Inversion of airborne geophysical data over the Tli Kwi Cho kimberlite complex

An example of creating a geologic rock model from geophysical data

(Devriese et al, 2017; Fournier et al, 2017; Kang et al, 2017)

Seven steps

Diamonds in NWT

- Canada:
 - world's 3rd largest diamond producer
- Northwest Territories:
 - Ekati and Diavik,
- Tli Kwi Cho (TKC)
 - 2 kimberlite pipes

Geology of kimberlite pipes

- Kimberlites emplaced in granite
- Three main kimberlite units
 - Hypabyssal (HK): intrusive, igneous, nonfragmented
 - Volcaniclastic (VK): extrusive and fragmental
 - Pyroclastic (PK): similar to VK, more violent, and deposited after an explosive event

Exploration challenge

- 1992: drilled based on mag anomaly
 - disappointing diamond content
 - Poor location of initial drill holes
- How much information can be obtained using airborne geophysical data and 3D inversion technology?

Technical challenge

AeroTEM II data

- Negative transients
 - AeroTEM (I and II), and VTEM
- How do we invert:
 - Conductivity
 - Chargeability
- What impact can polarization information have on kimberlite exploration?

Questions

Using only airborne geophysics:

- gravity
- magnetics
- EM

- How much information about a kimberlite complex can be extracted with modern 3D inversion techniques?
- Can we create a geologic rock model using airborne geophysical data sets?

Physical Properties

Geology of Diamond pipe

- Overall kimberlite: low density
- HK: high susceptibility
- VK and PK:
 - Low-moderate susceptibility
 - Moderate-high conductivity

Physical property table

Rock Unit	Density	Susceptibility	Conductivity	Chargeability
Glacial till	Moderate	None	Moderate-high	Low
Host rock	Moderate	None	Low	Low
НК	Low-moderate	High	Low-moderate	Low
VK	Low	Low-moderate	Moderate-high	High
PK	Low	Low-moderate	Moderate-high	Moderate-high
Table of physical properties for typical kimberlitic rocks found in the Lac de Gras region.				

System	Year	Data	
DIGHEM	1992	FEM, mag	
Falcon	2001	Grav grad	
AeroTEM II	2003	TEM, mag	
VTEM	2004	TEM, mag	

DIGHEM

AeroTEM

System	Year	Data
DIGHEM	1992	FEM, mag
Falcon	2001	Grav grad
AeroTEM II	2003	TEM, mag
VTEM	2004	TEM, mag

DIGHEM

AeroTEM

System	Year	Data
DIGHEM	1992	FEM, mag
Falcon	2001	Grav grad
AeroTEM II	2003	TEM, mag
VTEM	2004	TEM, mag

DIGHEM

AeroTEM

System	Year	Data
DIGHEM	1992	FEM, mag
Falcon	2001	Grav grad
AeroTEM II	2003	TEM, mag
VTEM	2004	TEM, mag

DIGHEM

AeroTEM

DIGHEM data (broad scale)

DIGHEM data (broad scale)

Potential field data

EM data (close to two pipes)

Inversion: a quick overview

Forward modeling

$$\mathcal{F}[m] = d$$

Minimize objective function

$$\phi = \phi_d + \beta \phi_m$$

$$\phi_d = \|W_d(\mathcal{F}[m] - d)\|_2^2$$

$$\phi_m = \alpha_s ||W_s(m - m_0)||_2^2 + \sum_{i=1}^3 \alpha_i ||W_i(m - m_0)||_2^2$$

SimPEG

Potential fields

Density: ρ

ρ anomalies

Susceptibility: κ

κ and ρ anomalies

Note: remanent magnetization is considered in the MVI inversion

Interpretation

Geology of Diamond pipe

Physical property table

Rock Unit	Density	Susceptibility
Glacial till	Moderate	None
Host rock	Moderate	None
НК	Low-moderate	High
VK	Low	Low-moderate
PK	Low	Low-moderate

Overall kimberlite: low density

HK: high susceptibility

VK and PK: Low-moderate susceptibility

Summary: potential fields data

Petrophysical model

Rock Unit	Density	Susceptibility
Glacial till	Moderate	None
Host rock	Moderate	None
НК	Low-moderate	High
VK	Low	Low-moderate
PK	Low	Low-moderate

- Density
 - Overall kimberlites (R1)
 - Less dense then host
- Density + susceptibility
 - High sus. (R2) → "HK"
 - Moderate sus. and low density→ Either PK or VK
 - But cannot distinguish PK and VK!

Electromagnetics

EM data

- Focus on DIGHEM and VTEM data
- Negatives in VTEM data is a challenge

DIGHEM data

VTEM data

Four chargeable anomalies: A1-A4

Conductivity inversion

Interpretation: κ , ρ , and σ

- Helps to delineate top part of DO-27 (Till)
- R1 and R3 could still be either PK or VK

R3: Low ρ Moderate κ High σ

Conductivity: kimberlite or lake sediments?

Can we see a conductive pipe below the till?

