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• Type
– Inductive
– Grounded

• Waveform

• Location 
– Airborne
– Ground
– Borehole

Electromagnetic Survey: Sources
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Harmonic
(FDEM)

Transient
(TDEM)



• Which field?

• Which frequencies?

• times?

• Components? 

• Location? 

– Airborne

– Ground

– Borehole
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Electromagnetic Survey: Data
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Basic Equations

* Solve with sources and boundary conditions

Time Frequency

Faraday’s
Law

r⇥ e = � @b

@t
r⇥E = � i!B

Ampere’s
Law

Constitutive
Relationships
(non-dispersive)

r ·B = 0

J = �E

No Magnetic
Monopoles

j = �e

r · b = 0

b = µh

d = "e
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Electrical Resistivity / Conductivity 
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Magnetic Susceptibility
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Dielectric constant
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Quasi-static
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Time Frequency
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Basic Experiment

• Transmitter: 

– Produces a primary magnetic 
field

• Exciting the target: 

– Time varying magnetic fields 
generate electric fields 
everywhere 

– Producing currents in 
conductors

• Receiver:

– Induced currents produce 
secondary magnetic fields
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Frequency vs time

• Same physics 

• Time domain is more intuitive for understanding the physics.
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Outline
• TDEM: Currents and sounding curves for 1D earth

• Overview of inverse problem

• 1D inversion using SimPEG

• Effects of a background conductivity

• Conductive sphere in a halfspace

• 1D vs 3D inversions

• Examples where 3D inversion required?

• Frequency domain

• Summary
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EM with Inductive Sources: Time Domain

�(t): Dirac-delta function

b0

Transmitter current Receiver
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Footprint of Airborne EM system

• What volume of earth is “seen” by the airborne system?

– Where are the currents?

• Currents depend on 

– Transmitter 

– Waveform: time or frequency

– Background conductivity

• Simple case: loop source 

over homogeneous earth 

VMD

Current density
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Vertical Magnetic Dipole (VMD)

• Some questions
– Where, and how strong, are the currents? 

– How do they depend upon the conductivity?

– What do the resulting magnetic fields look like?

z =#20#m

⇢air

⇢1 = 100⌦m

⇢2 =? ⌦m

⇢3 = 100 ⌦m

Current densityGeometry

VMD

⇢half = 100 ⌦m

⇢air = 1 ⌦m
VMD
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VMD

Vertical Magnetic Dipole
over a halfspace (TDEM)

Step-off
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Current Density
Plan view

Geometry

• Time: 0.01ms

⇢air = 1 ⌦m

⇢half = 100 ⌦m

VMD

Current density (jy)
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⇢air = 1 ⌦m

⇢half = 100 ⌦m

VMD

Magnetic flux density

• Time: 0.01ms

Geometry Magnetic flux (b)
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Propagation through time

jy b

• Time: 0.002ms

• diffusion distance = 18 m
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Propagation through time

jy b

• Time: 0.01ms

• diffusion distance = 38 m
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Propagation through time

jy b

• Time: 0.035ms

• diffusion distance = 75 m
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Propagation through time

jy b

• Time: 0.110ms

• diffusion distance = 132 m
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Summary: propagation through time

0.002 ms 0.01 ms

0.035 ms

Nabighian (1979)

jy

jy

jy
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Sounding curve
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Jy-field (0.035 ms)

Jy-field (0.110 ms)

Jy-field (0.410 ms)

bz

dbz/dt



Important points

• Currents flow in same plane as 
transmitter currents

• Currents diffuse outward downward 

• Each transmitter has a “footprint”

• Max resolution controlled by earliest 
time

• Depth of investigation controlled by 
latest time

magnetic field (on-time)

jy
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Important points

magnetic field (on-time)

jy

• Currents flow in same plane as 
transmitter currents

• Currents diffuse outward downward 

• Each transmitter has a “footprint”

• Max resolution controlled by earliest 
time

• Depth of investigation controlled by 
latest time
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Conductive layer in a halfspace

• Loop source
- 13m radius

• Conductive layer
- 200 m below
- 50 m thickness

• Fields

- jy off-time
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50 ⌦m

1 ⌦m

50 ⌦m



Layered earth currents (jy)

Conductive

Resistive

Very conductive
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Layered earth currents (jy)

Conductive

Resistive

Very conductive
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Layered earth currents (jy)

Conductive

Resistive

Very conductive
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Sounding curve (bz)



Sounding curve (dbz/dt)

• We have data

• Invert to recover conductivity 



Inversion
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Observed data

Recovered conductivity 



Inversion flow chart
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Inverse problem

• Minimize 
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Tikhonov curveData misfit

Regularization

subject to mlower < m < mupper



Regularization and a-priori information
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Inversion Parameters: (model)

- conductivities 1D, 2D, or 3D 
- linear or log
- geometrical parameters
- …

- Smallness
- Smoothness
- Cell weight
- Face weight
- ..

Reference model Norms

- L_p: 0<p<2
- L2 (smooth)
- L0 (sparse)



Inversion
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Observed data

Recovered conductivity 

What software algorithm?



