithm 3 summarizes
the steps of the working model of the proposed framework
Mobi-IoST. As we observe in the proposed system the cloud
after analysing the user mobility information, finds out the
probable RSU currently serving the device and accordingly
delivers the result. Hence, intelligent decision making is
performed by the cloud, which makes the system efficient.

4 DELAY AND POWER CONSUMPTION IN MOBI-
IOST
The mobile device transmits the data to the RSU with which
it is currently connected and requests for providing the
result after processing. According to our strategy, either RSU
or cloud performs data processing based on the complexity

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

9

Algorithm 3 : Working Model of Mobi-IoST

Input: Raw data received from IoT devices
Output: Result after processing the raw data

1: mobile device receives raw data from the IoT devices
2: if mobile device is able to process the data then
3: mobile device works as edge device and processes the data
4: else
5: mobile device forwards the data to the fog device RSU under which it is currently present
6: if current load of the RSU < maximum load capacity of the RSU then
7: go to step 11
8: else
9: go to step 34

10: end if
11: if RSU is able to process the data then
12: RSU processes the data
13: if the mobile device is still connected then
14: RSU delivers the result to the device
15: else
16: RSU forwards result to the cloud along with the device ID and the request ID
17: cloud predicts current location of the mobile device from the mobility information using Algorithm 1 and 2
18: cloud identifies the RSU serving the predicted location
19: cloud forwards the result to the predicted RSU along with the device ID and the request ID
20: if the mobile device is connected with the predicted RSU then
21: RSU sends the result to the mobile device
22: else
23: RSU sends a feedback to the cloud that the mobile device is not present in its coverage
24: cloud after receiving the feedback stores the result
25: if the mobile device gets connected with a RSU then
26: mobile device requests for the result to the RSU with the request ID
27: RSU forwards the request to the cloud
28: cloud sends the result to the RSU and updates the mobility information
29: RSU sends the result to the mobile device
30: end if
31: end if
32: end if
33: else
34: RSU sends the raw data along with the device ID and the request ID to the cloud
35: cloud processes the data
36: go to step 17
37: end if
38: end if

TABLE 1: Symbols used in power and delay calculation

Symbol Definition
u Velocity of moving agent
Dc Amount of data collected and transmitted
Dr Amount of result data received

Uptmr Data transmission rate in uplink between
mobile device and RSU

Dwtmr Data transmission rate in downlink between
mobile device and RSU

Uptrc Data transmission rate in uplink between
RSU and cloud

Dwtrc Data transmission rate in downlink between
RSU and cloud

fmr Uplink data failure rate between
mobile device and RSU

frm Downlink data failure rate between
mobile device and RSU

frc Uplink data failure rate between RSU and cloud
fcr Downlink data failure rate between RSU and cloud
dpr Data amount processed per unit time by the RSU
dpc Data amount processed per unit time by the cloud
Tm Delay to determine the current location of the device
Pa Power consumption of mobile device in active mode
Pi Power consumption of mobile device in idle mode

of the computation required for processing the data and the
current load of the RSU. Here, two cases are considered as
discussed previously:

• Information processing inside the RSU
• Information processing inside the cloud

The symbols used in the delay and power calculation of the
proposed model, are defined in TABLE 1.

4.1 Delay model for Information Processing in RSU
The uplink data transmission delay between mobile device
and RSU is given as:

Tmr = (1 + fmr) ∗ (Dc/Uptmr) (6)

The downlink data transmission delay between mobile de-
vice and RSU is given as:

Trm = (1 + frm) ∗ (Dr/Dwtmr) (7)

The total data transmission delay between mobile device
and RSU is given as:

Tt = Tmr + Trm (8)

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

10

The data processing delay inside the RSU is given as:

Tpr = Dc/dpr (9)

The total delay for data transmission and processing is:

Ttot = Tt + Tpr (10)

The mobile device while located at point i transmits the data
to the RSU and requests for processing. Let the radius of the
RSU’s coverage area is R and the last visited point of the
mobile device inside the RSU is k. The delay in movement
from point i to point k is given as:

Tik =
k−1∑
i=1

((Di(i+1))/ui) (11)

where ui is the velocity of the mobile device at location
point i and Di(i+1) is the distance between two consecutive
location points i and i + 1. If Tik > Ttot, the mobile device
is still inside the coverage of the RSU. Hence, the RSU will
deliver the result to the mobile device. Hence, the round-trip
delay is given as:

Tdel1 = Ttot (12)

The power consumption of the mobile device during this
period is given as:

Pdel1 = Tt ∗ Pa + Tpr ∗ Pi (13)

As the RSU performs data processing instead of the cloud,
the transmission delay is reduced. Hence, the delay in
delivering the result is reduced in our system. Accordingly,
the power consumption of the mobile device is also reduced.
Else if Tik ≤ Ttot, the mobile device has moved to the
coverage of another RSU. Hence, the previous RSU will
forward the result to the cloud along with the request ID
and the mobile device ID. The cloud contains the mobil-
ity information of the mobile devices. Using the location
prediction strategy described in the section 3.1.2, the cloud
will find out the current probable location of the mobile
device. Let t is the time instant when the mobile device is
at location i. The cloud finds out the location point visited
by the mobile device at time instant (t+ Ttot), and the RSU
which is currently serving the device. The cloud delivers the
result to the selected RSU, which forwards the result to the
mobile device. In this case, the round-trip delay is:

Tdel21 = Ttot + (Dr/Uptrc)(1 + frc)

+Tm + (Dr/Dwtrc)(1 + fcr)
(14)

where Tm is the delay for determining the current location
of the device and correspondingly the RSU currently serving
the device, based on the mobility information of the user.
The power consumption of the mobile device during this
period is given as:

Pdel21 = Tt ∗ Pa + (Tpr + (Dr/Uptrc)(1 + frc)

+Tm + (Dr/Dwtrc)(1 + fcr)) ∗ Pi
(15)

If the device is not connected with the selected RSU, the
RSU will send a feedback to the cloud. If the mobile device
sends request to a RSU for the result, then the cloud will
deliver the result to the device through the current RSU. In
this case, the round-trip delay is given as:

Tdel22 = Tdel21+Tf +Tr1+Tr2+(Dr/Dwtrc)(1+fcr) (16)

where Tf is the delay for sending feedback from the RSU to
the cloud, Tr1 is the delay for sending request by a mobile
device for result to the RSU, under which the device is
present, and Tr2 is the delay for forwarding the request by
the RSU to the cloud. The power consumption of the mobile
device during this period is given as:

Pdel22 = Pdel21 + Tr1 ∗ Pa + (Tf + Tr2

+(Dr/Dwtrc)(1 + fcr)) ∗ Pi
(17)

If ps and pu are the probabilities of the presence and non-
presence of the mobile device under the predicted RSU
respectively, the round-trip delay is given as:

Tdel2 = ps ∗ Tdel21 + pu ∗ Tdel22 (18)

The power consumption of the mobile device during this
period is given as:

Pdel2 = ps ∗ Pdel21 + pu ∗ Pdel22 (19)

However, though we have considered the case that the
mobile device may not be present under the coverage of
the predicted RSU, the probability of this case is very
low, because the cloud is dynamically maintaining the user
mobility information. As the user current location and the
current RSU serving the mobile device is predicted in our
system, the delay in delivering the result is reduced. Ac-
cordingly, the power consumption of the mobile device is
reduced.

4.2 Delay model for Information Processing in Cloud
From the previous subsection the total delay in data trans-
mission between RSU and mobile device (Tt) has been
determined using equation (10). Now, if cloud performs
data processing, then the uplink data transmission delay
between RSU and cloud is given as:

Trc = (1 + frc) ∗ (Dc/Uptrc) (20)

The downlink data transmission delay between RSU and
cloud is given as:

Tcr = (1 + fcr) ∗ (Dr/Dwtrc) (21)

Therefore, the total data transmission delay between mobile
device and cloud is given as:

Ttn = Tt + Trc + Tcr (22)

The data processing delay inside the cloud is given as:

Tc = Dc/dpc (23)

The cloud after processing the data, predicts the current
location of the user by analysing the mobility information
and accordingly the RSU currently serving the mobile de-
vice. After that the cloud sends the result to that RSU along
with the device ID and the request ID. Hence, the round-trip
delay is:

Tdel31 = Ttn + Tc + Tm (24)

where Tm is the delay in predicting the current location and
the RSU serving the device currently. The power consump-
tion of the mobile device during this period is given as:

Pdel31 = Tt ∗ Pa + (Trc + Tcr + Tc + Tm) ∗ Pi (25)

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

11

If the device is not connected with the selected RSU, the
RSU will send a feedback to the cloud. If the mobile device
sends request to a RSU for the result, then the cloud will
deliver the result to the device through the current RSU. In
this case, the round-trip delay is given as:

Tdel32 = Tdel31+Tf +Tr1+Tr2+(Dr/Dwtrc)(1+fcr) (26)

where Tf is the delay for sending feedback from the RSU to
the cloud, Tr1 is the delay for sending request by a mobile
device for result to the RSU, under which the device is
present, and Tr2 is the delay for forwarding the request by
the RSU to the cloud. The power consumption of the mobile
device during this period is given as:

Pdel32 = Pdel31 + Tr1 ∗ Pa + (Tf + Tr2

+(Dr/Dwtrc)(1 + fcr)) ∗ Pi
(27)

If ps and pu are the probabilities of the presence and non-
presence of the mobile device under the predicted RSU
respectively, the round-trip delay is given as:

Tdel3 = ps ∗ Tdel31 + pu ∗ Tdel32 (28)

The power consumption of the mobile device during this
period is given as:

Pdel3 = ps ∗ Pdel31 + pu ∗ Pdel32 (29)

However, as the cloud is dynamically maintaining the user
mobility information, the probability of the case that the
mobile device is not present under the coverage of the pre-
dicted RSU is very low. As in the proposed model the RSU
under which the user is currently present is predicted, the
delay in delivering the result is faster and correspondingly
the power consumption of the mobile device is reduced.

5 PERFORMANCE EVALUATION

The performance analysis has been carried out in following
aspects: (i) movement pattern modelling, (ii) next location
(and sequence) prediction and (iii) route prediction given
the source and destination pair.

5.1 Mobility Dataset
The mobility dataset3 is collected from 100 mobile users
from their GPS-enabled smart phones and Google Map time-
line for 6 months in the Kharagpur and Kolkata region of
India. The dataset consists of timeseries data of GPS traces
with the total time-duration of 26,8041 hours. The GPS
points are logged in a high-sampling rate of 60-75secs.

5.2 Experimental Set-up
We aim to demonstrate the efficacy of Mobi-IoST with the
real-life mobility dataset. Typically, accuracy, recall and F-
measure are used to evaluate the performance of Mobi-IoST.
Six baseline methods are implemented to compare with
the proposed Mobi-IoST approach. 70% of the movement
traces are used for modelling, 20% and 10% for testing and
validating respectively. The location sequence prediction

3. Sample dataset available:
https://drive.google.com/drive/folders/1BpM-
K3clH6XYpSHkFe12aGsG8n1AclI4?usp=sharing

task is evaluated in different time-scales, from 5mins to
60mins. The path prediction task has been carried out in
seven different time-bins (commuting time) (i) ≤10mins, (ii)
>10 and ≤15mins, (iii) >15 and ≤20mins, (iv) >20 and
≤30mins, (v) >30 and ≤40mins, (vi) >40 and ≤45mins and
(vii)>45 and≤50mins. The accuracy measure is represented
by the path similarity between the road-segments in the
predicted path and the actual query trajectory. For this
purpose, the trips are divided into seven classes based on
their commuting time. For each class, the tenfold cross val-
idation policy has been deployed where all trips within the
same class are randomly divided into ten folds, where nine
folds are utilized for training and one fold for validation.
It guarantees that any trip in the validation set will not
appear in the training set. Next, the prediction accuracy
for all the trips in the validation set are computed and the
average value of the accuracy measure for all seven classes
are reported.

5.3 Movement Analysis

The performance measurement of the movement analysis
module have been carried out by three measurements,
namely, accuracy, recall and F-measure. Apart from that, we
evaluate the performance of the movement behaviour mod-
elling framework by comparing with six baseline methods,
semantic trajectory modelling [16], Bayesian network [29], LCSS
[27], Markov chain [30], Convolutional Neural Network (CNN)
Approach [18] and Spatio-temporal Recurrent Neural network
(ST-RNN) [17]. It may be noted that the trajectory modelling
modules of all of the cited works have been implemented
with our dataset for better comparison and to depict the
effectiveness of our framework.

