EM: Grounded Sources

Outline

- Basic experiment
- FDEM: Electric dipole in a whole space
- TDEM: Electric dipole in a whole space
- Currents in grounded systems
- Conductive Targets: currents and data
- Resistive Targets: currents and data
- Case History: Barents Sea
- Synthetic Example: Gradient Array

Motivational examples

Marine EM for hydrocarbon

Oil and Gas (EOR)

Gas hydrates

Galvanic source TEM

- LoTEM (ground)
- HeliSAM (Rx on the air)
- GREATEM (Rx on the air)

Minerals

Volcanoes

Electric dipole in a whole space
0 Hz (DC), 0.01 S/m

DC current density

$$\mathbf{E}_{DC}(\mathbf{r}) = \frac{1}{4\pi\sigma|\mathbf{r}|^3} \left(\frac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{|\mathbf{r}|^2} - \mathbf{m}\right)$$

$$\mathbf{J}_{DC}(\mathbf{r}) = \frac{1}{4\pi |\mathbf{r}|^3} \left(\frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{|\mathbf{r}|^2} - \mathbf{m} \right)$$

- Geometric decay: 1/r³
- Current path is geometric for homogeneous earth, but electric field is dependent upon σ

Skin depth: $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$.

- Electric dipole in a whole space
 - 1000 Hz, 0.01 S/m, δ= 160 m

Current density (Real part)

Current density (Imaginary part)

- Electric dipole in a whole space
 - 10 kHz, 0.01 S/m, δ = 50 m

 $\text{Re}(J) - J^{\text{DC}}$

Skin depth: $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$.

- Electric dipole in a whole space
 - 100 kHz, 0.01 S/m, δ = 16 m

Summary: Electric Dipole in a whole space

 $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$

 $\operatorname{Re}(\mathbf{J}) - \mathbf{J}^{\operatorname{DC}}$

In time...

f=10⁴ kHz, δ = 2 m $t=10^{-4}$ ms, d = 4 m $d = \sqrt{\frac{2t}{\mu\sigma}}$ $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$ $Re(J) - Re(J^{DC})$ $10^{-0.4}$ $10^{0.4}$ 40 Current density (Nm ³) 0.2-01 Current density (Am ²) 20 20 (m) Z z (m) 0 -20 -20 -40-40 $10^{-6.8}$ $10^{-6.8}$ **1** d 20 40 80 -2020 40 60 80 -2060 0 **†** 1 δ X (m) X (m)

t=10⁻² ms, d = 40m f=10² kHz, δ = 16 m $d = \sqrt{\frac{2t}{\mu\sigma}}$ $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$ $Re(J) - Re(J^{DC})$ $10^{-5.6}$ $10^{-4.1}$ 40 40 Crutent density (A/m ²) Current density (A/m ²), -01 20 20 (m) Z z (m) 0 0 -20 -20 -40-40 $10^{-6.8}$ $10^{-8.1}$ 40 X (m) 20 60 80 -2020 40 60 -200 0 80 1 1δ X (m) d

t=10⁻¹ ms, d = 126m f=10¹ kHz, δ = 50 m $d = \sqrt{\frac{2t}{\mu\sigma}}$ $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$ $Re(J) - Re(J^{DC})$ $10^{-7.2}$ $10^{-5.6}$ 40 40 Current density (A/m ²) Crutent density (A/m ²) 20 20 (m) Z Z (m) 0 0 -20 -20 -40-40 $10^{-8.6}$ 10° -2020 40 60 -2020 40 60 0 80 0 80 **↑** 2/5 d 1 1δ X (m) X (m)

t=1 ms, d = 400m $d = \sqrt{\frac{2t}{\mu\sigma}}$ j $10^{-8.7}$ 40 40 Current density (Am ³) 20 20 Z (m) z (m) 0 0 -20 -20 -40-40-20 20 40 60 80 -200 X (m) 1/5 d

Diffusing currents

 $d = \sqrt{\frac{2t}{\mu\sigma}}$

Bipole Sources

- Extended line sources
 - Grounded term (galvanic) + wire path (inductive)
 - Straight line

- Crooked line (horse shoe)

Grounded Sources: On the surface

- Ability to detect target depends on
 - Geometry, conductivity of target & host
 - Geometry of TX
 - Frequency or time
 - Fields and components measured
 - e, b, db/dt
 - Location of Tx and Rx with respect to the target
- Lots of variables...
 - Use an example to highlight important concepts

- $t = 0^-$ Steady state
 - t = 0 Shut off current
 - $t = 0^+$ Off-time

What happens when we shut the system off?

#1 Wire path

- Immediately after shut off: image current at the surface
- Successive time: currents diffuse downwards and outwards

#2 Ground currents

- Immediately after shut off: ground currents are still there
- Successive time: currents diffuse downwards and outwards

Grounded Source: Halfspace Currents

- Parameters:
 - halfspace (0.01 S/m)
 - **t=0**⁻, steady state

XY plane at Z=-100 m

Grounded Source: Halfspace currents

• Cross section of currents, t = 0.04 to 10 ms

Grounded sources: with a target

- Block in a halfspace
 - DC
 - Good coupling if $h < r_{AB}$

- Vortex currents
 - Good coupling (magnetic fields)
 - Good signal for conductor
 - Resistor more difficult
- Galvanic currents
 - Good coupling (electric fields)
 - Good signal for conductor and resistor

