Field examples

1D or 3D?

• Bookpurnong (moderately 1D)

• Mt. Milligan (compact resistor)

 West Plains (thin conductive intersecting structures)

• TKC (compact conductor and IP)

Bookpurnong

Viezzoli et al., 2009

Setup

Bookpurnong Irrigation Area

5

Murray River Floodplain

1 km

Five

Setup

Hydrological model

Properties

Location map for salinity measurements

Unit	Conductivity
Saline water	High, 3 - 5 S/m
Fresh water	Low, 0.01 S/m

Conductivity from salinity measurements

Survey

Resolve system (2008)

Flight lines

Horizontal Co-planar (HCP) frequencies:

- 382, 1822, 7970, 35920 and 130100 Hz

Vertical Co-axial (VCA) frequencies: - 3258 Hz Horizontal Co-planar

Horizontal Co-planar (HCP) data

Processing: 1D inversion

Data fit

9

Interpretation

Losing Stream 2 2 3 **Gaining Stream** 3

1 – Water table 2 – Unsaturated zone 3 – Saturated zone 4 – Flow direction

Synthesis

Need for 3D?

Conductivity model (stitched)

 Large scale features of flow reasonably defined with 1D

- 3D might be beneficial
 - regions of significant horizontal variation
 - time lapse

1D or 3D?

- Bookpurnong (moderately 1D)
- Mt. Milligan (compact resistor)
- West Plains (thin conductive intersecting structures)
- TKC (compact conductor and IP)

Mt. Milligan Cu-Au Porphyry Deposit

3D VTEM Inversion at Mt. Milligan

Data grid 8 x 29 = 232

Line spacing 200m

Sounding spacing = 50m

Flight height 20~90 m

Time channel 120 ~ 2745 μs

ASEG EM Workshop slide 15

1D Inversion models at Mt. Milligan

Un-interpretable features

Synthetic Model of Mt. Milligan

1D Inversion of 3D Synthetic Data

What is wrong with 1D inversion?

1D VS 3D: Mt. Milligan Synthetic Model

1D Inversion Model

3D Inversion Model

3D VTEM Inversion Model

- Resistive MBX stock
- Conductive sediments/faults/alteration
- Consistent with DC result

1D or 3D?

• Bookpurnong (moderately 1D)

• Mt. Milligan (compact resistor)

 West Plains (thin conductive intersecting structures)

• TKC (compact conductor and IP)

West Plains Orogenic gold region

McMillan et al, 2014

Setup

- Ultramafic komatiite units
 - steeply dipping
 - gold mineralization
- Area covered by thin layer of glacial material (outcrops scarce)
- Geology map from regional mag. survey
 - Low resolution; No dip information about the komatiite units

How do we image thin, dipping conductors in 3D?

Properties

Units	Conductivity	Susceptibility
Komatiite	High	Moderate
Sediments	Moderate	Low
Granodiorite	Low	Low-Moderate
Tonalite	Low	Low-Moderate

Survey: VTEM

Current waveform

• VTEM (2003) system

Survey lines

- Line spacing: 120 m; except several lines in the North part (60 m)
- Line direction: 310 degree
- Transmitter diameter: 18.5 m
- Measured component: dBz/dt (26 time channels from 110-6340 µs)

Survey: RESOLVE

Survey lines

- RESOLVE (2005) system
 - Line spacing: 60 m
 - Line direction: 310 degree
 - Co-planar: 385-115,000 Hz (5 frequencies)

Data: VTEM

- At 150 µs: strong conductivity anomalies
- Noise level: 5x10⁻¹² V/Am² (values below blanked-out)

Data: RESOLVE

- 115,000 Hz data contains near-surface information
- 385 Hz data similar to the VTEM data at 150 μ s

Processing: VTEM

- Voxel inversion
 - Starting model: 1000 Ω m
- Image conductors
- Smooth regularization blurs conductors at depth

How do we image thin, dipping conductors in 3D?

