

"All charged up"

Advances and applications for IP surveys

Douglas Oldenburg and Seogi Kang

Motivation

Minerals

Complex resistivity

Permafrost

Geotechnical

Groundwater

Chargeability

Initially - neutral

Apply electric field, build up charges

Charge polarization, Electric dipole

Input current

Measured voltage

Chargeability

Minerals at 1% Concentration in Samples

Chargeability

Material type	Chargeability (msec.)
20% sulfides	2000 - 3000
8-20% sulfides	1000 - 2000
2-8% sulfides	500 - 1000
volcanic tuffs	300 - 800
sandstone, siltstone	100 - 500
dense volcanic rocks	100 - 500
shale	50 - 100
granite, granodiorite	10 - 50
limestone, dolomite	10 - 20

Material type	Chargeability (msec.)
ground water	0
alluvium	1 - 4
gravels	3 - 9
precambrian volcanics	8 - 20
precambrian gneisses	6 - 30
schists	5 - 20
sandstones	3 - 12

Overvoltage

IP Inversion

Example DC: prism with geologic noise

• Pole-dipole; n=1,8; a=10m; N=316; $(\alpha_s, \alpha_x, \alpha_z)$ =(.001, 1.0, 1.0)

IP Inversion

Example IP: prism with geologic noise

• Pole-dipole; n=1,8; a=10m; N=316; $(\alpha_s, \alpha_x, \alpha_z)$ =(.001, 1.0, 1.0)

Challenge: EM coupling, grounded sources

DC-IP: overvoltage

Challenge: inductive sources

VTEM set-up

At 90 micro-s

Outline

- Background
- Grounded IP

- How to remove EM contamination?
- How to extract valuable conductivity?
- Gradient array example
- Inductive source IP
 - Revisit physics
 - IP inversion workflow
 - Tli Kwi Cho kimberlites

Simulation of TEM data

Maxwell's equations:

Frequency domain

$$\vec{\nabla} \times \vec{E} = -\imath \omega \vec{B}$$

$$\vec{\nabla} \times \mu^{-1} \vec{B} - \vec{J} = \vec{J}_s$$

Ohm's law in **frequency** domain

$$\vec{J} = \sigma \vec{E}$$

Time domain

$$\vec{\nabla} \times \vec{e} = -\frac{\partial \vec{b}}{\partial t}$$

$$\vec{\nabla} \times \mu^{-1} \vec{b} - \vec{j} = \vec{j}_s$$

Ohm's law in time domain

$$\vec{j} = \sigma \vec{e}$$

Complex conductivity

Cole-Cole model (Pelton et al., 1978)

Frequency domain

Time domain

Inverse Fourier transform

 σ_{∞} : Conductivity at infinite frequency

 σ_0 : Conductivity at zero frequency

 η : Chargeability

 τ : Time constant (s)

c: Frequency dependency

$$\sigma(\omega) = \sigma_{\infty} + \sigma_{\infty} \frac{\eta}{1 + (1 - \eta)(\imath \omega \tau)^{c}} \longrightarrow \mathcal{F}^{-1}[\sigma(\omega)] = \sigma(t)$$

Simulation of TEM data with IP

Maxwell's equations:

EMTDIP code (Marchant et al., 2015)

Frequency domain

$$\vec{\nabla} \times \vec{E} = -\imath \omega \vec{B}$$

$$\vec{\nabla} \times \mu^{-1} \vec{B} - \vec{J} = \vec{J}_s$$

Ohm's law in **frequency** domain

$$\vec{J} = \sigma(\omega)\vec{E}$$

Time domain

$$\vec{\nabla} \times \vec{e} = -\frac{\partial \vec{b}}{\partial t}$$

$$\vec{\nabla} \times \mu^{-1} \vec{b} - \vec{j} = \vec{j}_s$$

Ohm's law in time domain

$$\vec{j} = \sigma(t) \otimes \vec{e}(t)$$

 $\otimes : convolution$

Observed response

Observed response

Define IP datum

• IP datum:

IP = Observation - Fundamental
$$d^{IP}(t) = F[\sigma(t)] - F[\sigma_{\infty}]$$

 $F[\sigma(t)]$ Observation $F[\sigma_{\infty}]$ Fundamental

 $F[\cdot]$: Maxwell's operator

Define IP datum

IP datum:

IP = Observation - Fundamental
$$d^{IP}(t) = F[\sigma(t)] - F[\sigma_{\infty}]$$

 $F[\sigma(t)]$ Observation $F[\sigma_{\infty}]$ Fundamental

 $F[\cdot]$: Maxwell's operator

Synthetic model

Conductivity at Infinite frequency:

halfspace =
$$0.01 \text{ S/m}$$

$$A1 = 1 \text{ S/m}$$

$$A2 = 0.01 \text{ S/m}$$

$$A3 = 0.1 \text{ S/m}$$

$$A4 = 0.001 \text{ S/m}$$

Chargeable objects: A2 and A3

$$\eta = 0.1$$

$$\tau = 0.5 \text{ s}$$

$$c = 1$$

Forward modelling set up

- Measure potential difference
 - 200 m bi-pole (625 mid points)
- Step-off waveform:

- Time range: 1 600 ms (off-time)
 - Chargeable objects: A2 and A3

Observed DC data

EM decoupling

Time decaying curves (off-time)

EM decoupling: true σ_{∞}

No hope

A3

Intermediate

IP

Induction

IO

Time (ms)

Can make a do anything

Off-time at 80 ms

EM decoupling: σ_{∞}^{half}

Off-time at 80 ms

Intermediate

In

How do we estimate conductivity, σ_{∞} ?

Late on-time data (DC)

Early off-time data (TEM)

3D inversion methodology

• Data misfit:

$$\phi_d = \|\mathbf{W_d}(\mathbf{Am} - d^{obs})\|_2^2$$

Model objective function:

$$\phi_m = \|\mathbf{W}_m(\mathbf{m} - \mathbf{m}_{ref})\|_2^2$$

Tikhonov inversion: minimize

$$\phi = \phi_d(\mathbf{m}) + \beta \phi_d(\mathbf{m})$$

Depth weight:

$$\frac{1}{(z-z_0)^3}$$

DC-IP inversion: SimPEG-DCIP

TEM inversion: UBC-H3DTD code

3D DC inversion

Recover 3D conductivity

- Depth weighting
 - Compensate for high sensitivity near surface

$$\frac{1}{(z-z_0)^3}$$

EM decoupling: σ_{est}^{DC}

Off-time at 130 ms

$$d_{raw}^{IP}(t) = F[\sigma(t)] - F[\sigma_{est}^{DC}] + noise(t)$$

EM decoupling: σ_{est}^{DC}

IP: Half-space

1000
500
-1000
-1000
Easting (m)

Off-time at 130 ms

$$d_{raw}^{IP}(t) = F[\sigma(t)] - F[\sigma_{est}^{DC}] + noise(t)$$

3D TEM inversion

Recover 3D conductivity

Use uncontaminated EM data

Time range: 1-6 ms (6 channels)

Observed vs. Predicted

EM decoupling: σ_{est}^{EM}

Off-time at 80 ms

$$d_{raw}^{IP}(t) = F[\sigma(t)] - F[\sigma_{est}^{EM}] + noise(t)$$

Comparisons of IP

IP data at 80 ms

IP inversion workflow

Workflow

Invert TEM data, to recover σ_{∞}

Compute IP datum Remove EM responses

Linearized equations

Invert d^{IP} data, recover pseudo-chargeability

3D IP inversion

Chargeability: recovered by inverting:

3D cut-off volume

Pseudo-chargeability > 0.015

Take home

Traditionally, early time TEM data has been discarded

By using these discarded TEM signals we can better estimate both 3D conductivity and chargeability

Outline

- Backgrounds
- TEM-IP inversion workflow
- Galvanic source IP
 - Synthetic example: gradient array

- Inductive source IP
 - Field example: Tli Kwi Cho kimberlites

Discovery of Tli Kwi Cho (TKC)

Location of TKC, NWT

Kimberlite pipe structure

Devriese et al. (2016)