SimPEG-EM1D inversion code
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…

Air

�1

�2

�N�1

�N

Layered conductivity AEM data

• Spatial constraint
- Ask for horizontally smooth model
- Use Delaunay triangulation
- Similar to AarhusInv

• Effective tool to invert large scale 
AEM data

• Pseudo-analytic solution
- Similar to UBC EM1DFM and 

EM1DTM

• Multiple sources
- ~100,000 sources

• 1D inversion for each sounding



SimPEG-EM1D inversion code
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…

Air

�1

�2

�N�1

�N

Layered conductivity AEM data

• Spatial constraint
- Ask for horizontally smooth model
- Use Delaunay triangulation
- Similar to AarhusInv

• Effective tool to invert large scale 
AEM data

• Pseudo-analytic solution
- Similar to UBC EM1DFM and 

EM1DTM

• Multiple sources
- ~100, 000 sources

• 1D inversion for each sounding



Layered Earth: 1D inversion
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Recovered conductivity 

Sounding curves with noiseLayered conductivity

Observed data at a single sounding



1D inversion
• Recovered conductivity section

• Observed vs. Predicted
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Different regularization function
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Smooth (L2 norm)

Sparse (L0 norm)



EM effects with 3D structure: Conductive sphere
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Cyl Code
• Finite Volume EM 

– Frequency and Time

• Built on SimPEG

• Open source, available at:

• Papers 

http://em.geosci.xyz/apps.html
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Cockett et al, 2015

Heagy et al, 2017

http://em.geosci.xyz/apps.html
http://www.sciencedirect.com/science/article/pii/S009830041530056X?via=ihub
http://www.sciencedirect.com/science/article/pii/S0098300416303946


Effects of background resistivity: Time

• Buried, conductive sphere

• Vary background conductivity   

10-8 S/m background Current Density

• Time: 10-5 s
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Effects of background resistivity: Time

• Buried, conductive sphere

• Vary background conductivity   

10-2 S/m background Current Density

• Time: 10-5 s
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Effects of background resistivity: Time

• Buried, conductive sphere

• Vary background conductivity   

10-1 S/m background Current Density

• Time: 10-5 s
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Effects of background resistivity: Time

• Buried, conductive sphere

• Vary background conductivity   

1 S/m background Current Density

• Time: 10-5 s
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Effects of background resistivity: Time

1 S/m10-1 S/m

10-8 S/m 10-2 S/m

10-5 s
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Conductive sphere in a halfspace

50

• Explore fields

• Generate synthetic data (3D simulation)

• Invert in 1D (artefacts?)

• Invert in 3D

100m

50m

200m

1 S/m

0.02 S/m

(for more resistive 
background use 0.005 S/m)



Currents and Magnetic Field (x=0m)
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Currents and Magnetic Field (x=200m)
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Soundings
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100m

50m

200m

1 S/m 0.02 S/m

Responses are differ due 
to conductive sphere

x=0m

x=200m



Soundings
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100m

50m

200m

1 S/m 0.02 S/m

Responses are differ due 
to conductive sphere

x=0m

x=200m



AEM survey over a sphere
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• Loop source
- 13m radius
- 30 m height

• Survey geometry
- 11 lines
- 100 line spacing
- # of sounding: 1111

• Data
- dbz/dt
- 2% noise

0.01-10 ms
(21 channels)20 ms pulse

UBC-TDOctree code



Data map, profile, and decay
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Data map, profile, and decay
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Data map, profile, and decay
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1D inversion
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• Start: 0.02 S/m

• Reach target misfit 
(rms=1)

• Conductor at correct 
depth

• Underestimate 
conductivity value 
(max = 0.15 S/m)

• Resistive artifact below

Can 3D make it better?



3D inversion

60

• Use 1D conductivity as 
an initial model

• Closer to the true 
conductivity ( 1S/m)

• No resistive artifact



Comparison 1D and 3D
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3D1D



More resistive background.

62

• Decrease background 
conductivity 
- 0.02 à 0.005 S/m

• Pronounced pant-legs 
(larger  foot-print)

• Resistive artefact beneath 
conductor.  



Comparison 1D and 3D
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3D1D



Inversion with different backgrounds
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1D 3D

0.005 S/m 0.005 S/m

0.02 S/m 0.02 S/m



When is 3D inversion required?

• Depends upon the goal:

– target detection?

– detailed structure/

– What resolution scale is needed?

• Some other generic cases:

– compact resistor

– topography

– general 3D structure with different scale lengths 

65

1D conductivity

3D conductivity



Compact resistor in porphyry deposit

overburden 100 Ωm
thickness 60m

resistive stock 2000 Ωm
depth 60m ~ 400m
width 600m

conductive alteration 10 Ωm
thickness 150m

host rock 500 Ωm

VTEM sounding
flight height 50m

Resistive stock surrounded by 
conductive alteration halo

500 m

4.8 km

4.8 km



1D Inversion of 3D Synthetic Data
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1.2 km

800 m
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high late-time data 
over the stock



What is wrong with 1D inversion?
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blind area

H
J

Footprint sensitive to conducting halo around the stock



1D VS 3D: Mt. Milligan Synthetic Model

1D Inversion Model 3D Inversion Model



Topography

70

• Explore fields

• Generate synthetic data (3D simulation)

• Invert in 1D (artefacts?)

