Induced Polarization and Hydraulic Permeability

Gianluca Fiandaca

HydroGeophysics Group Aarhus Geoscience, Aarhus University, Denmark www.hgg.au.dk

Hydraulic permeability (k)

Q=discharge *in* m³/s η = viscosity in kg/m·s

k = hydraulic permeability in m²

 $1Darcy = 10^{-12} m^2$

IP vs k: unconsolidated samples

Weller et al. (2015): Correlate k directly with $(or \sigma_{bulk})$ and σ''

$$k^* = \frac{3.47 \times 10^{-16} \sigma_0^{1.11}}{\sigma'^{2.41}},\tag{24}$$

- Frequency 1 Hz
 Water conductivity 0.1 S/
 Electrolyte Na Cl

EI-log method

- "logging-while-drilling" technique
 - Direct current (DC) measurements
 - Full-decay time-domain induced polarization (TDIP)
 - Gamma radiation
- Measurements on "undisturbed"
 formation
 - A laboratory in the field?

HydroGeophysics Group AARHUS UNIVERSITY

The Grindsted survey

• 3 El-logs: 30 m, 27 m and 10 m deep

HydroGeophysics Group AARHUS UNIVERSITY

The Grindsted survey

- 3 El-logs: 30 m, 27 m and 10 m deep
- Grain size analysis (GSA) on 58 samples (19, 25 and 14 samples, respectively)
- 9 Slug tests (ST) (2, 6 and 1 slug tests, respectively)

Inversion and S_{por}

Inversion and S_{por}

Depth (m)

Inversion and S_{por} •

E3

Inversion and S_{por}

Grindsted

• Mapping of hydraulic permeability from surface DCIP

E (mS/m) W $\sigma_{\rm W}$ 36 Elevation (m) 9 91 9 95 65 14 6 -4 3 (m²) 1e-08 k 36 Elevation (m) 91 01 05 1e-10 1e-12 6 1e-14 s Group -4 110 170 230 Profile coordinate (m) 50 290 350 RSITY

E (mS/m) W $\sigma_{\rm w}$ 36 Elevation (m) 9 91 95 -FI 65 14 6 3 -4 (m²) 1e-08 k 36 Elevation (m) 91 91 92 1e-10 1e-12 6 **1**e-14 Group -4 110 170 230 Profile coordinate (m) 50 290 350 SITY

E (mS/m) W $\sigma_{\rm W}$ 36 Ε Elevation (m) 9 91 9 95 == 65 14 6 -4 3 (m²) 1e-08 k 36 Elevation (m) 91 91 92 1e-10 1e-12 6 **1**e-14 Group -4 110 170 230 Profile coordinate (m) 50 290 350 SITY

E (mS/m) W $\sigma_{\rm w}$ 36 Elevation (m) 91 B F 65 14 6 3 -4 -(m²) 1e-08 k 36 Elevation (m) 91 91 92 1e-10 1e-12 6 1e-14 Group -4 110 170 230 Profile coordinate (m) 50 290 350 SITY

E (mS/m) W $\sigma_{\rm w}$ 36 Elevation (m) 91 B F 65 14 6 3 -4 -(m²) 1e-08 k 36 Elevation (m) 9 91 1e-10 1e-12 6 **1e-**14 -4 -Group 170 230 Profile coordinate (m) 50 110 290 350 SITY

E (mS/m) W $\sigma_{\rm w}$ 36 Elevation (m) 91 B HH 65 14 6 3 -4 -(m²) 1e-08 k 36 Elevation (m) 9 91 1e-10 1e-12 6 **1**e-14 -4 -Group 170 230 Profile coordinate (m) 50 110 290 350 SITY

3D model

Conclusion

Hydraulic permeabiliy mapped through IP!

But with limitations:

- Only in unconsolidated samples
- Only in saturated media
- No other significant source of IP present (oil spills, mineralizations etc. Etc.)

