Induced Polarization

Motivation

Permafrost

Geotechnical

Seafloor massive sulfide

Basics of a hydrothermal vent - a Black Smoker

Groundwater

Outline

- Sources of IP
- Conceptual model of IP
- Chargeability
- IP data
- Pseudosections
- Two stage DC-IP inversion
- Case history: Mt. Isa
- Example: Landfills

Induced Polarization

- Injected currents cause materials to become polarized
- Microscopic causes \rightarrow macroscopic effect
- Phenomenon is called induced polarization

Not chargeable C		Chargeable
Source (Amps)		
Potential (Volts)	- -	۔ ک

Conceptual Model of IP

Membrane polarization

Initially - neutral

Apply electric field, build up charges

Charge polarization, Electric dipole

Electrode polarization

Chargeability

Minerals at 1% Concentration in Samples

Material type	Chargeability (msec.)
20% sulfides	2000 - 3000
8-20% sulfides	1000 - 2000
2-8% sulfides	500 - 1000
volcanic tuffs	300 - 800
sandstone, siltstone	100 - 500
dense volcanic rocks	100 - 500
shale	50 - 100
granite, granodiorite	10 - 50
limestone, dolomite	10 - 20

Material type	Chargeability (msec.)
ground water	0
alluvium	1 - 4
gravels	3 - 9
precambrian volcanics	8 - 20
precambrian gneisses	6 - 30
schists	5 - 20
sandstones	3 - 12

Chargeability

Initially - neutral

Apply electric field, build up charges

Charge polarization, Electric dipole

IP data

- Seigel (1959):
 - Introduced chargeability: η
 - Effect reduces conductivity

$$\sigma_{\eta} = \sigma(1 - \eta) \qquad \eta \in [0, 1)$$

• Theoretical chargeability data

$$d^{IP} = \frac{\phi_s}{\phi_\eta} = \frac{\phi_\eta - \phi_\sigma}{\phi_\eta}$$

• Not directly measureable

IP data: time domain

• IP datum

Dimensionless:

Value at individual time channel:

Area under decay curve:

$$\eta = \phi_s / \phi_\eta$$
$$\phi_s(t)$$
$$M = \frac{1}{\phi_\eta} \int_{t_1}^{t_2} \phi_s(t) dt$$

IP data: frequency domain

• Percent frequency effect:

$$PFE = 100(\frac{\rho_{a2} - \rho_{a1}}{\rho_{a1}})$$

 ρ_{a1} : apparent resistivity at f_1 ρ_{a2} : apparent resistivity at f_2

IP data

• IP signals due to a perturbation (small change) in conductivity

$$\sigma_{\eta} = \sigma(1 - \eta) \qquad \qquad \eta \in [0, 1)$$

• An IP datum can be written as

$$d_i^{IP} = \sum_{j=1}^M J_{ij} \eta_j \qquad i = 1, \dots, N$$
$$J_{ij} = \frac{\partial log \phi^i}{\partial log \sigma_j} \qquad \text{sensitivities for the} \\ \text{DC resistivity problem}$$

• In matrix form

$$\mathbf{d}^{IP} = \mathbf{J}\boldsymbol{\eta}$$

 ${f J}$ is an N×M matrix

Summary of IP data

- Time domain:
 - Theoretical chargeability (dimensionless)
 - Integrated decay time (msec)
- Frequency domain:
 - PFE (dimensionless)
 - Phase (mrad)
- For all data types: linear problem

$$\mathbf{d}^{IP} = \mathbf{J}\boldsymbol{\eta}$$

IP pseudosections

IP pseudosections

IP pseudosections

3) The "UBC-GIF model"

IP Inversion

Example 1: buried prism

• Pole-dipole; n=1,8; a=10m; N=316; (α_s , α_x , α_z)=(.001, 1.0, 1.0)

Example 2: prism with geologic noise

• Pole-dipole; n=1,8; a=10m; N=316; (α_s , α_x , α_z)=(.001, 1.0, 1.0)

Example 3: UBC-GIF model

Induced Polarization: Summary

- Sources of IP
- Conceptual model of IP
- Chargeability
- IP data
- Pseudosections
- Two stage DC-IP inversion
- Questions
- Case history: Mt. Isa
- Example: Landfills

Case history: Mt. Isa

Rutley et al., 2001

Setup

• Mt. Isa (Cluny propect)

Question

• Can conductive, chargeable units, which would be potential targets within the siltstones, be identified with DC / IP data?