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **t=0**⁻, steady state

XZ plane at Y=0 m 4.0e-04 -503.0e-04 -100Current density (A/m² -150(m) z -2002.0e-04 -250-300 1.0e-04 -350-150 - 100100 150 -500 50 0.0e+00 X (m)

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **0.04** ms, d = 80 m

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **0.1** ms, d = 126 m

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - 1 ms, d = 400 m

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **10** ms, d = 1270 m

Steady State (galvanic current)

EM induction (vortex current)

EM induction (galvanic current)

Galvanic current t = 0⁻

Vortex current t = 1 ms

Galvanic current

t = 10 ms

-50

-150 E

Data: b_z field

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **t=0**⁻, steady state

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **0.04** ms, d = 80 m

XY plane at Z=-100 m

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **0.1** ms, d = 126 m

XY plane at Z=-100 m

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **1** ms, d = 400 m

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **10** ms, d = 1270 m

XY plane at Z=-100 m

DC (galvanic current)

EM induction (galvanic current)

EM induction (galvanic current)

Galvanic current t = 10 ms

Galvanic current t = 1 ms

Galvanic current

t = 0-

Data: e_x field

Data: by field

Data: b_z field

Data summary

t = 1ms

Geometric Complexities

• Coupling: Back to finding thin plates...

- DCR: good coupling
- EM: good coupling

- DCR: poor coupling
- EM: poor coupling
- Arbitrary target requires multiple excitation directions
- Forward simulations necessary

Grounded Sources: Summary

- Basic experiment
- FDEM: Electric dipole in a whole space
- TDEM: Electric dipole in a whole space
- Currents in grounded systems
- Conductive Targets: currents and data
- Resistive Targets: currents and data
- Questions
- Case History: Barents Sea
- DC/EM Inversion

Grounded sources: two examples

- Marine EM (towed Tx, Rx array)
 - Multiple transmitters, frequencies
 - Looking for a resistive target

- DC/EM inversions (gradient array)
 - Single transmitter
 - Traditionally only DC data used
 - Wires have a large EM effect (contaminates "DC data")
 - EM signal contains useful information...

Case History: Barents Sea

Alvarez et al., 2016. Rock Solid Images

Setup

- Known hydrocarbon reservoirs within the Hoop Fault Complex, Barents Sea.
- Seismic can locate oil and gas reservoirs but cannot always determine hydrocarbon saturation (in particular fizz gas)
- Seismic, borehole and CSEM data used to characterize reservoir
 - fluid, porosity, clay content, and hydrocarbon saturation

- Highly hydrocarbon-saturated reservoir (< 30% water-wet) significant resistivity
- CSEM can differentiate high from low quality reservoirs

Survey

Towed CSEM and 2D seismic

- 6 lines of 2D seismic and towed streamer CSEM data.
- 72 receivers collected CSEM data
 - offsets from 31m to 7.8 km
- CSEM frequencies: 0.2 Hz to 3 Hz.

Survey lines

Alternative	Control well, dry
Central	Control well, productive
Hanssen	Validation well
Bjaaland	Validation well

CSEM Data

Survey lines

Towed-streamer EM

Significant phase response over Central reservoir

Seismic data

Seismic section: Line 5001

Well-Log and Seismic Inversion

Litho-fluid Facies

Clay Content

Total Porosity

Revisiting physical properties

Processing: CSEM Inversion

• Inversion shows strong resistor at Central and a secondary resistor at Hanssen.

Processing: Multi-physics Approach

Litho-fluid Facies

Clay Content

Total Porosity

Resistivity

Interpretation & Synthesis

Seismic

Hydrocarbon saturation

DC/EM Inversion

DC/EM: Goals

- Standard DCR time domain waveform
- Compare:
 - Inversions from DC data
 - Inversions from EM data
- Illustrate the value of data which is often discarded
- Numerical example from a gradient arrary

Survey and Data

Transmitter

Measured Voltage

Gradient array

- Model
 - A1: high conductivity
 - A2: moderate conductivity
 - A3: resistive

- Survey
 - 200m bi-pole (625 data)
 - times: 1-600ms

DC data

Off-time data

• TDEM data

Off-time data

(mV) 1.9e-02 Voltage

1.1e-02

 10^{3}

• E_x Decay curves at A1-A3

DC inversion

• Recovered 3D conductivity

Apparent conductivity

- Depth weighting
 - Compensate for high sensitivity near surface (similar to mag.)

EM inversion

• Recovered 3D conductivity

• No depth weighting

Conductivity models

True, DC, and TEM conductivities ullet

True

Depth at -275.0 m

Northing at 750.0 m

0

Northing at -750.0 m

0

Easting (m)

Conductivity (S/m)

1000

1000

 $10^{-1.0}$

2000

2000

 $10^{0.0}$

2000

1500

1000

500

Ö

-500 -1000

-1500

-200 -400

-600 -800 -1000

-1200-1400

-200 -400 -600 -800

-1000 -1200 -1400

-2000

-2000

 $10^{-3.0}$

-1000

-1000

 $10^{-2.0}$

Depth (m)

Depth (m)

Northing (m)

EM data contain signal

Summary

- Basic experiment
- FDEM: Electric dipole in a whole space
- TDEM: Electric dipole in a whole space
- Currents in grounded systems
- Conductive Targets: currents and data
- Resistive Targets: currents and data
- Case History: Barents Sea
- DC/EM Inversion

End of Grounded Sources