Rock type	Glacial till	Host rock	НК	VK	PK
Density	Moderate	Moderate	Low	Low	Low
Susceptibility	None	None	High	Low-moderate	Low-moderate
Conductivity	Moderate-high	Low	Low-moderate	Moderate-high	Moderate-high

One more physical property

Chargeability

Obtain IP data

• EM-decoupling: IP = Observation – Fundamental (EM)

Obtain IP data

EM-decoupling: IP = Observation – Fundamental (EM)

3D IP inversion

IP data

$$d^{IP}(t) = G\tilde{\eta}(t)$$

 $G(\sigma_{\infty})$: Sensitivity function $\tilde{\eta}$: Pseudo-chargeability

Kang et al. (2016)

Recovered 3D model

Pseudo-chargeability (Early): $\tilde{\eta}_E$

Pseudo-chargeability (Late): $\tilde{\eta}_L$

EM and IP summary

Anomaly contours

Cole-Cole parameters

- A4 has greater time constant
- A1-A3 have small time constant.

Interpretation: adding $\tilde{\eta}_E$ and $\tilde{\eta}_L$

Distinction between PK and VK

- PK deposited after an explosive event
- PK has greater pore size than VK
- Result in greater time constant: τ
- R4 (small τ) VK, R5 (greater τ) PK

Final Interpretation

Petrophysical model

From airborne geophysics

Rock Unit	Density	Susceptibility	Conductivity	Chargeability		
Glacial till	Moderate	None	Moderate-high	Low		
Host rock	Moderate	None	Low	Low		
НК	Low-moderate	High	Low-moderate	Low		
VK	Low	Low-moderate	Moderate-high	High		
PK	Low	Low-moderate	Moderate-high	Moderate-high		
Table of physical properties for typical kimberlitic rocks found in the Lac de Gras region.						

Interpreted rock table (R0-R5)

Rock	ρ	κ	σ	$ ilde{\eta}_E$	$ ilde{\eta}_L$	au	Interpre-
Unit							tation
■ R0	Mod.	Low	Low	Low	Low	N/A	Host Rock
■ R1	Low	Low	Low	Low	Low	N/A	Kimberlite
R 2	Low	Mod.	Mod.	Low	Low	N/A	PK or VK
R 3	Low	High	Low	Low	Low	N/A	HK
■ R4	Low	Mod.	Mod.	High	Low	Small	VK
■ R5	Low	Mod.	Mod.	Low	High	Large	PK

Comparison with 3D geologic model

Plan map (100 mbsf)

HK, PK, and VK are delineated in 3D

Comparison with 3D geologic model

3D cut-off volume

Synthesis

Interpreted rock table (R0-R5)

Rock	ρ	κ	σ	$ ilde{\eta}_E$	$ ilde{\eta}_L$	τ	Interpre-
Unit							tation
■ R0	Mod.	Low	Low	Low	Low	N/A	Host Rock
■ R1	Low	Low	Low	Low	Low	N/A	Kimberlite
R 2	Low	Mod.	Mod.	Low	Low	N/A	PK or VK
R 3	Low	High	Low	Low	Low	N/A	HK
■ R4	Low	Mod.	Mod.	High	Low	Small	VK
■ R5	Low	Mod.	Mod.	Low	High	Large	PK

Main source of information

- R1 (kimberlite): from density (gravity)
- R2 (PK or VK): from conductivity (EM)
- R3 (HK): from susceptibility (mag.)
- R4 (VK): from IP (small τ)
- R5 (PK): from IP (large τ)

Rock units

Synthesis

Interpreted rock table (R0-R5)

Rock	ρ	κ	σ	$ ilde{\eta}_E$	$ ilde{\eta}_L$	τ	Interpre-
Unit							tation
■ R0	Mod.	Low	Low	Low	Low	N/A	Host Rock
■ R1	Low	Low	Low	Low	Low	N/A	Kimberlite
R 2	Low	Mod.	Mod.	Low	Low	N/A	PK or VK
R 3	Low	High	Low	Low	Low	N/A	HK
■ R4	Low	Mod.	Mod.	High	Low	Small	VK
■ R5	Low	Mod.	Mod.	Low	High	Large	PK

Main source of information

- R1 (kimberlite): from density (gravity)
- R2 (PK or VK): from conductivity (EM)
- R3 (HK): from susceptibility (mag.)
- R4 (VK): from IP (small τ)
- R5 (PK): from IP (large τ)

Limitations for kimberlite characterization

- PK: only recognized upper portion
- HK: dipping sheets; magnetics does not have resolution
- In general, limited depth resolution

Rock units

How could we improve the interpretation?

Rock units

What if drill holes were available?

- Geologic logs
 - Identifies rock units
 - Structural constraints
- Geophysical logs
 - bound constraints

How could we improve the interpretation?

XVK

Rock units

What if drill holes were available?

- Geologic logs
 - Identifies rock units
 - Structural constraints
- Geophysical logs
 - bound constraints

Update geophysical inversions and interpretation