Properties

Resistivity and Chargeability

Rock Unit	Conductivity	Chargeability
Native Bee Siltstone	Moderate	Low
Moondarra Siltstone	Moderate	Low
Breakaway Shale	Very High	Low-None
Mt Novit Horizon	High	High
Surprise Creek Formation	Low	None
Eastern Creek Volcanics	Low	None

Recap: Synthesis from DC

- Identified a major conductor \rightarrow black shale unit
- Some indication of a moderate conductor

Can a chargeable, moderate conductor in the siltstones be identified?

Survey and data

- Eight survey lines
- Two configurations

Apparent chargeability, dipole- pole.

Processing

3D chargeability model

Animation

Interpretation

A: Resistive, Non-chargeable

- B: Moderate conductivity; low chargeabilty
- C: Very high conductivity (> 10 S/m)

E and F: High conductivity and high chargeability

G: Other chargeable regions

Synthesis

A: Surprise Creek Formation

- Resistive, non-chargeable

B: Moondarra and Native Bee siltstones

C: Breakaway Shales

- Very high conductivity

E and F: Mt Novit Horizon

 High conductivity and high chargeability

G: Other chargeable regions within siltstone complex

Induced Polarization: Summary

- Sources of IP
- Conceptual model of IP
- Chargeability
- IP data
- Pseudosections
- Two stage DC-IP inversion
- Case history: Mt. Isa
- Questions
- Example: Landfills

IP over Landfills

Landfills: Hazards and Goals

- Pollutants
 - Toxic leachates (mercury, arsenic, cadmium, lead, PVC, solvents)
- Concerns
 - Health
 - Water contamination
 - Construction hazard
 - Devalues property
- Goals
 - Locate abandoned landfills
 - Assess size
 - Characterize the waste
 - Monitor reclamation

Nearmont and Congress landfills, Tucson, Arizona

Physical Properties

Waste Type	Description	Resistivity	Susceptible	Chargeable
Electronic/ Technological	Metallic objects, heavy metals in solution	Low	Yes	Yes
Construction Debris	Wood, cement, iron rebar, wall board, asbestos, glass, plastics	High	Frequently	Weakly
Earth Materials	Clays, various fill	Low/Moderate	Occasionally	Yes
Green waste	trees, wood clippings etc	Variable	No	Weakly

Traditional Landfill Surveys

Magnetic

DC Resistivity

Near-Surface Electromagnetic

- Most popular surveys have limited success
- IP might be a better diagnostic
- Responsive to: metallic debris, green waste, organic matter, some construction materials

Ryan Airfield (Eastern Pit)

- Waste material: Mixed solid waste (MSW)
- Observations:
 - Resistivity not correlated with pit margins (non-diagnostic)
 - Chargeability (IP) correlates well with historical pit margins (diagnostic)

Ryan Airfield (Western Pit)

- Waste material: Construction / demolition
- Observations:
 - Waste correlates with region of high resistivity
 - Waste correlates with chargeable region (significant IP anomaly).

Resistivity

Ryan Airfield (Composite)

Chargeability isosurface

- Waste material:
 - MSW and construction / demolition
- Observations:
 - Well locations picked with aim of **not** intercepting waste
 - Verified by drilling

Tumamoc Landfill

- Waste material: Construction / demolition
- Observations:
 - Low resistivity down-gradient from waste \rightarrow likely conductive leachate
 - Low resistivity and IP offset from one another
 - IP falls within historic landfill boundaries

Tucson region: Organic material

- Waste material: green-waste, trees, clippings
- Observations:
 - Resistivity low
 - Weak but elevated IP signature

