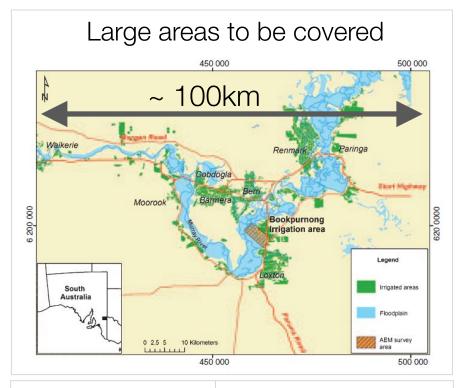
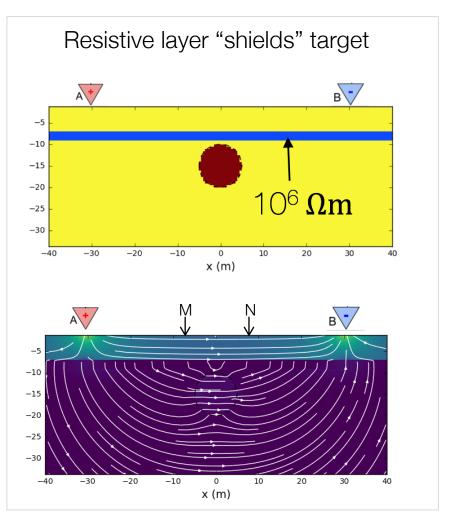
EM Fundamentals

Motivation: applications difficult for DC



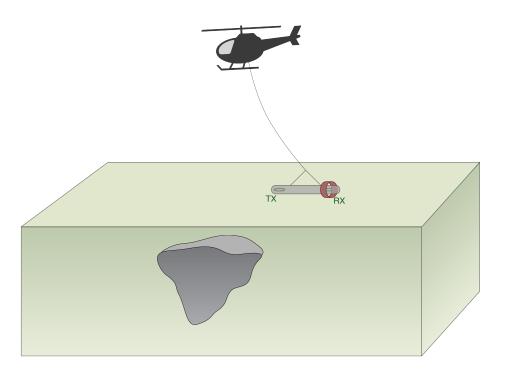


Outline

- Basic Survey
- Ampere's and Faraday's Laws (2-coil App)
- Circuit model for EM induction
- Frequency and time domain data
- Sphere in homogeneous earth
- Cyl code
- Energy losses in the ground

Setup:

transmitter and receiver are in a towed bird

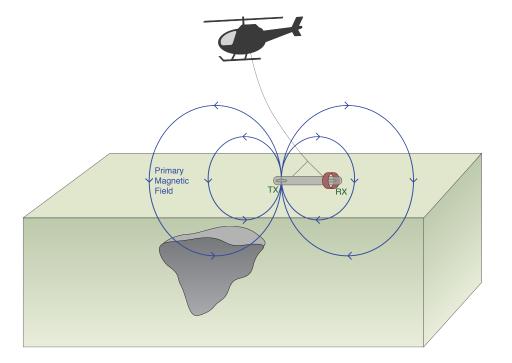


Setup:

transmitter and receiver are in a towed bird

Primary:

Transmitter produces a primary magnetic field



Setup:

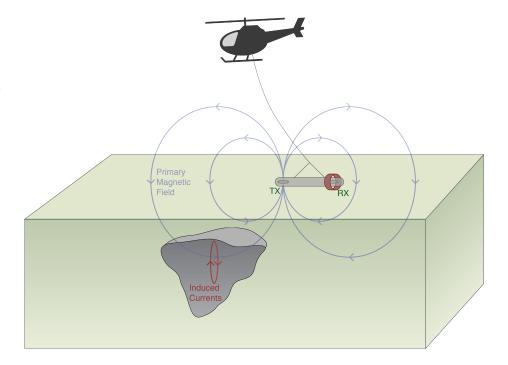
 transmitter and receiver are in a towed bird

Primary:

Transmitter produces a primary magnetic field

Induced Currents:

 Time varying magnetic fields generate electric fields everywhere and currents in conductors



Setup:

 transmitter and receiver are in a towed bird

Primary:

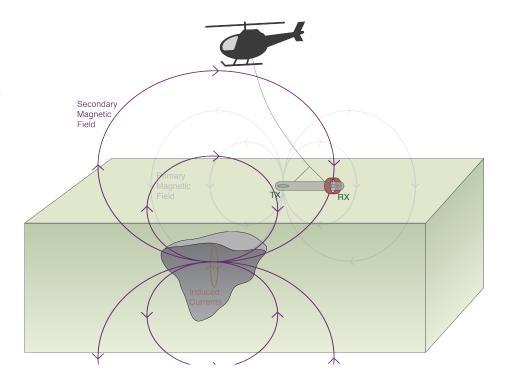
Transmitter produces a primary magnetic field

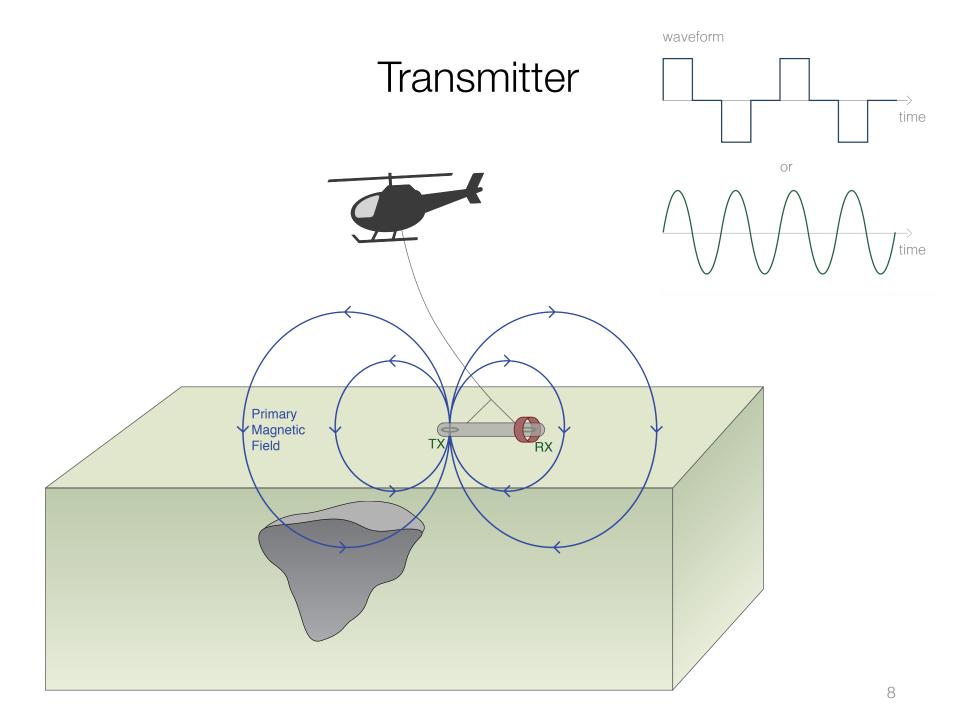
Induced Currents:

 Time varying magnetic fields generate electric fields everywhere and currents in conductors

Secondary Fields:

 The induced currents produce a secondary magnetic field.





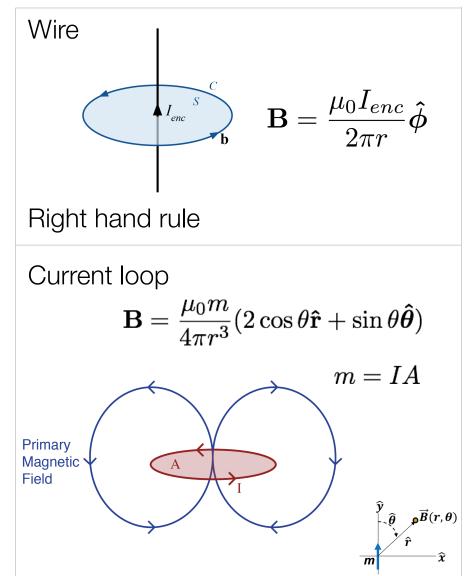
Basic Equations: Quasi-static

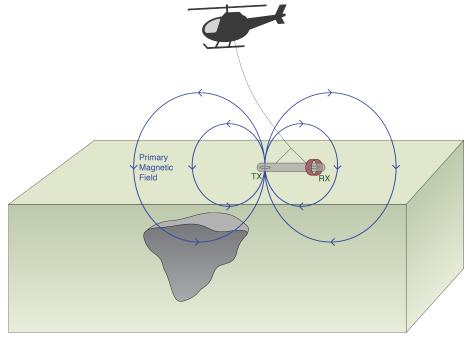
	Time	Frequency
Faraday's Law	$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$	$\nabla \times \mathbf{E} = -i\omega \mathbf{B}$
Ampere's Law	$ abla extbf{\text{h}} = extbf{j} + rac{\partial extbf{d}}{\partial t}$	$\nabla \times \mathbf{H} = \mathbf{J} + i\omega \mathbf{D}$
No Magnetic Monopoles	$\nabla \cdot \mathbf{b} = 0$	$\nabla \cdot \mathbf{B} = 0$
Constitutive Relationships (non-dispersive)	$\mathbf{j} = \sigma \mathbf{e}$	$\mathbf{J}=\sigma\mathbf{E}$
	$\mathbf{b} = \mu \mathbf{h}$	$\mathbf{B}=\mu\mathbf{H}$
	$\mathbf{d}=arepsilon\mathbf{e}$	$\mathbf{D}=arepsilon\mathbf{E}$

