

Detailed 3D geological modelling at a contaminated stream using DC & TD SIP, geological and chemical data

Ingelise Møller¹, Pradip K. Maurya², Gianluca Fiandaca², Nicola Balbarini³, Vinni Rønde³, Anders J. Kallesøe¹, Knud Erik Klint⁴, Anders V. Christiansen² & Poul L. Bjerg³

¹Geological Survey of Denmark and Greenland, ²Aarhus University, ³Techinical University of Denmark & ⁴GEO

Near Surface Geoscience '17, Malmö, Sweden, 3-7 September

Acknowledgesments

Advancing GEOlogical, geophysical and CONtaminant monitoring technologies for contaminated site investigation.

Research institutions

UND

UNIVERSITY

AARHUS UNIVERSITET

universität**bonn**

Rheinische

Friedrich-Wilhelms

Universität Bonn

G E U S

Industry partners

GEOCON

Funding

GEUS

Innovation Fund Denmark

Background and motivation

- The town of Grindsted is massively influenced by contaminants dumped by a pharmaceutical factory in the town.
- Investigations have shown that contaminants from the factory site discharge to the stream.
- An upper and lower aquifer is contaminated with different chemical compounds.
- Detailed groundwater flow and transport modelling are needed to unravel the flow paths.
- ⇒ For this a detailed 3D geological model is required

- Borehole data
 - Lithological logs

GEOCON

Data available for 3D geological modelling

GEUS

- Borehole data
 - Lithological logs
 - Hydraulic head data •
 - Electrical conductivity from water samples ▲
- Geophysical data
 - EMI survey using DUALEM-421S
 - DC resistivity & Time domain spectral IP
 - 5 m electrode spacing, 3 long profiles
 - 5 m electrode spacing, 7 profiles ····
 - 2 m electrode spacing, 7 profiles -----

Data collection using a modified ABEM LS Terrameter in gradient array.

- Borehole data
 - Lithological logs
 - Hydraulic head data •
 - Electrical conductivity from water samples ▲
- Geophysical data
 - EMI survey using DUALEM-421S
 - DC resistivity & Time domain spectral IP
 - 5 m electrode spacing, 3 long profiles
 - 5 m electrode spacing, 7 profiles ····
 - 2 m electrode spacing, 7 profiles —

Data collection using a modified ABEM LS Terrameter in gradient array. TD SIP data in 36 log-spaced gates in 1 ms-3.9 s.

- Borehole data
 - Lithological logs
 - Hydraulic head data •
 - Electrical conductivity from water samples ▲
- Geophysical data
 - EMI survey using DUALEM-421S
 - DC resistivity & Time domain spectral IP
 - 5 m electrode spacing, 3 long profiles —
 - 5 m electrode spacing, 7 profiles ····
 - 2 m electrode spacing, 7 profiles —

Data collection using a modified ABEM LS Terrameter in gradient array. TD SIP data in 36 log-spaced gates in 1 ms-3.9 s. Inversion using a Cole-Cole re-parameterisation, m_{BIC}, a further development of m_{MIC}

- Modelling clay layers in contaminated sediments using DC & TD SIP data
 - Which parameters to use:
 Bulk electrical conductivity, σ_{bulk}
 Maximum imaginary conductivity, σ"_{max}
 Relaxation time, τ_σ
 - **Erequency exponent, C**

GEUS

- Modelling clay layers in contaminated sediments using DC & TD SIP data
 - Which parameters to use:
 Bulk electrical conductivity, σ_{bulk}
 Maximum imaginary conductivity, σ"_{max}
 Relaxation time, τ
 - Erequency exponent, C

• Mica clay

• Lignite

- Modelling clay layers in contaminated sediments using DC & TD SIP data
 - Which parameters to use:
 Bulk electrical conductivity, σ_{bulk}
 Maximum imaginary conductivity, σ"_{max}
 Relaxation time, τ
 - Frequency exponent, C

- Modelling clay layers in contaminated sediments using DC & TD SIP data
 - Which parameters to use:
 Bulk electrical conductivity, σ_{bulk}
 Maximum imaginary conductivity, σ"_{max}
 Relaxation time, τ
 Eroquency exponent, C
 - Calc. total electrical conductivity , $\sigma_{\!0}$
 - For geological modelling we prefer Resistivity = $1/\sigma_0$ Bulk resistivity = $1/\sigma_{bulk}$
 - Relation to lithology

GEOLOGICAL SURVEY O

- Modelling clay layers in contaminated sediments using DC & TD SIP data
 - Which parameters to use:
 Bulk electrical conductivity, σ_{bulk}
 Maximum imaginary conductivity, σ"_{max}
 Relaxation time, τ
 Frequency exponent, C

Calc. total electrical conductivity , σ_0

- For geological modelling we prefer Resistivity = $1/\sigma_0$ Bulk resistivity = $1/\sigma_{bulk}$
- Relation to lithology
 Resistivity vs. 'Chargeability' (σ"_{max})

GEUS

 Point out contaminated areas using EC from water samples

GEOLOGICAL SURVEY

The 3D geological modelling challenge

- Modelling clay layers in contaminated sediments using DC & TD SIP data
 - Which parameters to use:
 Bulk electrical conductivity, σ_{bulk}
 Maximum imaginary conductivity, σ"_{max}
 Relaxation time, τ
 - Erequency exponent, C
 - Calc. total electrical conductivity , σ_{0}
 - For geological modelling we prefer Resistivity = $1/\sigma_0$ Bulk resistivity = $1/\sigma_{bulk}$
 - Relation to lithology
 Resistivity vs. 'Chargeability' (σ"_{max})

GEUS

 Point out contaminated areas using EC from water samples

The 3D geological modelling challenge

Glacial

Modelling clay layers in contaminated sediments using DC & TD SIP data

GEUS

Combine information to model clay layers

The 3D geological modelling challenge

- Modelling clay layers in contaminated sediments using DC & TD SIP data
 - Combine information to model clay layers
 - Resolution

GEUS

The 3D geological model - results

GEUS

point

GEOCON

View

The 3D geological model - results

Legend Post glacial Freshwater peat Glacial Sand till Meltwater sand

Miocene Mica sand /quartz sand Mica clay/lignite

GEUS

Møller et al.: Detailed 3D geological modelling at a contaminated stream ...

Thank you for your attention