One of the major challenge of the proposed framework
is to reduce the delay in delivering the processed infor-
mation, and therefore if new GPS trace comes, the system
should be able to re-learn the pattern effectively. TABLE
2 shows the performance measurements (accuracy, learning
and re-learning time) compared to six baseline methods.
The cardinality (number of trajectory-windows × day) of
the test data of each agent for learning and re-learning
are 18 × 150 and 6 × 20 respectively. Vlachos et al. [27]
propose non-metric similarity function LCSS by computing
the similarity between trajectory segments. However, it only
calculates the topological or geometrical similarity ignoring
the semantics of the trajectories. Semantic enrichment of
trajectories and modelling to predict next location has been
studied in [16]. Mingqi et al. utilizes the Bayesian network
place classifier [29] to categorize the semantic of stay-points.
Cheng et al. [30] model the check-in sequences of individuals
using markov chain for personalized POI recommendations.
Recently researchers are devoted to deploy neural networks
[17], [18] to predict the next location sequences accurately.
Karatzoglou et al. [18] has utilized CNN for modelling
semantic trajectories, where each semantic location informa-
tion is represented by k-dimensional feature vector and fed into
the CNN model. Finally, backpropagation is used with the
Adam optimization technique to train the model. However,
it is observed from our experimentation that this method
does not perform well for the infrequent or less-occurring
locations in the trajectories and when the sequence of the

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

12

stay-points are larger than 8. The other baseline [17] is
capable to model periodical behavior and local temporal
contexts and accurately predict next locations. Further, the
performance of [18] is largely dependent on the level of
semantic information of the stay-points, thus leading to
uncertain outcomes for several prediction scenarios. Since
[17] is capable to model individuals’ mobility pattern in
different contexts by considering semantic information and
spatio-temporal periodic behaviour as well, we have carried
out a detailed comparison study with [17]. It is observed
from TABLE 2 that our framework, Mobi-IoST outperforms
all other baselines, except ST-RNN by approximately 10-
18%. Mobi-IoST not only provides next location prediction
based on some prediction technique (such as, CNN, RNN
or Markov-model), rather it models individual’s movement
patterns over days, captures the frequent path followed
in several contexts and makes the next location sequence
prediction. Further, it is observed that the learning and re-
learning rates of CNN and ST-RNN are significantly higher
by 10-20mins and 14-24mins than Mobi-IoST respectively.
These measurements are important for our case, since the
system needs to incorporate any sudden movement pattern
change of user effectively. The neural network based methods
are costly in terms of re-learning and stability. In summary,
the deep learning architectures used in the existing works
are computationally intensive, and it is shown that such
deep architecture may not be beneficial for time-critical
applications, where a delay-aware solution is necessary.

Fig. 4: Recall values for location prediction based on time-
stamp value (min)

Fig. 5: F-measure values for location prediction based on time-
stamp value (min)

Figs. 4-6 show the performance metrics of Mobi-IoST
with the existing work [17]. The accuracy to predict stay-
point information is represented in Fig. 6. It may be ob-
served that Mobi-IoST has accuracy of 88% to 95% for

Fig. 6: Accuracy percentage for prediction trajectory sequences

Fig. 7: Accuracy values for path prediction given source and
destination

trajectory stop sequences ranging from 2 to 10. There is a
significant drop of accuracy percentage from 93% to 80%
of [17] in the same set-up. The key reason behind this
observation is the proposed movement modelling named
User movement graph, where user movement pattern is mod-
elled in a multi-layer graphical model. The frequent path
network (FPN) (layer 4 of the User movement graph) learns the
movement paths frequently followed by the user deploying
Dynamic Bayesian network. Thus, the model captures all
sequences of paths visited in different spatial and temporal
contexts. Next, in the proposed model, k-order markov chain
is used to effectively model the spatio-temporal regularity of
the trajectory sequences, where the next location depends on
k recent observations. On the other side, the existing work
[17] use deep architecture to capture the spatial and tem-
poral contextual information, however fall short to predict
long sequences of trajectory stay-point or stop points. Fig. 4
and Fig. 5 show the recall and F-measure values of location
sequence prediction in different time-scale, from 5mins to
60mins. Since the major aim of this work is the efficient
delivery of service while the agent is on move, the exper-
imental evaluation based on the time-stamp value is justi-
fied. We have found the recall and F-measure values in the
range of 0.95 to 0.81 and 0.96 to 0.78 for twelve time-stamp
values respectively. The results indicate that Mobi-IoST not
only provides accurate predictions, but performs better than
ST-RNN [17] while the time-stamp values increase as shown
in Figs. 4 and 5. The reason behind the consistent prediction
result with increased time-stamp value is that we have
considered both spatial location and temporal span of a
visit-sequence to model the proposed FPN of user movement
graph. The prediction algorithm is capable to predict next
location sequences based on both recent k locations and