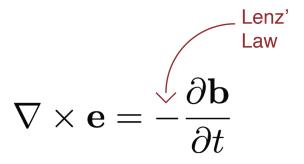
^{*} Solve with sources and boundary conditions

Ampere's Law

$$abla imes \mathbf{H} = \mathbf{J}$$

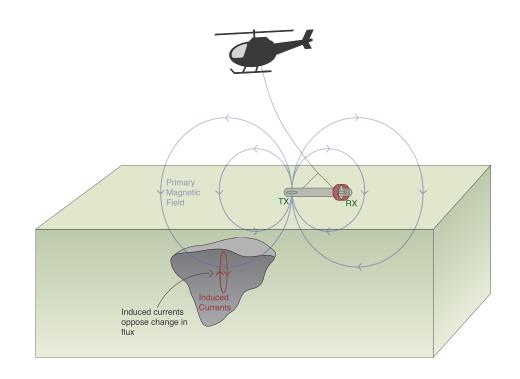


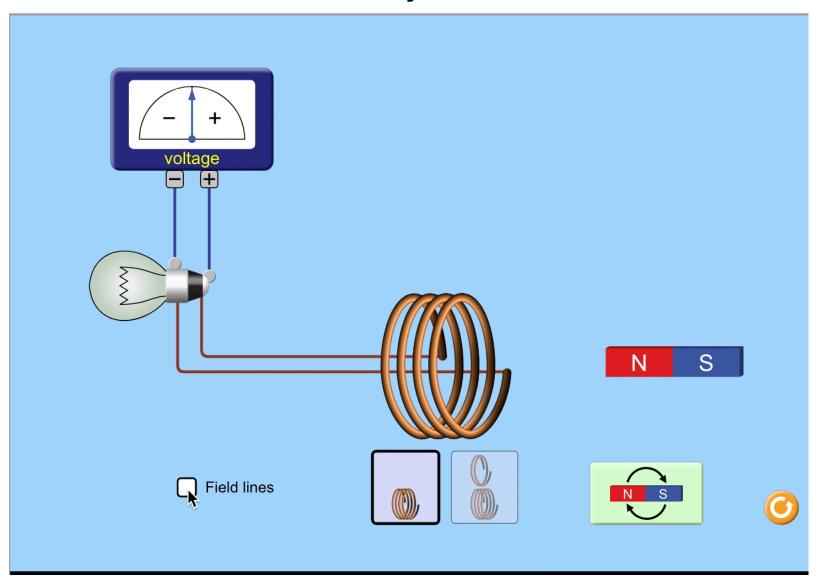




Ohm's Law

$$\mathbf{j} = \sigma \mathbf{e}$$





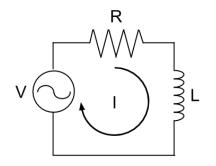
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

Magnetic Flux

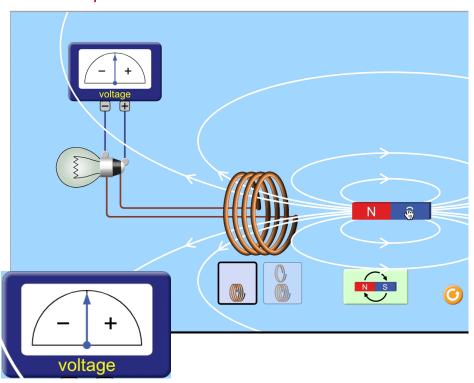
$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} = \mathbf{0}$$



ϕ_b : constant



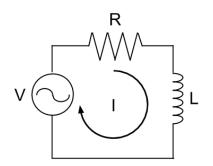
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

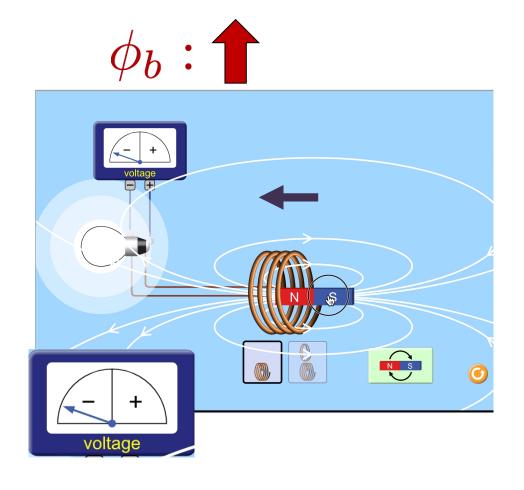
Magnetic Flux

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} < \mathbf{0}$$





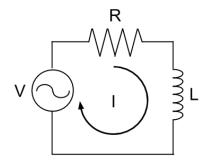
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

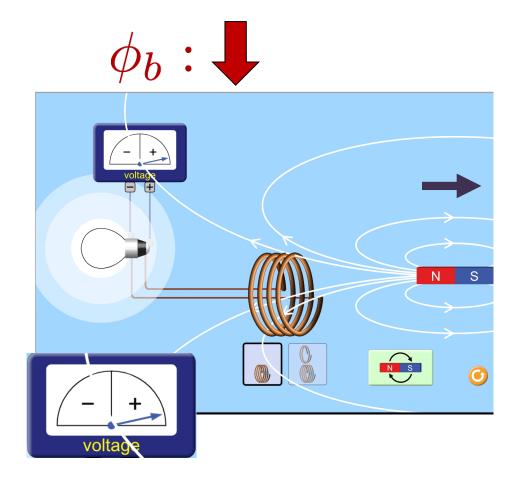
Magnetic Flux

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} > \mathbf{0}$$

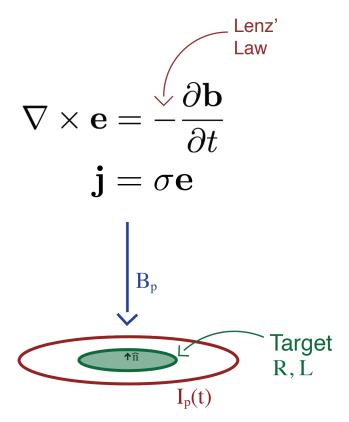


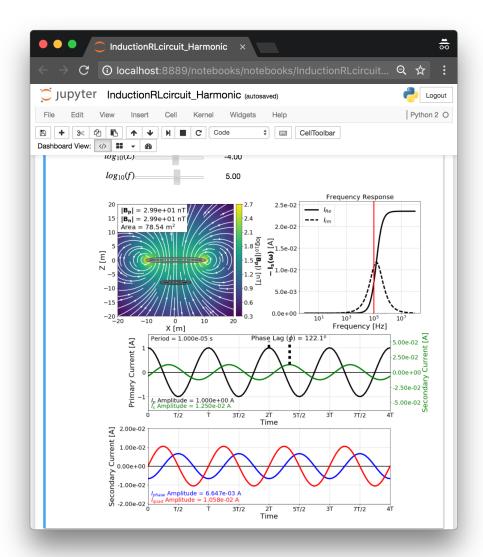


App for Faraday's Law

2 Apps:

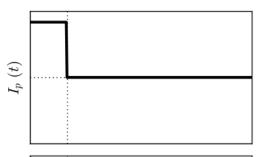
- Harmonic
- Transient

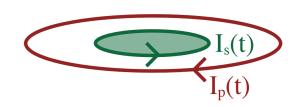




Two Coil Example: Transient

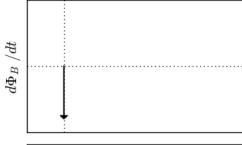
Primary currents





Magnetic flux

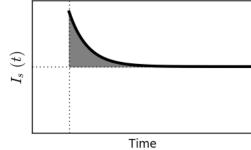
Time-variation of magnetic flux



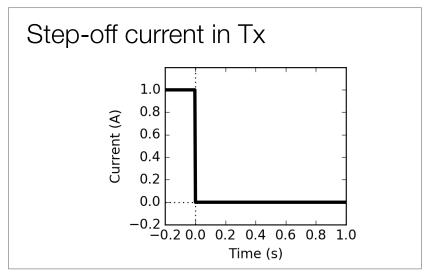
 $I_s(t) = I_s e^{-t/\tau}$ $\tau = L/R$

