

http://disc2017.geosci.xyz/brisbane

Thanks to...

Mark Kneipp Emma Brand

Australian Society of Exploration Geophysicists

Some Background

 Doug inspired by Bob Parker, Freeman Gilbert and George Backus: The Geophysical Inverse Problem

Result: Computing power + advances in inversion methodology \rightarrow we can now solve most EM geophysics problems

Instrumentation and Data

- The second major advance is in data acquisition
- Data with unprecedented data quality and quantity.

Large-scale ground water studies: California

AusLamp: Continental Scale MT

Offshore: Hydrocarbon De-risking

Web and Open Source Resources

- Open source development: Software and resources
 - Collaborate
 - Share
 - Test changes
 - Interactive computing

Simulation and Parameter Estimation in Geophysics http://simpeg.xyz

Github versioning, collaborating

Travis Cl testing, deploy

lupyte

interactive computing

Python computation

Personal Open source Business Explore	Pricing Blo	g Support Thi	s repository Search		Sign in Sign up
bcgif / em			• Watch	18 🚖 Star	6 ¥Fork 1
Code 🕕 Issues 32 👔 Pull requests 3 🔟 Proje	ects 3	📰 Wiki 🛛 🦛 Pu	ilse l <u>ili</u> Graphs		
ontributors Commits Code frequency Punch car	d Netwo	ork Members	Dependents		
o 20, 2015 – Jan 19, 2017 ributions to master, excluding merge commits				Cont	ributions: Commits -
0 October November December 2016 February March Apr	ril May	June July	August September	October November	December 2017
Lheagy 520 commits / 45,450 ++ / 34,858	#1	yangdik 233 commits	(UN s / 2,553 ++ / 1,934 -		#2
40			40		
ztober December February April June August October Dec	ember	October December	February April	June August	October December
thast 126 commits / 14,560 ++ / 23,500	#3	fourndo) ; / 9,988 ++ / 5,785 -		#4
40			40		
20 ctober December Petruary April June August October Dec	ember	October December	20 February April	June August	October December
dccowan	#5	👩 lacmaje	drez		#6

5

Many applications

Electromagnetics can be used for ...

We have the basic ingredients

- Application problems
- High quality data
- Ability to invert EM data sets
- Web tools to communicate

What are the roadblocks?

Roadblocks

In general, geoscientists...

- Don't realize that EM can play a role in solving the problem
- Don't understand the technique
 - Confusing terminology
 - Seems complicated and unintuitive

What is the connection between my problem and the physical properties?

So many types of surveys, how to choose?

- DC, frequency, time?
- Surveys in air on ground, downhole?
- What to expect for resolution?

Are there situations, similar to mine, in which EM has been applied?

Goal of DISC: Remove Roadblocks

in general, geoscientists...

- Don't realize that EM can play a role in solving the problem
- Don't understand the technique
 - Confusing terminology
 - Seems complicated and unintuitive

What is the connection between my problem and the physical properties?

So many types of surveys, how to choose?

- DC, frequency, time?
- Surveys in air on ground, downhole?
- What to expect for resolution?

Are there situations, similar to mine, in which EM has been applied?

DISC can take advantage of a Perfect Storm

DISC can take advantage of a Perfect Storm

A good idea but missing an important ingredient ...

Talented Young Geoscientists

Goals for the DISC

- Inspire
 - See the variety of potential applications
 - Illustrate effectiveness using case histories
- Build a foundation
 - Basic principles of EM
 - Exploration and visualization with interactive apps
 - Open source resource: <u>http://em.geosci.xyz</u>
- Set realistic expectations
- Promote development of an EM community
 - Open source software
 - Capturing case histories world-wide

Resources: EM.geosci

http://em.geosci.xyz

Resources: EM.geosci

http://em.geosci.xyz

Resources: EM.geosci

http://em.geosci.xyz

Why Apps

http://em.geosci.xyz/apps.html

Why Apps

http://em.geosci.xyz/apps.html

How do we achieve our goals

- Connect to relevant applications
- Select a type of survey
- Use apps to explore and ask questions
- Show success in a case history

Agenda for today

A touch of realism

- Ambitious schedule
- Wide variety of backgrounds but hope there is something for everybody
- Not really targeting the experts but even them...

That is what learning is. You suddenly understand something you have understood all your life, but in a new wa

DISC is a 2-day event

- SEG DISC Course (today)
 - Sponsored by SEG
- DISC Lab (tomorrow) (sponsored by GIF)
 - Capture "local" applications
 - Share on the web
- The tour:
 - 30 locations
 - Capture geoscience problems around the world
 - Connect geoscientists worldwide, build a community

Connecting & Contributing

- Today: Slack
 - <u>http://slack.geosci.xyz/</u>

Join **GeoSci** on Slack. 3 users online now of **9** registered.

you@yourdomain.com

GET MY INVITE

- Contributing:
 - EM GeoSci
 - Case histories
 - Content
 - SimPEG
 - Software

Introduction to EM

Three problems

How do we locate and characterize ...

Electrical Resistivity / Conductivity

Dielectric constant

Material	Relative Permittivity	Conductivity (mS/m)
Air	1	0
Fresh Water	80	0.5
Sea Water	80	3000
lce	3-4	0.01
Dry Sand	3-5	0.01
Saturated Sand	20-30	0.1-1
Limestone	4-8	0.5-2
Shales	5-15	1-100
Silts	5-30	1-100
Clays	5-40	2-1000
Granite	4-6	0.01-1
Anhydrites	3-4	0.01-1

Magnetic Susceptibility

EM Survey & Physical Properties

Physical Properties σ, μ, ε

Basic Equations

		Frequency FDEM
Faraday's Law	$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$	$ abla imes \mathbf{E} = -i\omega \mathbf{B}$
Ampere's Law	$ abla imes \mathbf{h} = \mathbf{j} + \frac{\partial \mathbf{d}}{\partial t}$	$ abla imes \mathbf{H} = \mathbf{J} + i\omega \mathbf{D}$
No Magnetic Monopoles	$\nabla \cdot \mathbf{b} = 0$	$\nabla \cdot \mathbf{B} = 0$
Constitutive Relationships (non-dispersive)	$\mathbf{j} = \sigma \mathbf{e}$	$\mathbf{J}=\sigma\mathbf{E}$
	$\mathbf{b}=\mu\mathbf{h}$	${f B}=\mu {f H}$
	$\mathbf{d} = \varepsilon \mathbf{e}$	$\mathbf{D} = \varepsilon \mathbf{E}$

* Solve with sources and boundary conditions

Electromagnetic Survey: Sources

Electromagnetic Survey: Data

Three problems

Electrical conductivity is diagnostic for all three

End of Introduction