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

13

TABLE 2: Performance comparison of Movement modelling module of Mobi-IoST with baseline methods

Metric Semantic model [16] Bayesian [29] network LCSS [27] Markov predictor [30] CNN [18] ST-RNN [17] Mobi-IoST
Accuracy 84.02% 78.67% 72.95% 80.23% 86.08% 91.7% 93.25%

Learning (min) 8.4 10.2 16.8 10.6 32.4 22.8 12.6
(|TrajW | : 18× 150)

Re-learning (min) 3.8 6.6 14.2 6.2 28.6 18.6 4.2
(|TrajW | : 6× 20)

TABLE 3: Simulation parameters

Parameter Value
u 40-85km/hr

Uptmr 50Mbps
Dwtmr 70Mbps
Uptrc 75Mbps
Dwtrc 150Mbps
fmr 0.008-0.25
frm 0.008-0.25
frc 0.05-0.5
fcr 0.05-0.5
dpr 500Mbps
dpc 1Gbps
Tm 4.23-9.02s
Pa 0.11W
Pi 0.055W

the time-duration of each stay-points. Thus, the framework
is suitable to predict longer sequences of locations more
effectively than existing work. Fig. 7 represents the accuracy
of predicting path given source and destination, where x-
axis is the commuting time. The experimental set-up is
discussed in section 5.2. All of the performance measure
values are computed based on the correct number of grid-
id predictions. The accuracy percentage lies in the range of
89% to 95.3% for seven time-bins.

The performance evaluation is carried out to validate
whether Mobi-IoST is suitable to deliver the processed in-
formation to the user-device based on user mobility predic-
tion. To assist users and make intelligent decisions in time-
critical applications, it is very crucial to model and predict
users’ next locations apriori based on varied spatio-temporal
contexts. There are several challenges such as (i) how ac-
curately the model predicts next location sequences (not
only the immediate next location), (ii) whether the model is
capable to accommodate any sudden change of movement
pattern of users. It has been observed that our framework
has outperformed in all of the performance measurements
compared to the baseline methods. The experimental results
present that to predict user’s next location Mobi-IoST takes
approximately 4.23-9.02seconds, which is used in section 5.4
to determine the delay and power consumption in Mobi-
IoST.

5.4 Delay and Power Consumption
The mobile device sends data to the RSU for processing. The
RSU/cloud performs processing and sends back the result
to the mobile device. The mobile device may move to the
coverage of another RSU before acquiring the result. In such
cases, the connection interruption period is considered 10-30
sec. MATLAB2015 is used for the simulation. The parameter
values considered in this analysis are presented in TABLE 3.
In this analysis we consider the following two cases:

• Information processing inside the RSU

• Information processing inside the cloud

In the first case, we have considered health parameter
data transmitted by the mobile device. Blood pressure level
(systolic and diastolic), body temperature, pulse rate and
ECG data are considered. The RSU works as fog device and
has functional model (pre-defined by the medical experts) to
perform the processing. Based on the input (health param-
eter values, health profile of the user/patient and ambience
parameter values) the RSU executes the functional model
and predicts the health status. The RSU after processing
the health data, sends back the current health status (nor-
mal/abnormal) as result to the mobile device. If abnormality
is detected, then the parameters which seem to be abnormal
are also notified in the result. Here, a preliminary health
checking is performed by the RSU to predict the health
status. The collected health parameter values are compared
with the normal range, e.g. the normal blood pressure range,
normal body temperature, normal pulse rate etc. If each
of the collected value falls within the normal range with
respect to the current ambience and his/her health profile,
then health status is predicted as normal. Otherwise, the
health status is predicted as abnormal. The amount of data
transmission to serve each user request is considered 70-
90 KB. The round-trip delay and power consumption of
the mobile device (user-device) in the proposed approach,
are presented in Fig.8 and Fig.9. The delay and power are
measured in second (s) and watt (W) respectively. The delay
and power consumption of the mobile device in case of
Mobi-IoST are compared with the existing mobility-aware
task delegation method [15]. This is observed that for the
considered parameter values the delay in Mobi-IoST and
existing method [15] are approximately 0.02-0.03s and 0.03-
0.06s respectively (see Fig.8). This is also observed that for
the considered parameter values the power consumption
of mobile device in Mobi-IoST and existing method [15]
are approximately 2-3.5mW and 2.5-4.5mW respectively (see
Fig.9). In our approach the RSU works as a resourceful
fog device and performs the data processing. If the device
moves to the coverage of another RSU, the cloud predicts
the current RSU based on user mobility information. In
conventional method, the cloud performs data processing
and the user receives the result through the RSU. However,
if the user gets disconnected due to movement to another
RSU, the user has to access the cloud to retrieve the result
by serializing session information [15]. But in our approach,
the cloud itself sends the result to the RSU, that is currently
serving the device. The RSU then forwards the result to the
mobile device. Hence, the delay and power consumption of
the mobile device in the proposed system Mobi-IoST are less
than the existing system [15]. This is observed that Mobi-
IoST reduces the delay and power by approximately 23-26%
and 37-41% respectively than the existing method [15].
In the second case, we have considered video data is trans-

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

14

Fig. 8: Round-trip delay in proposed and existing methods (first
case)

Fig. 9: Power consumption of mobile device in proposed and
existing methods (first case)

Fig. 10: Round-trip delay in proposed and existing methods
(second case)

Fig. 11: Power consumption of mobile device in proposed and
existing methods (second case)

mitted by the mobile device. The RSU after processing the
video data, sends back the processed data to the mobile de-
vice. The amount of transmission to serve each user request
is considered 2-20 MB. The round-trip delay and power
consumption of mobile device in the proposed approach,
are presented in Fig.10 and Fig.11, and compared with the
existing mobility-based task delegation method [15]. This is
observed that for the considered parameter values the delay
in Mobi-IoST and existing method [15] are approximately
5-20s and 10-50s respectively (see Fig.10). This is also ob-
served that for the considered parameter values the power
consumption of mobile device in Mobi-IoST and existing
method [15] are approximately ≤ 1.5W and 0.5-3.5W re-
spectively (see Fig.11). In our approach the cloud performs
the data processing. After that based on user geo-location
information, the cloud predicts the current location of the
user and the RSU currently serving the device. The cloud
forwards the result to the RSU, which then sends back the
result to the mobile device. However, in the existing method,
the cloud performs data processing and the user receives the
result through the RSU after accessing the cloud. Moreover,
if the user gets disconnected and moves to the coverage
of another RSU, the user has to access the cloud through
the new RSU to retrieve the result by serializing session
information. Whereas in our approach, the cloud itself sends
the result to the RSU, that is currently serving the device.
The RSU then forwards the result to the mobile device.
Hence, the delay and power consumption of the mobile
device in the proposed system are less than the existing
system [15]. This is observed that the proposed system
reduces the delay and power by approximately 55-60% and
57-74% respectively than the existing system [15]. This is
observed that for small as well as large scale processing, our
Mobi-IoST reduces the delay and power consumption of the
mobile device. As a result, the QoS is enhanced.