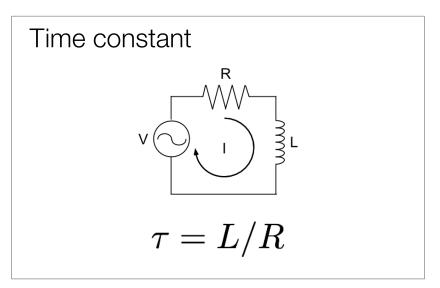
$$\tau = L/R$$

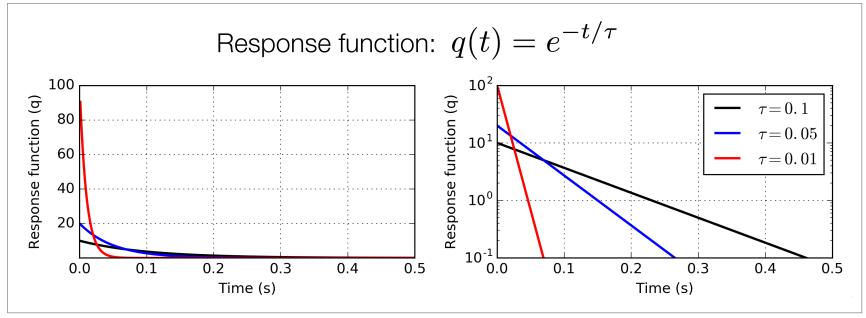
Secondary currents



Response Function: Transient



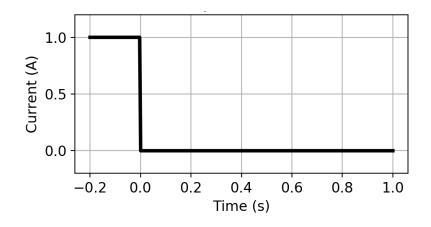


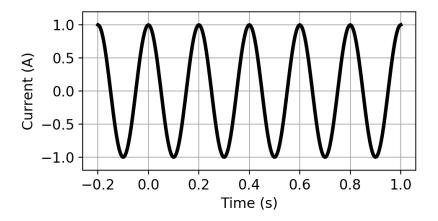


Transient and Harmonic Signals

We have seen a transient pulse...

What happens when he have a harmonic?





Two Coil Example: Harmonic

Induced Currents

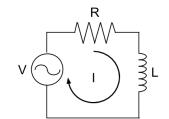
$$I_p(t) = I_p \cos \omega t$$

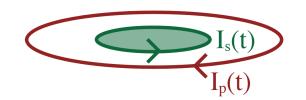
$$I_s(t) = I_s \cos(\omega t - \psi)$$

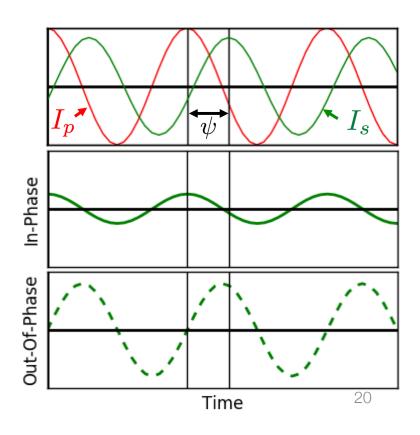
$$= \underbrace{I_s \cos \psi \cos \omega t}_{\text{In-Phase}} \underbrace{I_s \sin \psi \sin \omega t}_{\text{Out-of-Phase}}$$
Real Quadrature Imaginary

Phase Lag

$$\psi = \frac{\pi}{2} + \tan^{-1} \left(\frac{\omega L}{R} \right)$$







Two Coil Example: Harmonic

Induced Currents

$$I_p(t) = I_p \cos \omega t$$

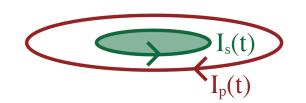
$$I_s(t) = I_s \cos(\omega t - \psi)$$

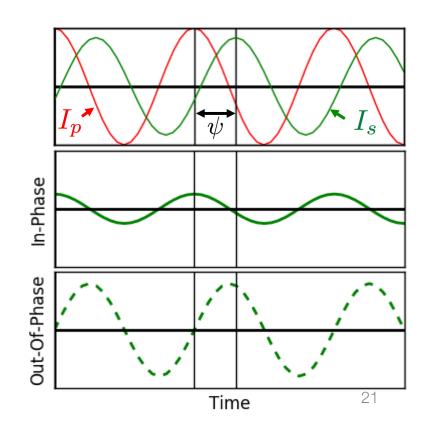
$$= \underbrace{I_s \cos\psi\cos\omega t + \underbrace{I_s \sin\psi\sin\omega t}}_{\text{In-Phase}}$$
 Out-of-Phase Real Quadrature Imaginary

Phase Lag

$$\psi = \frac{\pi}{2} + \tan^{-1} \left(\frac{\omega L}{R} \right) \quad \sqrt{\frac{1}{2}}$$

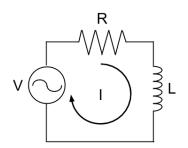
Induction number

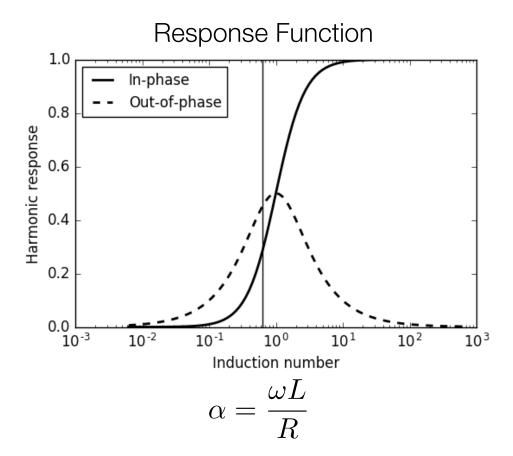


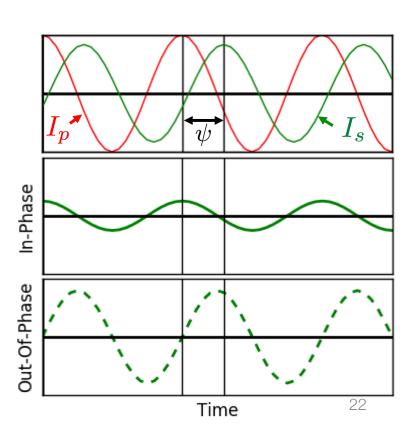


Response Function

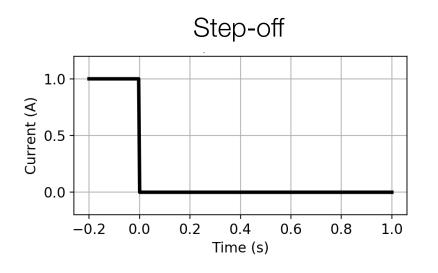
- Quantifies how a target responds to a time varying magnetic field
- Partitions real and imaginary parts

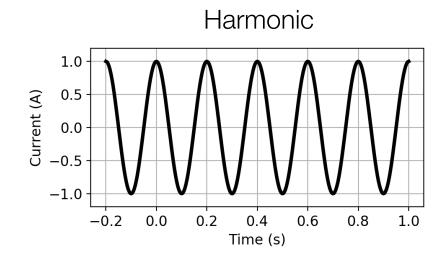


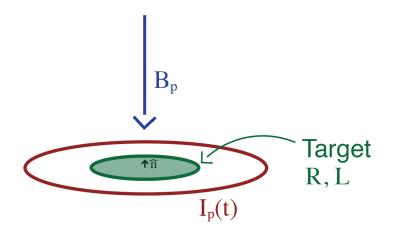




Response Functions: Summary







In both:

Induce currents

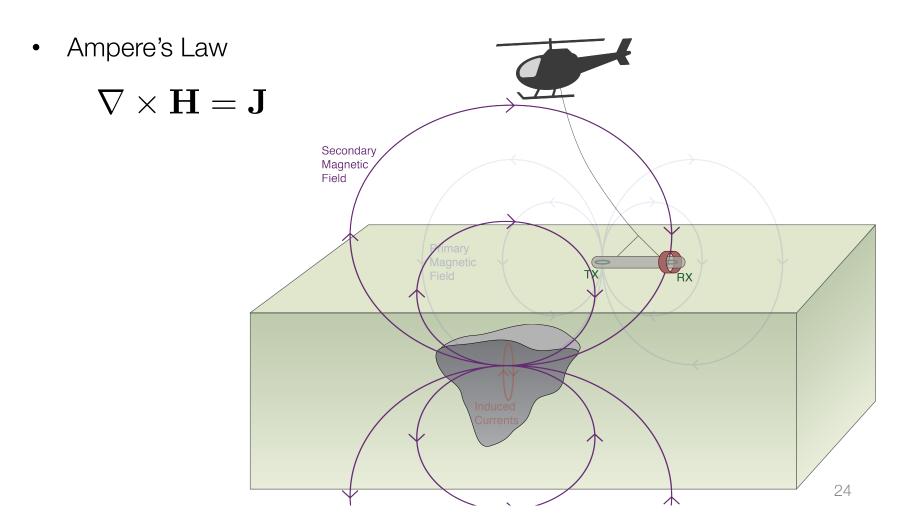
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

Generate secondary magnetic fields

$$\nabla \times \mathbf{h} = \mathbf{j}$$

Secondary magnetic fields

Induced currents generate magnetic fields

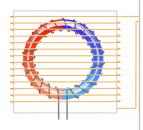


Receiver and Data

Magnetometer

- Measures:
 - Magnetic fields
 - 3 components
- eg. 3-component fluxgate

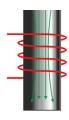
 $\mathbf{b}(t)$



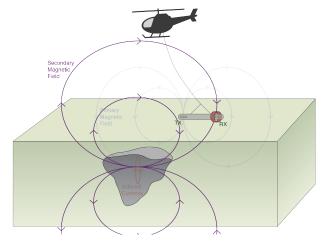
Fluxgate

Coil

- Measures:
 - Voltage
 - Single component that depends on coil orientation
 - Coupling matters
- eg. airborne frequency domain
 - ratio of Hs/Hp is the same as Vs/Vp



Coil



Coupling

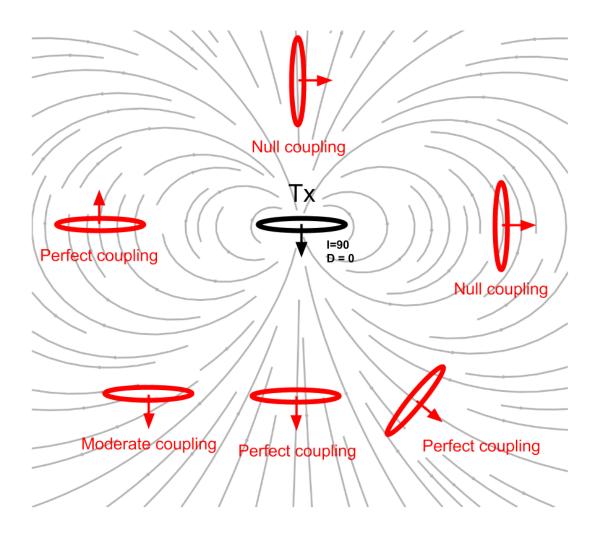
Transmitter: Primary

$$I_p(t) = I_p \cos(\omega t)$$

$$\mathbf{B}_p(t) \sim I_p cos(\omega t)$$

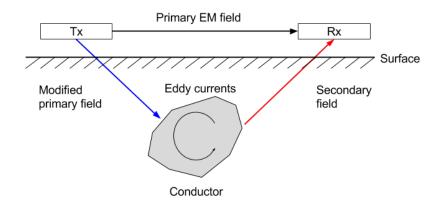
Target: Secondary

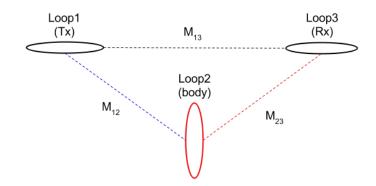
$$EMF = -\frac{\partial \phi_{\mathbf{B}}}{\partial t}$$
$$= -\frac{\partial}{\partial t} \left(\mathbf{B}_p \cdot \hat{\mathbf{n}} \right) A$$



FDEM

Circuit model of EM induction





Coupling coefficient

Depends on geometry

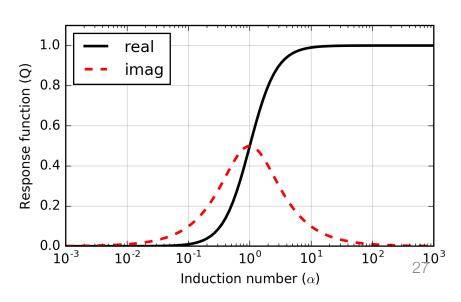
$$M_{12} = \frac{\mu_0}{4\pi} \oint \oint \frac{dl_1 \cdot dl_2}{|\mathbf{r} - \mathbf{r}'|^2}.$$

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_{Q}$$

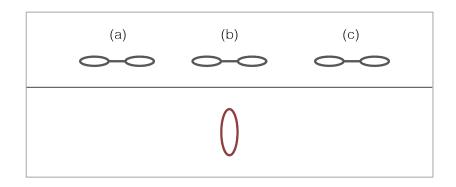
Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$ of target



