
Induced Polarization

1



Groundwater

Minerals 

Geotechnical

Motivation

2

PermafrostComplex resistivity

Seafloor massive sulfide
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• Injected currents cause materials to become polarized
• Microscopic causes à macroscopic effect
• Phenomenon is called induced polarization

Induced Polarization
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Conceptual Model of IP

Electrode polarization
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Membrane polarization

Initially - neutral

Apply electric field, build up charges

Charge polarization, Electric dipole



Chargeability
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Chargeability
Initially - neutral

Apply electric field, build up charges

Charge polarization, Electric dipole

Input current

Measured voltage
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IP data
• Seigel (1959): 

– Introduced chargeability: 
– Effect reduces conductivity 

• Theoretical chargeability data 
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• Not directly measureable
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• IP decay

• IP datum 

IP data: time domain 

Dimensionless: 

Value at individual time channel:

Area under decay curve:
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• Percent frequency effect:

• Phase

IP data: frequency domain
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⇢a1: apparent resistivity at f1
⇢a2: apparent resistivity at f2
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• IP signals due to a perturbation (small change) in conductivity

• An IP datum can be written as 

• In matrix form 

IP data

sensitivities for the
DC resistivity problem

is an N´M matrix
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• Time domain:
– Theoretical chargeability 

(dimensionless)
– Integrated decay time (msec)

• Frequency domain:
– PFE  (dimensionless)
– Phase (mrad)

• For all data types: linear problem

Summary of IP data
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IP pseudosections
1) A chargeable block

• Pole-dipole;  n=1,8;  a=10m;  N=316
Pole-Dipole

14



IP pseudosections
2) A chargeable block with geologic noise

• Pole-dipole;  n=1,8;  a=10m;  N=316
Pole-Dipole
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IP pseudosections

3) The “UBC-GIF model”

Pole-Dipole
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DC / IP data 
collected

Use s model for
sensitivity

IP
Data

Invert potentials
for conductivity, s

Potential (i.e. voltage) data
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Invert for 
chargeability

Chargeability model
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Example 1: buried prism

• Pole-dipole;  n=1,8;  a=10m;  N=316;  (as, ax, az)=(.001, 1.0, 1.0)

Chargeability model

Data with 5% Gaussian noise

Recovered chargeability

Predicted data

Pole-Dipole
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Example 2: prism with geologic noise

• Pole-dipole;  n=1,8;  a=10m;  N=316;  (as, ax, az)=(.001, 1.0, 1.0)

Chargeability model

Data with 5% Gaussian noise

Recovered chargeability

Predicted data

Pole-Dipole
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Example 3: UBC-GIF model

• Pole-dipole;  n=1,8;  a=10m

Chargeability model Recovered chargeability

Data with 5% Gaussian noise Predicted data

Pole-Dipole
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Induced Polarization: Summary
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• Sources of IP
• Conceptual model of IP
• Chargeability 
• IP data 
• Pseudosections
• Two stage DC-IP inversion

• Questions

• Case history: Mt. Isa
• Example: Landfills



Case history: Mt. Isa
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Rutley et al., 2001



Setup
• Mt. Isa (Cluny propect) • Geologic model

Question
• Can conductive, chargeable units, which would be potential targets 

within the siltstones, be identified with DC / IP data?
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Properties

Geologic model
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Resistivity and Chargeability 



Recap: Synthesis from DC
• Identified a major conductor à black shale unit
• Some indication of a moderate conductor 

3D resistivity model Geologic section

Resistivity section
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Can a chargeable, moderate conductor in the siltstones be identified? 



Survey and data

Easting (m) Easting (m)

Apparent chargeability,
dipole- pole.