6 CONCLUSIONS AND FUTURE WORK

Seamless connectivity is a major challenge during data and
computation offloading in any mobile network. The process-
ing of raw data collected using IoT devices and delivery of
the result to the client mobile device becomes a challenge
if the client frequently changes location. In this paper, we
have proposed a real-time cloud-fog-edge IoT collaborative
framework, namely Mobi-IoST, for efficiently delivering the
processed information to the user-device based on user mo-
bility prediction and intelligent decision making. The mobile
device acts as an edge device, and the RSU is used as fog
device for processing the raw data collected by the mobile
device from the IoT devices. If the user changes location
and gets disconnected, the RSU forwards the result to the
cloud. The cloud analyses the mobility pattern and delivers
the result accordingly. The mobility prediction module pri-
marily stores the movement traces and models the frequent
path followed by the individual in different contexts and
deploys a hidden markov model based location predictor for
efficiently predicting the location sequences. The real-life
data of movement traces yield approximately 10-18% im-
provement compared to other existing methods. Moreover,
the simulation results demonstrate that the proposed fog
computing framework reduces the delay and power by

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2941754, IEEE
Transactions on Network Science and Engineering

15

approximately 23-26% and 37-41% respectively than the
existing mobility-aware task delegation system. The Mobi-
IoST framework is quite generic and can be extended to
capture the cellular data usage patterns from such time-
series data and prediction of location sequences may help
to appropriately manage the power and bandwidth related
resources.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of things (iot): A vision, architectural elements, and future direc-
tions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–
1660, 2013.

[2] M. Chiang and T. Zhang, “Fog and iot: An overview of re-
search opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6,
pp. 854–864, 2016.

[3] S. Ghosh and S. K. Ghosh, “Thump: Semantic analysis on trajec-
tory traces to explore human movement pattern,” in Proceedings
of the 25th International Conference Companion on World Wide Web,
pp. 35–36, 2016.

[4] C. Chen, D. Zhang, X. Ma, B. Guo, L. Wang, Y. Wang, and
E. Sha, “Crowddeliver: planning city-wide package delivery paths
leveraging the crowd of taxis,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 6, pp. 1478–1496, 2017.

[5] K. A. Eldrandaly, M. Abdel-Basset, and L. A. Shawky, “Internet of
spatial things: A new reference model with insight analysis,” IEEE
Access, vol. 7, pp. 19653–19669, 2019.

[6] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud comput-
ing: A survey,” Future Generation Computer Systems, vol. 29, no. 1,
pp. 84–106, 2013.

[7] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng,
and B. Hu, “Energy-latency tradeoff for energy-aware offloading
in mobile edge computing networks,” IEEE Internet of Things
Journal, vol. 5, no. 4, pp. 2633–2645, 2018.

[8] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-
aware cloudlet-based mobile cloud computing model for green
computing,” Journal of Network and Computer Applications, vol. 59,
pp. 46–54, 2016.

[9] Y. Zhu, Q. He, J. Liu, B. Li, and Y. Hu, “When crowd meets
big video data: Cloud-edge collaborative transcoding for personal
livecast,” IEEE Transactions on Network Science and Engineering,
2018.

[10] Q. Fan and N. Ansari, “Towards workload balancing in fog
computing empowered iot,” IEEE Transactions on Network Science
and Engineering, 2018.

[11] C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, “Efficient mobility-
aware task offloading for vehicular edge computing networks,”
IEEE Access, 2019.

[12] C. Wang, Y. Li, and D. Jin, “Mobility-assisted opportunistic com-
putation offloading,” IEEE Communications Letters, vol. 18, no. 10,
pp. 1779–1782, 2014.

[13] F. Tang and H. Zhang, “Spatial task assignment based on informa-
tion gain in crowdsourcing,” IEEE Transactions on Network Science
and Engineering, 2019.

[14] H.-Q. Wu, L. Wang, and G. Xue, “Privacy-aware task allocation
and data aggregation in fog-assisted spatial crowdsourcing,” IEEE
Transactions on Network Science and Engineering, 2019.

[15] A. Mukherjee, D. G. Roy, and D. De, “Mobility-aware task delega-
tion model in mobile cloud computing,” The Journal of Supercom-
puting, vol. 75, no. 1, pp. 314–339, 2019.

[16] J. J.-C. Ying, W.-C. Lee, T.-C. Weng, and V. S. Tseng, “Semantic
trajectory mining for location prediction,” in Proceedings of the
19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 34–43, ACM, 2011.

[17] Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the next location: A
recurrent model with spatial and temporal contexts,” in Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

[18] A. Karatzoglou, N. Schnell, and M. Beigl, “A convolutional neural
network approach for modeling semantic trajectories and predict-
ing future locations,” in International Conference on Artificial Neural
Networks, pp. 61–72, Springer, 2018.