Conductor in a resistive earth: Frequency

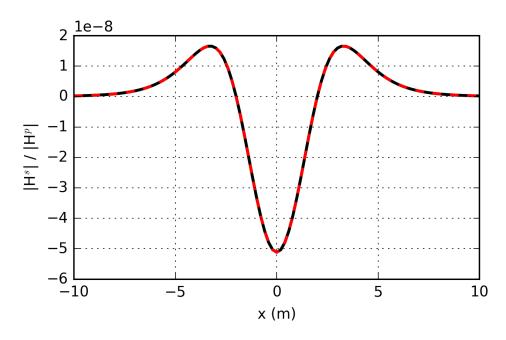
Profile over the loop

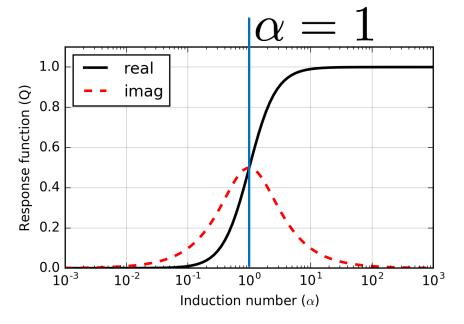


• Induction number

$$\alpha = \frac{\omega L}{R}$$

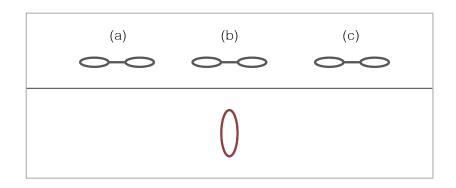
- When $\alpha = 1$
 - Real = Imag





Conductor in a resistive earth: Frequency

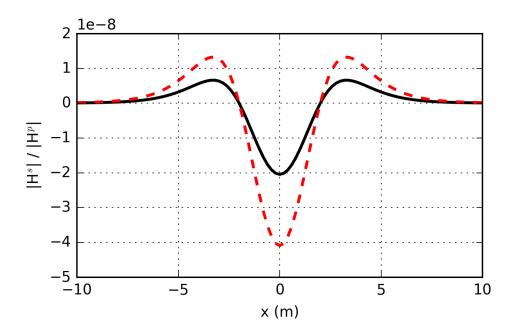
Profile over the loop

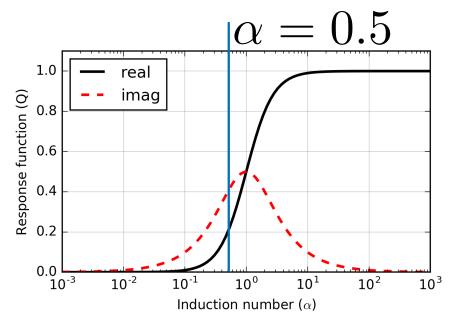


Induction number

$$\alpha = \frac{\omega L}{R}$$

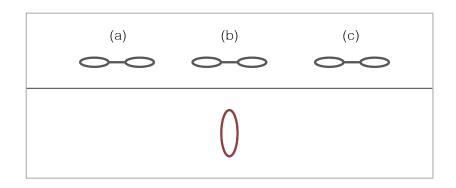
- When $\alpha < 1$
 - Real < Imag





Conductor in a resistive earth: Frequency

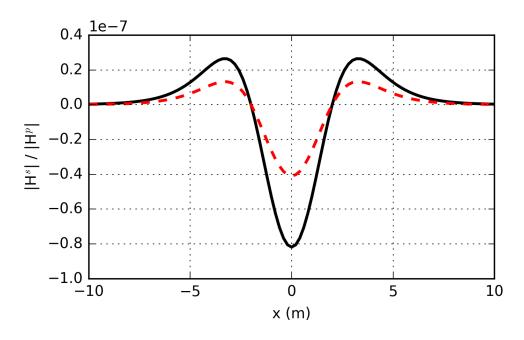
Profile over the loop

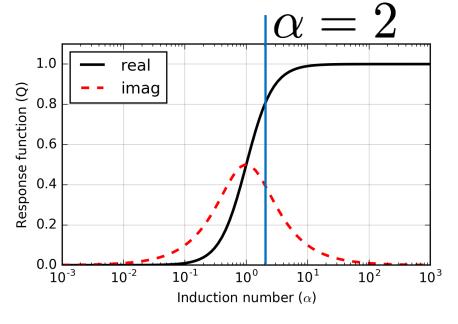


• Induction number

$$\alpha = \frac{\omega L}{R}$$

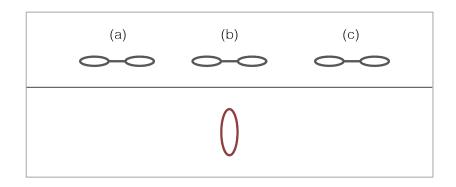
- When $\alpha > 1$
 - Real > Imag

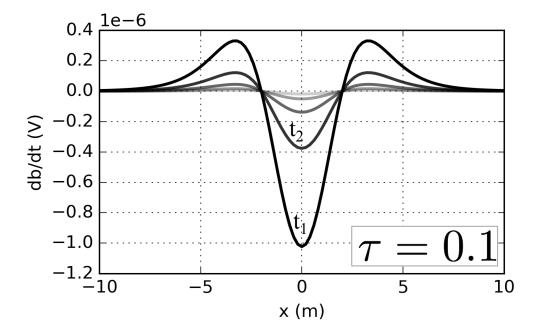




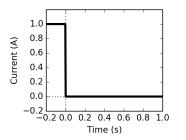
Conductor in a resistive earth: Transient

Profile over the loop



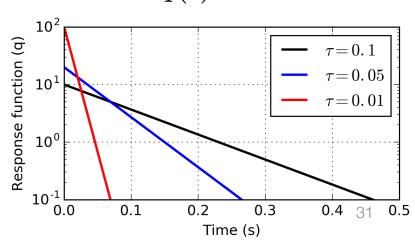


- Time constant $\tau = L/R$
- Step-off current in Tx



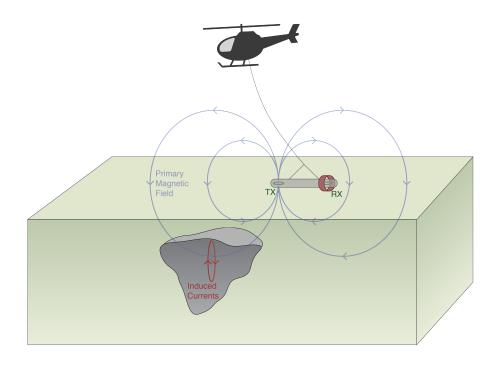
• Response function depends on time, τ

$$q(t) = e^{-t/\tau}$$



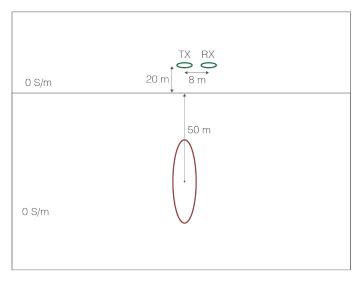
Recap: what have we learned?

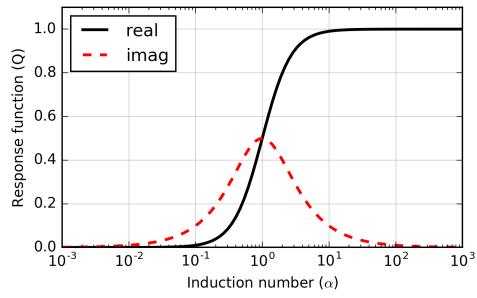
- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model provides representative results
 - Applicable to geologic targets?

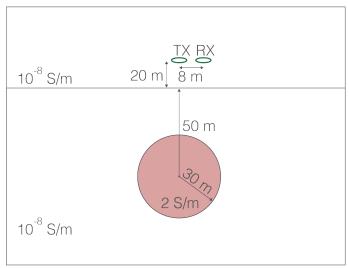


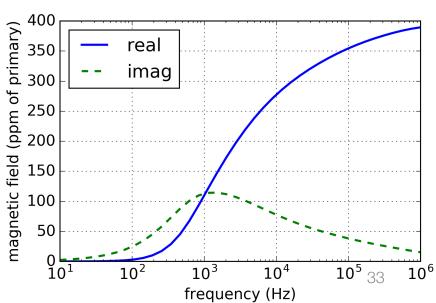
Sphere in a resistive background

How representative is a circuit model?



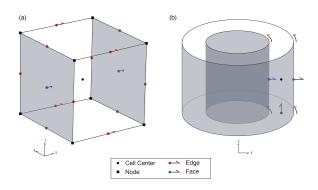






Cyl Code

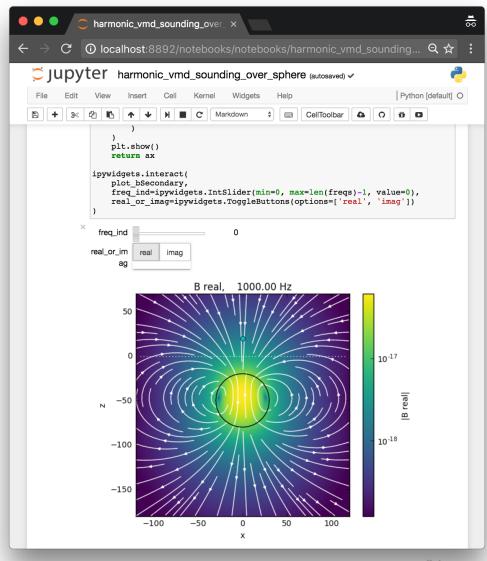
- Finite Volume EM
 - Frequency and Time



- Built on SimPEG
- Open source, available at: http://em.geosci.xyz/apps.html
- Papers

 Cockett et al, 2015

 Heagy et al, 2017

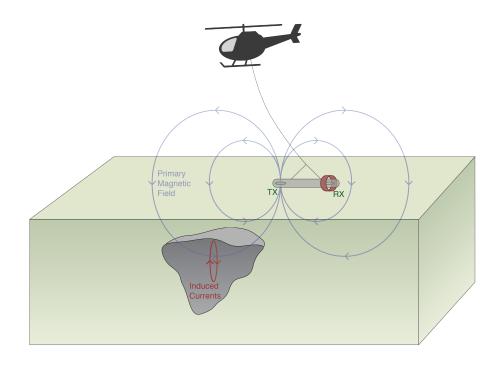


Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model is a good proxy

Major item not yet accounted for...

- Propagation of energy from
 - Transmitter to target
 - Target to receiver



How do EM fields and fluxes behave in a conductive background?