Parametric Inversion

- Mathematical description to be compatible with geology
- Find a representation using only a few parameters
- Thin dykes:
 - Plates (plate with parameters)
 - Ellipsoids (Gaussian ellipsoid with parameters)

Processing: VTEM

- Parametric inversion
 - Parameterize dipping conductors as Gaussian ellipsoids
 - Invert for:
 - Resistivity: background and ellipsoid
 - Shape and location of ellipsoid

Processing: VTEM

Parametric inversion too simple to explain heterogeneous earth

Processing: Hybrid Inversion

• Voxel inversion using parametric inversion result as initial and reference model

Recovered conductivity (190m depth)

Interpretation: VTEM

- Voxel inversion: blurs conductors at depth
- Hybrid inversion
 - Dips recovered
 - Tighter boundary of the komatiite
 - Good agreement with gold grade

Hybrid inversion: vertical sections

Processing: RESOLVE

- Voxel inversion
 - Starting model: 1000 Ω m
- Image conductors
- Smooth regularization blurs thin conductors

Processing: RESOLVE

- Parametric inversion
 - Parameterize dipping conductors as Gaussian ellipsoids
 - Invert for:
 - Resistivity: background and ellipsoid
 - Shape and location of ellipsoid

Processing: RESOLVE

Parametric inversion too simple to explain heterogeneous earth

Processing: Hybrid Inversion

• Voxel inversion using parametric inversion result as initial and reference model

Interpretation: RESOLVE

- Voxel inversion: blurs thin conductors
- Hybrid inversion
 - Dips recovered
 - Tighter boundary of the komatiite
 - Good agreement with gold grade

Synthesis

- TDEM and FDEM survey sensitive to conductors
- Hybrid inversion beneficial for imaging thin, dipping conductors
- 3D inversion is necessary

1D or 3D?

• Bookpurnong (moderately 1D)

• Mt. Milligan (compact resistor)

 West Plains (thin conductive intersecting structures)

• TKC (compact conductor and IP)

Workflow for airborne EM/IP

Workflow for airborne EM/IP

Invert TEM data, to recover

Compute IP datum Remove EM responses

Invert d^{IP} data, recover pseudo-chargeability

Workflow for airborne EM

Case History:

Inversion of airborne geophysical data over the Tli Kwi Cho kimberlite complex

Devriese et al, 2017; Fournier et al, 2017; Kang et al, 2017

Rock Model from Drilling

Discovery of Tli Kwi Cho (TKC)

Kimberlite pipe structure

Time domain EM data

10³ Time (micro-s)

 10^{-4}

Step 1: Conductivity inversion

Easting (m)

IP = Observation - EM

130 micro-s

Observed

Predicted EM

IP = Observation - EM

IP = Observation - EM

410 micro-s

Predicted EM

IP = Observation - EM

410 micro-s

Predicted EM

IP

Step 3: 3D IP inversion

Recovered 3D pseudo-chargeability

Outline of two pipesConductivity contour

Step 3: 3D IP inversion

Recovered 3D pseudo-chargeability

Outline of two pipesConductivity contour

Data Integration: 5 physical property models

Rock Model from Geophysics

SOCK UNIE

High quality 3D conductivity model was crucial

Rock Model from Drilling

• Bookpurnong (moderately 1D)

Using 1D inversion is effective

• Mt. Milligan (compact resistor)

• West Plains (thin conductive intersecting structures)

Parametric and voxel inversions can be combined

• West Plains (thin conductive intersecting structures)

3D conductivity inversion may be essential for airborne IP

Why don't we work routinely in 3D?

Basic elements are in hand:

- Understand the physics
- Can simulate 3D for some circumstances
- Have solid methodology for the inverse problem

Why don't we work routinely in 3D?

Roadblock: availability of software for

- 3D simulations
 - explore EM fields, fluxes, charges to understand observations
 - have realistic expectations for inversion
- Inversion
 - flexible
 - efficient
 - transparent (lots of potential parameters to adjust)
 - Non-uniqueness: Do users really understand inversion?