Surface topography

• Eight survey lines
• Two configurations
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Processing

Animation3D chargeability model
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Interpretation

A: Resistive, Non-chargeable

B: Moderate conductivity; low 
chargeabilty

C: Very high conductivity (> 
10 S/m)

E and F: High conductivity 
and high chargeability

G: Other chargeable regions

Resistivity model Chargeability model
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Synthesis
A: Surprise Creek Formation

– Resistive, non-chargeable

B: Moondarra and Native Bee 
siltstones

C: Breakaway Shales
– Very high conductivity

E and F: Mt Novit Horizon
– High conductivity and high 

chargeability

G: Other chargeable regions within 
siltstone complex

Resistivity model Chargeability model

Geologic section Resistivity section
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Induced Polarization: Summary

• Sources of IP
• Conceptual model of IP
• Chargeability 
• IP data 
• Pseudosections
• Two stage DC-IP inversion
• Case history: Mt. Isa

• Questions

• Example: Landfills
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IP over Landfills



Landfills: Hazards and Goals
Nearmont and Congress landfills, Tucson, Arizona

Tucson city limits and regional landfills

• Pollutants
– Toxic leachates (mercury, arsenic, 

cadmium, lead, PVC, solvents)

• Concerns
– Health
– Water contamination
– Construction hazard
– Devalues property

• Goals
– Locate abandoned landfills
– Assess size
– Characterize the waste
– Monitor reclamation



Physical Properties

Waste Type Description Resistivity Susceptible Chargeable

Electronic/
Technological

Metallic objects, heavy 
metals in solution Low Yes Yes

Construction Debris
Wood, cement, iron  
rebar, wall board, 
asbestos, glass, plastics 

High Frequently Weakly

Earth Materials Clays, various fill Low/Moderate Occasionally Yes

Green waste trees, wood clippings etc Variable No Weakly



Traditional Landfill Surveys
DC ResistivityMagnetic Near-Surface Electromagnetic

• Most popular surveys have limited success
• IP might be a better diagnostic
• Responsive to: metallic debris, green waste, organic matter, some 

construction materials



Resistivity historical waste boundaries

Chargeability

Outside waste 
dump limits
Chargeability=0

• Waste material:  Mixed solid waste (MSW)

• Observations:
– Resistivity not correlated with pit margins (non-diagnostic)
– Chargeability (IP) correlates well with historical pit margins (diagnostic)

Ryan Airfield (Eastern Pit)

Dipole-dipole (a=7.5ft, n=0.5-6)



Resistive waste 
within landfill

IP correlates with 
landfill

historical waste boundaries
Resistivity

Chargeability

• Waste material:  Construction / demolition
• Observations:

– Waste correlates with region of high resistivity
– Waste correlates with chargeable region (significant IP anomaly).

Dipole-dipole (a=7.5ft, n=0.5-6)

Ryan Airfield (Western Pit)



Ryan Airfield (Composite)

• Waste material:  
– MSW and construction / 

demolition

• Observations:
– Well locations picked with 

aim of not intercepting waste
– Verified by drilling

Chargeability isosurface



Tumamoc Landfill

Low resistivity 
waste and leachate

historical waste boundaries

• Waste material:  Construction / demolition

• Observations:
– Low resistivity down-gradient from waste → likely conductive leachate 
– Low resistivity and IP offset from one another
– IP falls within historic landfill boundaries

Color: resistivity
Contours: chargeability



Tucson region: Organic material

Sewer cover 
near IP line

Resistivity

Chargeability

• Waste material: green-waste, trees, clippings
• Observations:

– Resistivity low 
– Weak but elevated IP signature

Dipole-dipole (a=7.5ft, n=0.5-6)



Nearmont Landfill

Dipole-dipole (a=7.5ft, n=0.5-6)

Resistivity

Chargeability

• Waste material: Municipal solid waste (MSW)
• Observations:

– low resistivity + high IP (ideal “fingerprint”)
– MSW waste confirmed with drilling



Example: Landfill Monitoring

Before

After

• Waste material: municipal solid waste (MSW)
• Surveys:

– 2003: IP survey
– 2003-2007: 4 year biodegrediation program
– 2009: Repeat IP survey

• Observations: 
– Reduction in IP anomaly indicates the effectiveness of biodegredation



Summary
• Resistivity may not be a good indicator of waste

Mixed Waste

Construction/
Demolition
Waste

Green Waste



Summary
• Chargeability may be a more consistent indicator of waste

Mixed Waste

Construction/
Demolition
Waste

Green Waste
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End of IP

Lunch: Play with apps

Next up