[19] G. Pan, G. Qi, Z. Wu, D. Zhang, and S. Li, “Land-use classification
using taxi gps traces,” IEEE Transactions on Intelligent Transportation
Systems, vol. 14, no. 1, pp. 113–123, 2013.

[20] S. Ghosh and S. K. Ghosh, “Modeling of human movement behav-
ioral knowledge from gps traces for categorizing mobile users,” in
Proceedings of the 26th International Conference on World Wide Web
Companion, pp. 51–58, 2017.

[21] B. Du, C. Liu, W. Zhou, Z. Hou, and H. Xiong, “Detecting
pickpocket suspects from large-scale public transit records,” IEEE
Transactions on Knowledge and Data Engineering, vol. 31, no. 3,
pp. 465–478, 2019.

[22] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of pre-
dictability in human mobility,” Science, vol. 327, no. 5968, pp. 1018–
1021, 2010.

[23] Y. Zheng, “Trajectory data mining: an overview,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 6, no. 3, p. 29, 2015.

[24] S. Shekhar and S. Chawla, Spatial databases: a tour, vol. 2003.
prentice hall Upper Saddle River, NJ, 2003.

[25] C. E. White, D. Bernstein, and A. L. Kornhauser, “Some map
matching algorithms for personal navigation assistants,” Trans-
portation research part c: emerging technologies, vol. 8, no. 1-6, pp. 91–
108, 2000.

[26] A. Mukherjee, S. Bhattacherjee, S. Pal, and D. De, “Femtocell
based green power consumption methods for mobile network,”
Computer Networks, vol. 57, no. 1, pp. 162–178, 2013.

[27] M. Vlachos, D. Gunopoulos, and G. Kollios, “Discovering similar
multidimensional trajectories,” in 18th International Conference on
Data Engineering, p. 0673, IEEE, 2002.

[28] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in
time-sequential images using hidden markov model,” in Proceed-
ings 1992 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 379–385, IEEE, 1992.

[29] M. Lv, L. Chen, and G. Chen, “Discovering personally seman-
tic places from gps trajectories,” in Proceedings of the 21st ACM
International Conference on Information and Knowledge Management,
pp. 1552–1556, ACM, 2012.

[30] C. Cheng, H. Yang, M. R. Lyu, and I. King, “Where you like to
go next: Successive point-of-interest recommendation,” in Twenty-
Third International Joint Conference on Artificial Intelligence, 2013.

Shreya Ghosh received the B.Tech. degree from
IIEST Shibpur, India, in 2015. She is currently a Re-
search Scholar with the Department of Computer Sci-
ence and Engineering, IIT Kharagpur, India working
towards her PhD. Her current research interests include
spatial informatics, trajectory data mining and cloud
computing. Shreya is the recipient of TCS fellowship.

Anwesha Mukherjee received M.Tech. and Ph.D.
degrees from the Department of Computer Science and
Engineering, West Bengal University of Technology, In-
dia, in 2011 and 2018, respectively. She is currently
working as Research Associate in the computer sci-
ence department of IIT Kharagpur. Her research areas
includes IoT, Fog computing and mobile network. She
has received Young Scientist Award from International
Union of Radio Science in 2014 at Beijing, China.

Soumya K Ghosh is currently a Professor with the
Department of Computer Science and Engineering, IIT
Kharagpur. He was with the Indian Space Research
Organization, Bengaluru, India. He He has authored
or coauthored more than 200 research papers in re-
puted journals and conference proceedings. His current
research interests include spatial data science, spatial
web services, and cloud computing.

Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and Dis-
tributed Systems (CLOUDS) Laboratory at the Univer-
sity of Melbourne, Australia. He is also serving as the
founding CEO of Manjrasoft, a spin-off company of the
University. He has authored over 625 publications and
seven text books. He is one of the highly cited authors
in computer science and software engineering world-
wide (h-index=127, g-index=275, 84,000+ citations). Dr.
Buyya is recognized as a ”Web of Science Highly Cited
Researcher” in 2016 and 2017 by Thomson Reuters,

a Fellow of IEEE, and Scopus Researcher of the Year 2017 with Excellence in
Innovative Research Award by Elsevier for his outstanding contributions to Cloud
computing.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on October 04,2020 at 18:24:43 UTC from IEEE Xplore. Restrictions apply.