Revisit Maxwell's equations

First order equations

$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

$$\mathbf{b} = \mu \mathbf{h}$$

 $\mathbf{j} = \sigma \mathbf{e}$

$$abla ext{ } \mathbf{b} = \mu \mathbf{b}$$

$$abla ext{ } \mathbf{d} = \varepsilon \mathbf{e}$$

Second order equations

$$\nabla^2 \mathbf{h} - \underbrace{\mu \sigma \frac{\partial \mathbf{h}}{\partial t}}_{\text{diffusion}} - \underbrace{\mu \epsilon \frac{\partial^2 \mathbf{h}}{\partial t^2}}_{\text{wave propagation}} = 0$$

In frequency

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0$$
$$k^2 = \omega^2 \mu \varepsilon - i\omega \mu \sigma$$

Plane waves in a homogeneous media

In frequency

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0$$

$$k^2 = \omega^2 \mu \varepsilon - i\omega \mu \sigma$$

Quasi-static

$$\frac{\omega\varepsilon}{\sigma}\ll 1$$

even if...

$$\sigma = 10^{-4} S/m$$

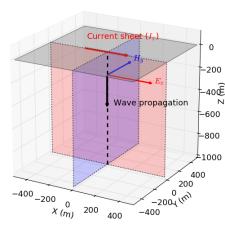
$$f = 10^4 Hz$$

then

$$\frac{\omega\varepsilon}{\sigma}\sim 0.005$$

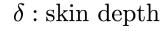
$$k = \sqrt{-i\omega\mu\sigma} = (1-i)\sqrt{\frac{\omega\mu\sigma}{2}}$$
$$\equiv \alpha - i\beta$$

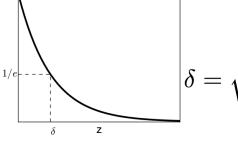
Plane wave solution



$$\mathbf{H} = \mathbf{H_0} e^{-\alpha z} e^{-i(\beta z - \omega t)}$$
attenuation phase

Skin depth





$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = 503\sqrt{\frac{1}{\sigma f}}$$

00

Plane waves in a homogeneous media

In time

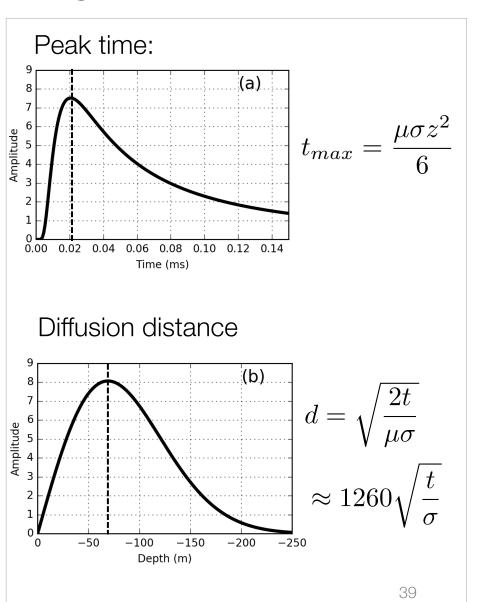
$$\nabla^2 \mathbf{h} - \mu \epsilon \frac{\partial^2 \mathbf{h}}{\partial t^2} - \mu \sigma \frac{\partial \mathbf{h}}{\partial t} = 0$$

$$\mathbf{h}(t=0) = \mathbf{h}_0 \delta(t)$$

Solution for quasi-static

$$\mathbf{h}(t) = -\frac{(\mu\sigma)^{1/2}z}{2\pi^{1/2}t^{3/2}}e^{-\mu\sigma z^2/(4t)}$$

z: depth (m)



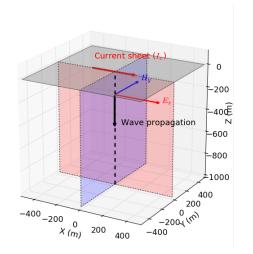
Plane Wave apps

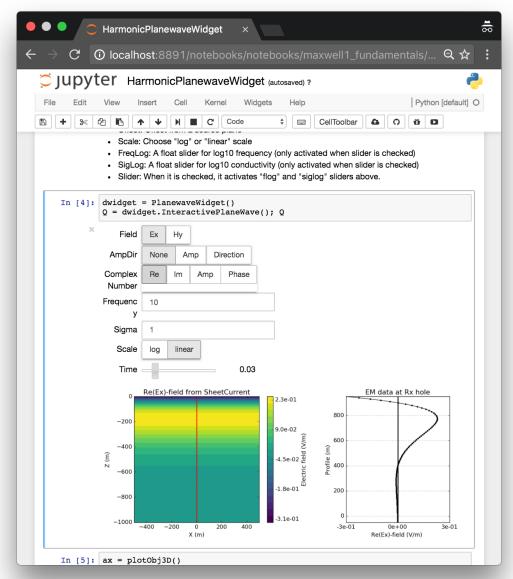
- 2 apps:
 - Transient

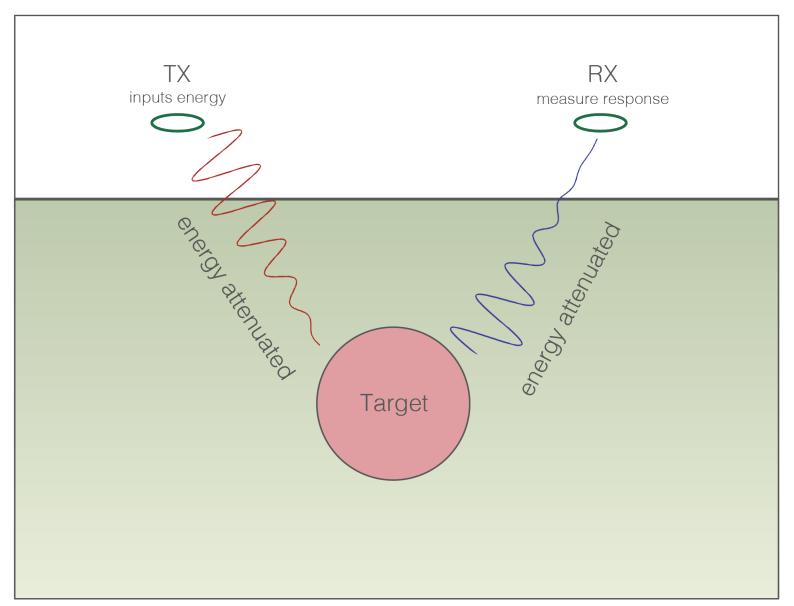
$$\mathbf{h}(t) = -\frac{(\mu\sigma)^{1/2}z}{2\pi^{1/2}t^{3/2}}e^{-\mu\sigma z^2/(4t)}$$

Harmonic

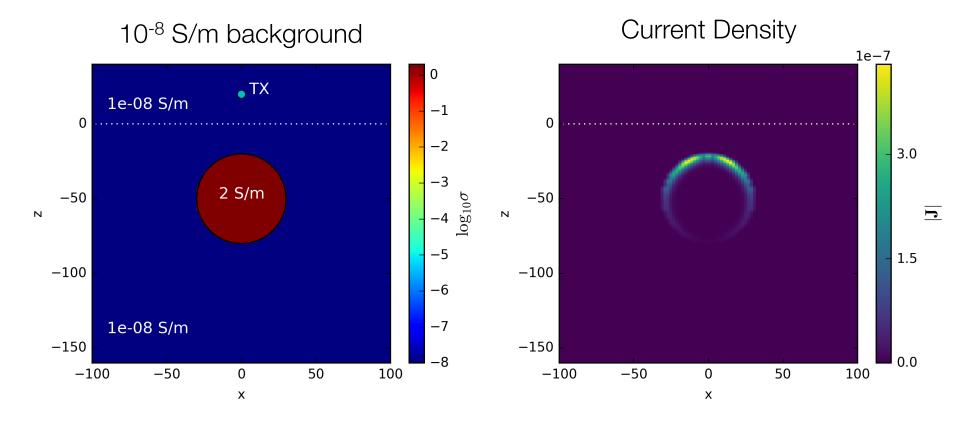
$$\mathbf{H} = \mathbf{H_0} e^{-\alpha z} e^{-i(\beta z - \omega t)}$$
attenuation phase



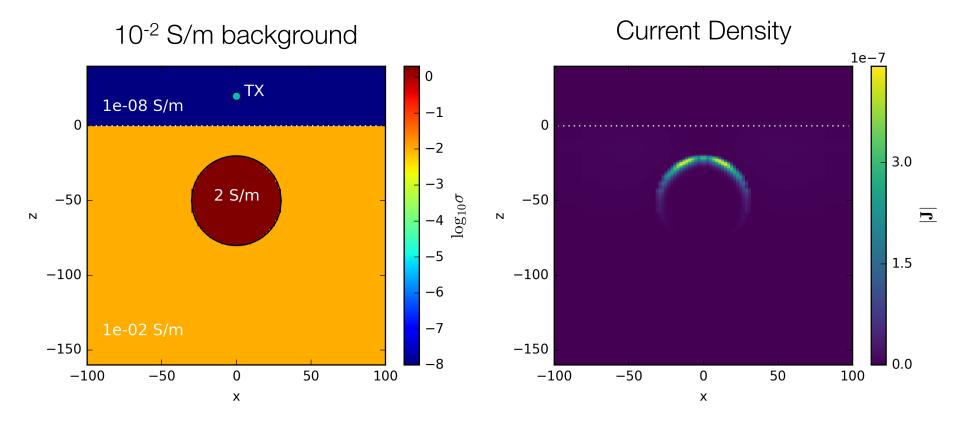




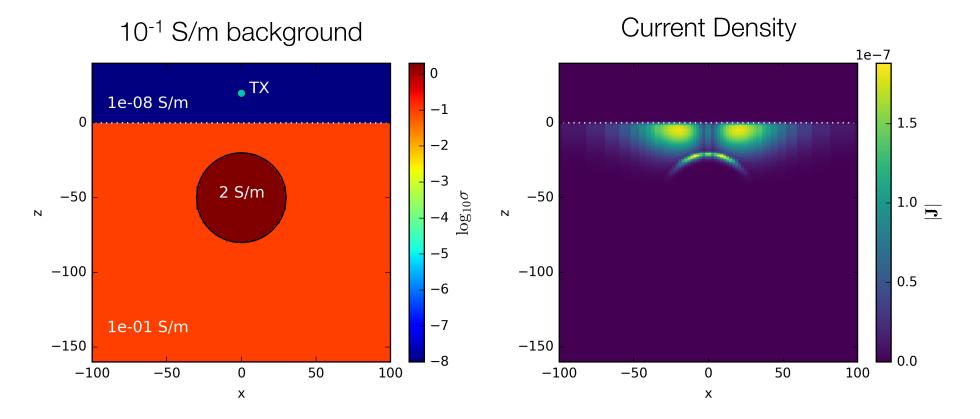
- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s