Time domain EM data

Reversed currents

IP inversion workflow

Workflow

Invert TEM data, to recover σ_{∞}

Compute IP datum
Remove EM responses

Linearized equations

Invert d^{IP} data, recover pseudo-chargeability

Step 1: Conductivity inversion

IP = Observation - Fundamental

$$d^{IP} = F[\sigma(t)] - F[\sigma_{\infty}]$$
 $F[\cdot]$: Maxwell's operator

130 micro-s

Observed

1600
1400
1400
1400
1400
A1
6.0
4.8
3.6
2.4
1.2
0.0
-1.2
-2.4

Easting (m) $+5.568 \times 10^5$

Fundamental

IP = Observation - Fundamental

$$d^{IP} = F[\sigma(t)] - F[\sigma_{\infty}]$$
 $F[\cdot]$: Maxwell's operator

130 micro-s

IP = Observation - Fundamental

$$d^{IP} = F[\sigma(t)] - F[\sigma_{\infty}]$$
 $F[\cdot]$: Maxwell's operator

410 micro-s

Observed

Fundamental

IP = Observation - Fundamental

$$d^{IP} = F[\sigma(t)] - F[\sigma_{\infty}]$$
 $F[\cdot]$: Maxwell's operator

410 micro-s

Step 3: 3D IP inversion

Recovered 3D pseudo-chargeability

Step 3: 3D IP inversion

Recovered 3D pseudo-chargeability

Outline of two pipes
Conductivity contour

Step 4: Estimate η and τ

Anomaly contours

- A1-A3 has small time constant
- A4 has greater time constant

Cole-Cole model

$$\sigma(\omega) = \sigma_{\infty} + \sigma_{\infty} \frac{\eta}{1 + (1 - \eta)(\imath \omega \tau)^{c}}$$

 σ_{∞} : Conductivity at infinite frequency

 σ_0 : Conductivity at zero frequency

 η : Chargeability

 τ : Time constant (s)

c: Frequency dependency

Impact on kimberlite exploration

200 Elevation (m) Elevation (m) 557299 557744 556855 557299 557744 556855 Easting (m) Easting (m) R0 R3 HK XVK VK R1 R2 R4 Host Till Rock units Rock units

From **drillings**

DO-27 B-B'

From **geophysics**

DO-27 B-B'

Harder et al. (2009)

HK, PK, and VK are delineated in 3D

Workflow

Invert TEM data, to recover σ_{∞}

Compute IP datum
Remove EM responses

Linearized equations

Invert d^{IP} data, recover pseudo-chargeability

Workflow

Invert TEM data, to recover σ_{∞}

Compute IP datum
Remove EM responses

Linearized equations

Invert d^{IP} data, recover pseudo-chargeability

Workflow

Invert TEM data, to recover σ_{∞}

Compute IP datum
Remove EM responses

Linearized equations

Invert d^{IP} data, recover pseudo-chargeability

Workflow

Invert TEM data, to recover σ_{∞}

Compute IP datum
Remove EM responses

Linearized equations

Invert d^{IP} data, recover pseudo-chargeability

Invert TEM data, to recover σ_{∞}

Compute IP datum
Remove EM responses

Linearized equations

Invert d^{IP} data, recover pseudo-chargeability

Estimate intrinsic IP parameters

We may distinguish different rock types

Thank you

IP Inversion

TEM-IP inversion workflow

Kang and Oldenburg (2016)

10⁰
10⁻¹
10⁻³

EM Intermediate IP

Invert TEM data, to recover σ_{∞}

Compute IP datum Remove EM responses

Linearized equations

Invert d^{IP} data, recover pseudo-chargeability

Estimate intrinsic IP parameters

IP = Observation - Fundamental $d^{IP}(t) = F[\sigma(t)] - F[\sigma_{\infty}]$

 $F[\cdot]$: Maxwell's operator

$$d^{IP}(t) = G\tilde{\eta}(t)$$

 $G(\sigma_{\infty})$: Sensitivity function $\tilde{\eta}$: Pseudo-chargeability

Comparison of 3D conductivities

Recovered 3D conductivity

Comparisons of Fundamental

Fundamental data at 80 ms