Nearmont Landfill

- Waste material: Municipal solid waste (MSW)
- Observations:
 - low resistivity + high IP (ideal "fingerprint")
 - MSW waste confirmed with drilling

Example: Landfill Monitoring

- Waste material: municipal solid waste (MSW)
- Surveys:
 - 2003: IP survey
 - 2003-2007: 4 year biodegrediation program
 - 2009: Repeat IP survey
- Observations:
 - Reduction in IP anomaly indicates the effectiveness of biodegredation

Summary

• Resistivity may not be a good indicator of waste

Summary

• Chargeability may be a more consistent indicator of waste

Case History: Mapping a landfill, Demark

Gazoty et al., 2012

Setup

Horlokke area, Denmark

- Landfill
 - Years: 1968-1978
 - 100m x 100m
 - Sludge from waste treatment plant
 - Estimated volume: 65,000m³

Containment

- No membrane
- No leachate capture
- No isolation system
- Current state
 - Landfill: hydrocarbons, iron, inorganics
 - Contaminant plume
 - 500m to west; depth (50-60 m)
 - Chlorinated compounds

Setup

- Horlokke landfill
 - Located on an outwash plane (low topography)
 - Clay layer: top 2-3m
 - Waste layer: 6-8m thick
- General geology
 - Gravel and sand with interbedded clay
 - Water level: 2-3m depth
 - Sand layers below landfill host regional aquifer
- Aquifer is used for drinking water
 - Watershed is west of the site
 - No risk currently
 - Concern if watershed shifts east due to climate change

Objectives

- Delineate the boundaries and depth of the current landfill
- Locate the leachate plume
- Identify lithologies
 - Aquitards
 - Clay-rich sandy layers
 - Deep silt/clay lens

Properties

Physical properties

	Resistivity	Chargeability	Gamma
sand/gravel	High	Low	Low
clay/till	Low	High	High
sand	High	Low	Low
landfill	High (?)	High	(?)

Survey

Study area

Time domain IP (TDIP)

Data (chargeability):

$$M_{i} = \frac{1}{V_{\text{DC}} \cdot [t_{i+1} - t_{i}]} \int_{t_{i}}^{t_{i+1}} V_{\text{ip}} dt$$

- Well logs:
 - 25 boreholes, ~85 m depth
 - Gamma logs (white dots)
 - Induction and resistivity logs

- DC-IP survey:
 - 11 lines (each ~410 m)
 - Gradient array
 - Input current: 4sec on and 4sec off
 - 20 time gates (8 per decade)

Processing / Inversion

- Cole-Cole inversion:
 - Laterally constrained inversion (LCI)
 - Invert for Cole-Cole parameters

Recovered Cole-Cole sections:

Interpretation: Delineating the landfill

Location map

50

Estimated volume

Using 100 mV/V cutoff: 50,000m³ From historic record: 65,000m³

Interpretation: Clay layer (Aquitard)

Resistivity and chargeability sections

Formation	Resistivity	Chargeability	Gamma
Clay	Low (60 ohm m)	High	High

Interpretation

• Creek overlays the clay layer (acts as aquitard)

Interpretation: Clay-rich sandy layer

Resistivity and chargeability sections

Formation	Resistivity	Chargeability	Gamma
Clay	Low	High	High
Clay-rich sandy layer	High	Moderate (50-100 mV/V)	High

Interpretation: Silt/clay lens

Formation	Resistivity	Chargeability	Gamma
Clay	Low	High	High
Clay rich sandy layer	High	Moderate (50-100 mV/V)	High
Silt/clay lens	Low	High	High

Interpretation: Lithology

Location map

Geologic interpretation

Interpretation: Lithology

1000

100

10

Resistivity cut-off volume (<100 Ω m)

Location map

Geologic interpretation

Synthesis: delineating the leachate

1000

100

10

Resistivity and chargeability sections

Resistivity cut-off volume (<100 Ω m)

Contaminated plume section

Geologic interpretation

Summary

- Found boundaries for the waste
- Estimated volume for the waste
- Delineated the leachate plume
- Lithology of the background
 - Aquitard
 - Clay-rich sandy layer
 - Clay lens

End of IP