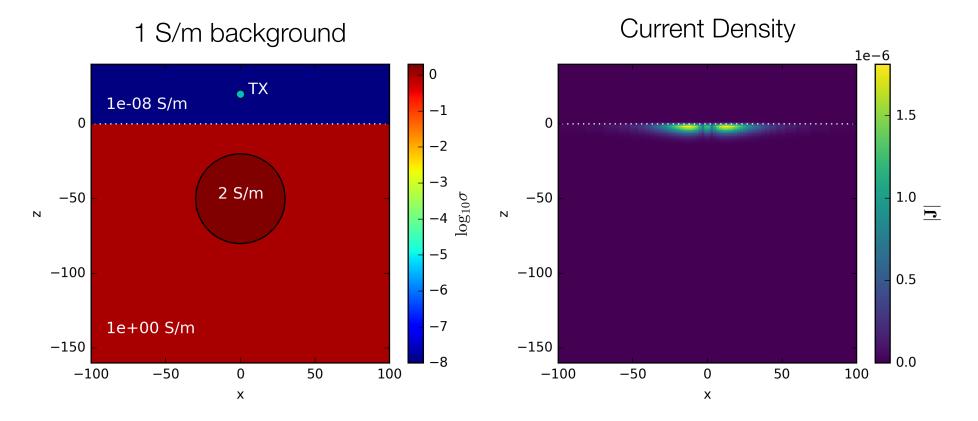
- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

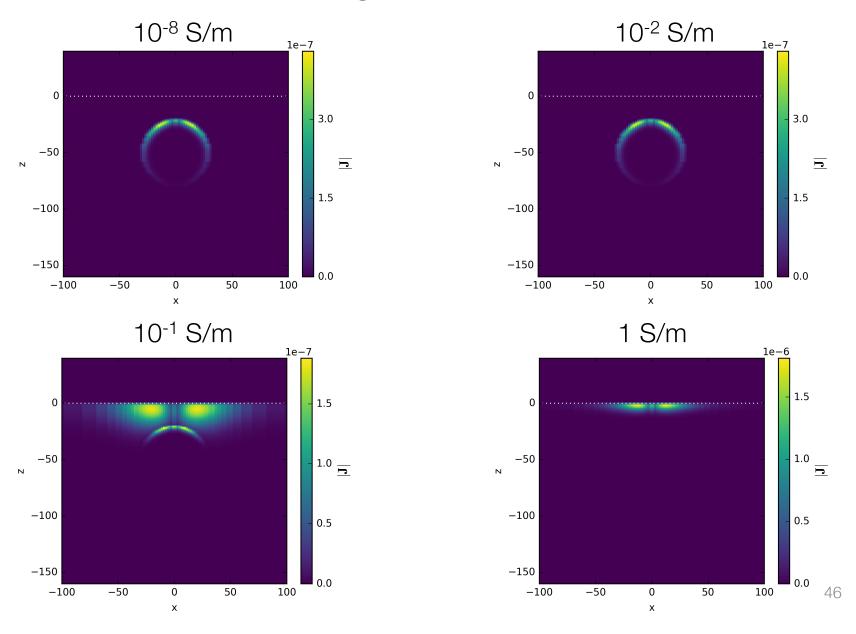


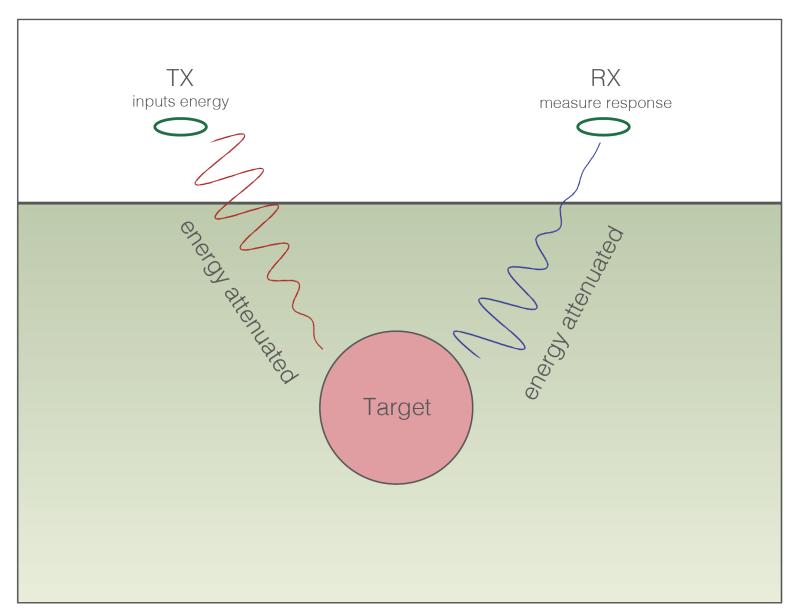
- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s



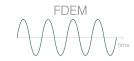
- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

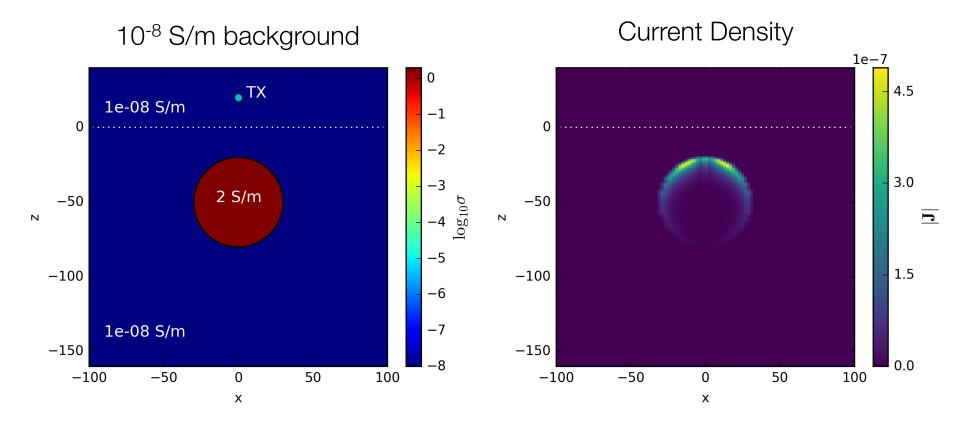




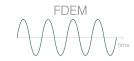


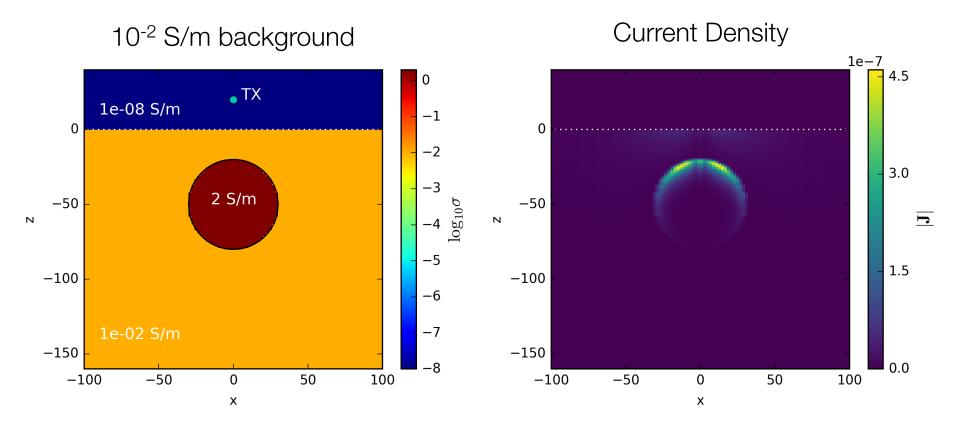
- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz



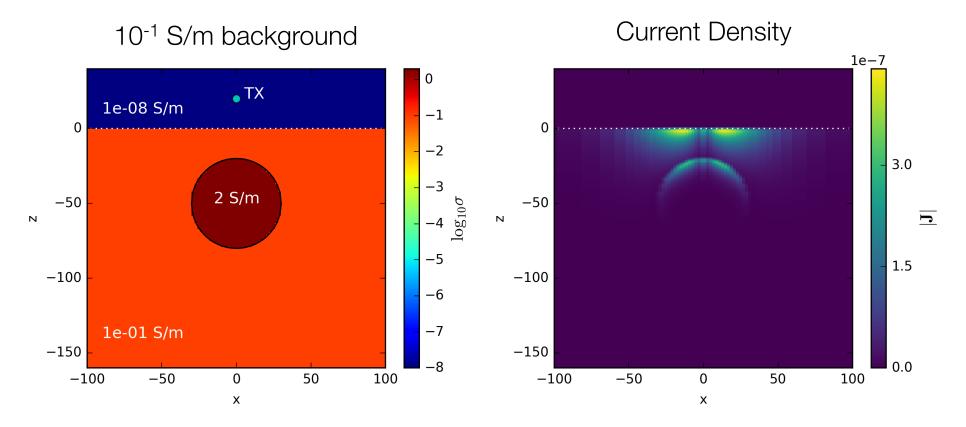


- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

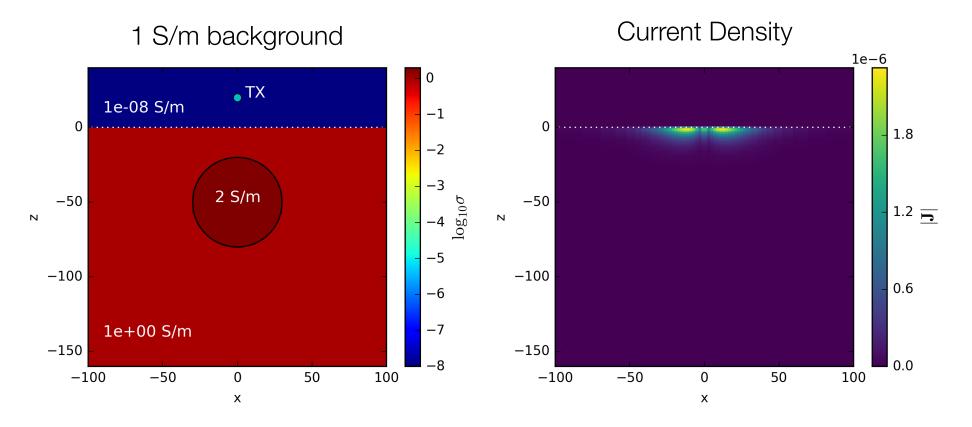


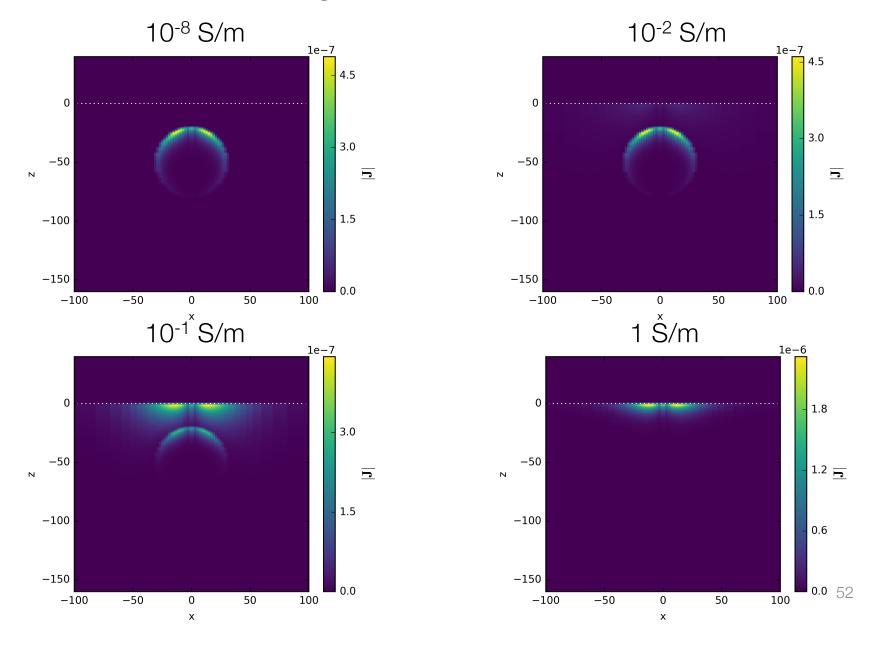


- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz



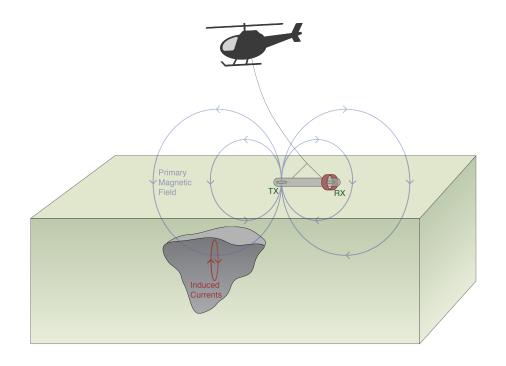
- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz



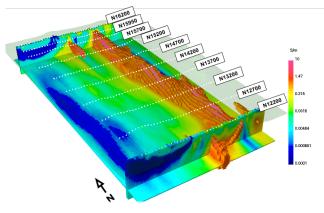


Recap: what have we learned?

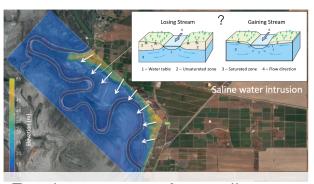
- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model is a good proxy
- Need to account for energy losses
- Ready to look at some field examples



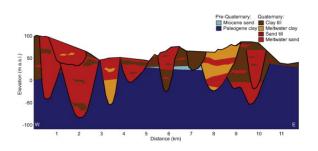
Today's Case Histories



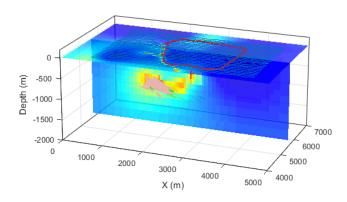
Mt. Isa, Australia: Mineral Exploration



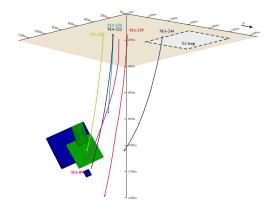
Bookpurnong, Australia: diagnosing river salination



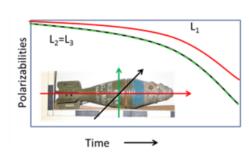
Kasted, Denmark: mapping paleochannel for hydrology



HeliSAM at Lalore: Minerals

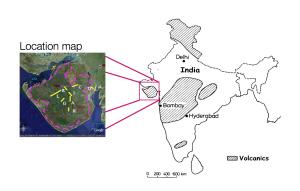


La Magdalena: Minerals



Unexploded Ordinance (UXO)

Today's Case Histories



E 1000

1245 508 500 1246

1245 508 500 1246

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

10

Cold inflow

Fluid convection

Cold inflow

Fluid convection

Cold inflow

Cold inflow

Cold inflow

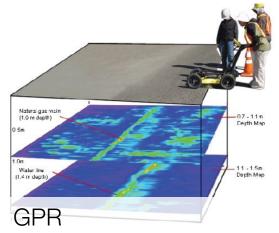
Cold inflow

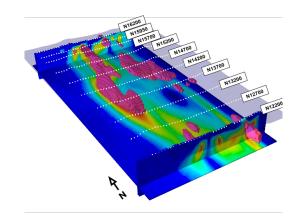
Fluid convection

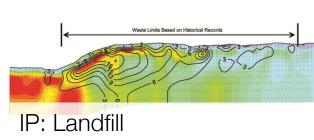
Deccan Traps, India: mapping sediment beneath basalt

Oregon, USA: methane hydrate

Hengill, Iceland: characterizing geothermal systems







Mt. Isa, Australia: Mineral Exploration

End of EM Fundamentals