• Invert in 3D

500m

0.02 S/m



AEM surveys over topography
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500m

0.02 S/m

• Loop source
- 13m radius
- 30 m height

• Survey geometry
- 11 lines
- 100 line spacing
- # of sounding: 1111

• Data
- dbz/dt
- 2% noise

0.01-10 ms
(21 channels)20 ms pulse

UBC-TDOctree code



Soundings
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Responses are differ due 
to conductive sphere

0.02 S/m

200m

x=0m



Soundings
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Responses are differ due 
to conductive sphere

0.02 S/m

200m

x=0m

x=200m



Currents and Magnetic Fields (x=0m)
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Currents and Magnetic Fields (x=200m)
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Data map, profile, and decay
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Data map, profile, and decay
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Data map, profiles, and sounding curves
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1D inversion

79

• Start from 0.02 S/m 
background

• Reached target misfit 
(rms=1)

• Large resistor below 
topography

Need to invert in 3D!

0.02 S/m



3D inversion
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• Start from 0.01 S/m 
background

• Reached target misfit 
(rms=1)

0.02 S/m



Comparison 1D and 3D
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1D 3D



Geologic structures below topography
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• Generate synthetic data (3D simulation)

• Invert in 1D

• Invert in 3D

Resistors

Clay layer with gap

Background



Sounding curves
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Resistors

Clay layer with gap

Background

200m

x=0m



Sounding curves
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Resistors

Clay layer with gap

Background

200m

x=0m

x=200m



Questions

• Can we detect signals from:
– Conductive clay layer

– Resistors

• Can we see the gap in the clay layer?

• How do we invert these data?
– Is 1D inversion effective? 

– Do we need 3D inversion?

– How much information can we extract?
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Resistors

Clay layer with gap

Background



Data: t=0.2ms
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Data: t=0.3ms
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Data: t=2ms

88



Data: t=4ms
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Data: t=7ms

90



Can we see resistors and clay layer?
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Time at 0.2ms
Resistors

Clay layer with gap

Background

Relative percent (%) = (Full response-Background)/Background x 100



Can we see resistors and clay layer?
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Time at 0.3ms
Resistors

Clay layer with gap

Background

Relative percent (%) = (Full response-Background)/Background x 100



Can we see resistors and clay layer?
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Time at 2ms
Resistors

Clay layer with gap

Background

Relative percent (%) = (Full response-Background)/Background x 100



Can we see resistors and clay layer?
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Time at 4ms
Resistors

Clay layer with gap

Background

Relative percent (%) = (Full response-Background)/Background x 100



Can we see resistors and clay layer?
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Time at 7ms
Resistors

Clay layer with gap

Background

Relative percent (%) = (Full response-Background)/Background x 100



1D inversion
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• Background: 0.02 S/m 

• Reached target misfit 
(rms=1)

• Large resistor below 
topography

• Clay layers away from 
topography.

Need to invert in 3D

Recovered



3D inversion
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RecoveredTrue



Comparison 3D and 1D
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True 1D 3D



3D view
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• Imaged main features in 
3D

– Deep clay layer

– Resistors



3D view
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• Imaged

– Deep clay layer

– Resistors

• Less sensitive to clay 
layer on the slopes of 
the mountain

– Poor coupling

• Gap in the clay

– slight indication

– Requires some a priori 
information to resolve 



Frequency Domain

• Same physics as time domain

• Challenging because primary field is always on

• Currents are partitioned into in-phase and 
quadrature portions. 

• Consider a sphere in a buried background

101



Conductive sphere in a uniform background
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Effects of background resistivity: Frequency
• Buried, conductive sphere
• Vary background conductivity   

10-8 S/m background Current Density

• Frequency: 104 Hz
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Effects of background resistivity: Frequency

10-2 S/m background Current Density

• Buried, conductive sphere
• Vary background conductivity   

• Frequency: 104 Hz
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Effects of background resistivity: Frequency
• Buried, conductive sphere
• Vary background conductivity   

10-1 S/m background Current Density

• Frequency: 104 Hz
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Effects of background resistivity: Frequency
• Buried, conductive sphere
• Vary background conductivity   

1 S/m background Current Density

• Frequency: 104 Hz
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1 S/m10-1 S/m

10-8 S/m 10-2 S/m

Effects of background resistivity: Frequency
104 Hz
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Summary: frequency vs. time

d =

r
2t

µ�
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� =

r
2

!µ�
.

Physics is same, but looking field in time domain is more intuitive in general

Frequency domain 104 Hz

Time domain
10-5 s



Summary

• Fundamentals of EM induction

• Fields and fluxes in 3D to aid understanding

• Generic examples where 3D can be important

– buried conductor

– buried resistor

– topography

– complex structure

• Frequency vs time domain
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