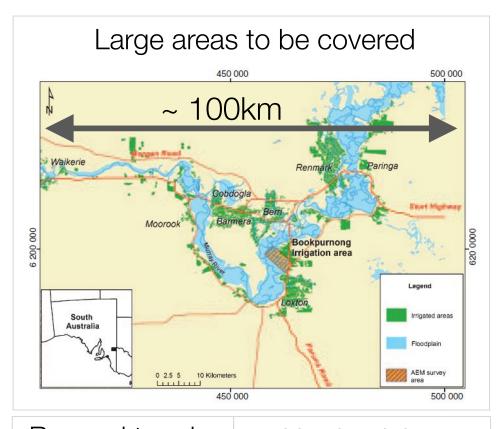
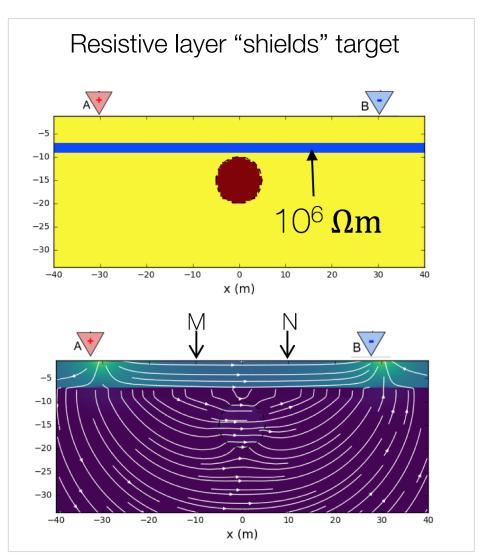
EM Fundamentals

Motivation: applications difficult for DC



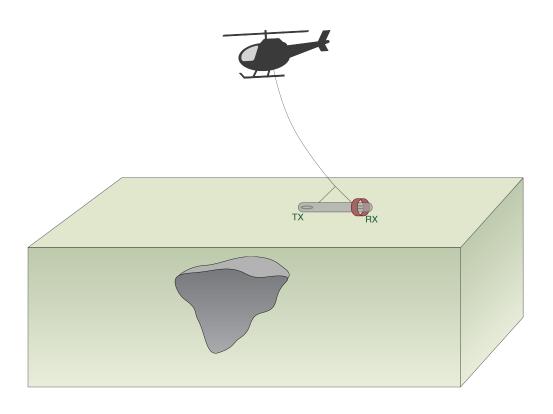


Outline

- Basic Survey
- Ampere's and Faraday's Laws (2-coil App)
- Circuit model for EM induction
- Frequency and time domain data
- Sphere in homogeneous earth
- Cyl code
- Energy losses in the ground

• Setup:

transmitter and receiver are in a towed bird

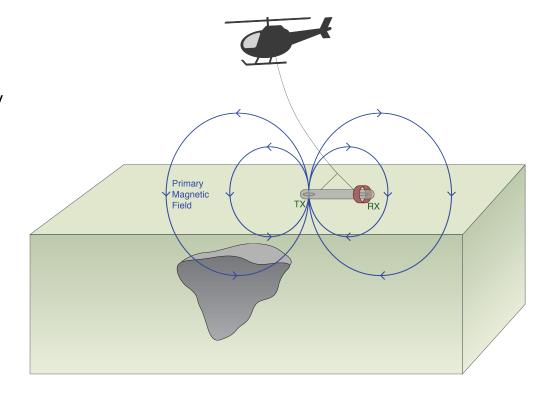


Setup:

transmitter and receiver are in a towed bird

Primary:

Transmitter produces a primary magnetic field



Setup:

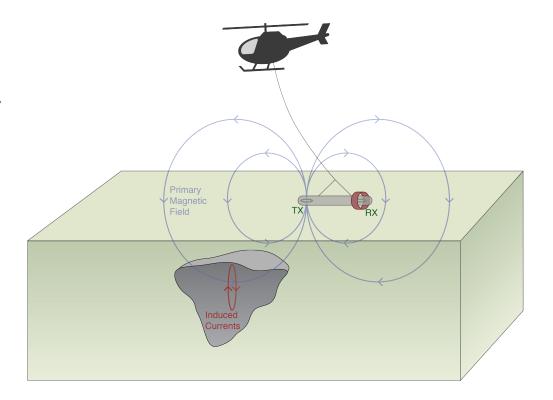
 transmitter and receiver are in a towed bird

Primary:

Transmitter produces a primary magnetic field

Induced Currents:

 Time varying magnetic fields generate electric fields everywhere and currents in conductors



Setup:

 transmitter and receiver are in a towed bird

Primary:

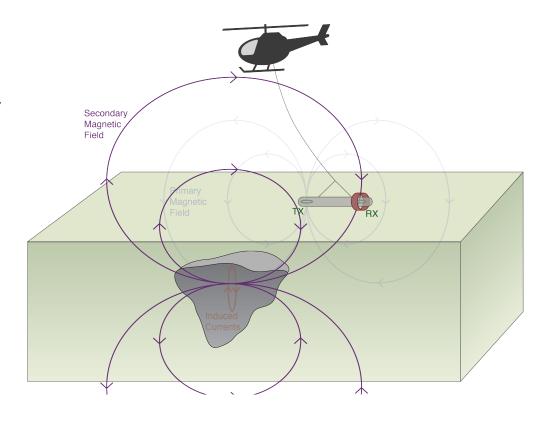
Transmitter produces a primary magnetic field

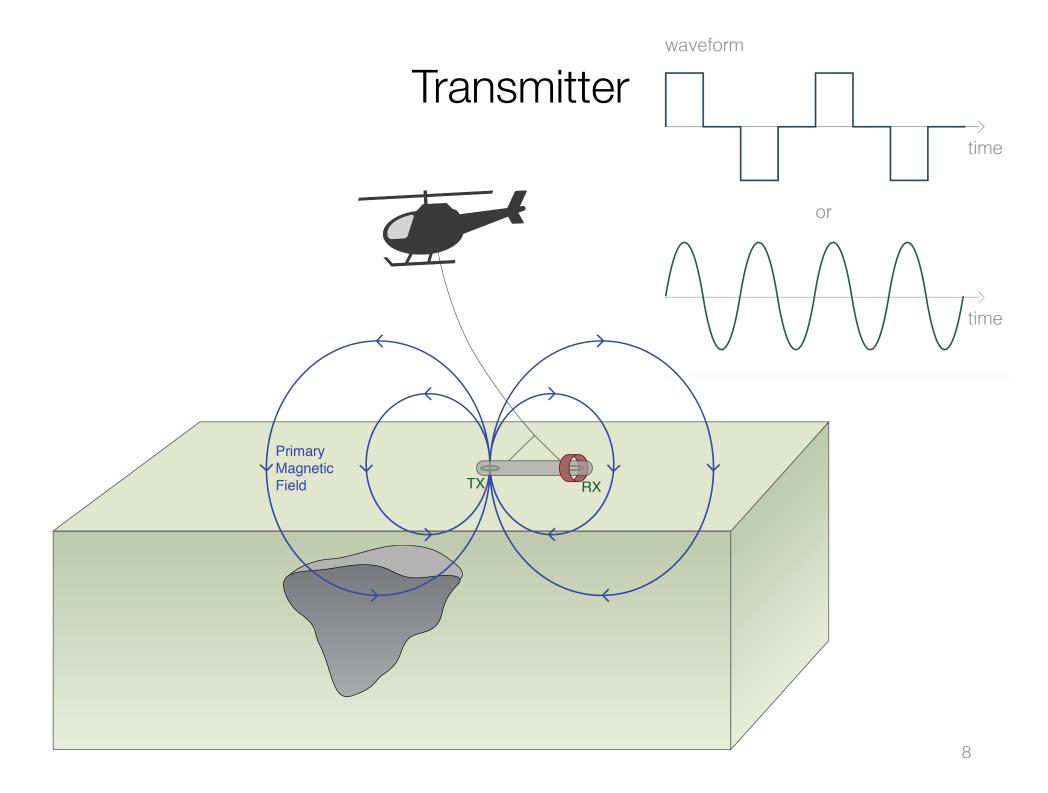
Induced Currents:

 Time varying magnetic fields generate electric fields everywhere and currents in conductors

Secondary Fields:

 The induced currents produce a secondary magnetic field.





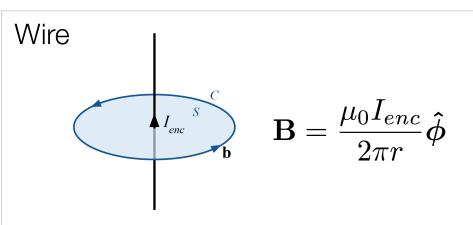
Basic Equations: Quasi-static

	Time	Frequency
Faraday's Law	$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$	$\nabla \times \mathbf{E} = -i\omega \mathbf{B}$
Ampere's Law	$ abla extbf{x} extbf{h} = extbf{j} + rac{\partial extbf{d}}{\partial t}$	$\nabla \times \mathbf{H} = \mathbf{J} + i\omega \mathbf{D}$
No Magnetic Monopoles	$\nabla \cdot \mathbf{b} = 0$	$\nabla \cdot \mathbf{B} = 0$
Constitutive Relationships (non-dispersive)	$\mathbf{j} = \sigma \mathbf{e}$ $\mathbf{b} = \mu \mathbf{h}$ $\mathbf{d} = \varepsilon \mathbf{e}$	$egin{aligned} \mathbf{J} &= \sigma \mathbf{E} \ \mathbf{B} &= \mu \mathbf{H} \ \mathbf{D} &= arepsilon \mathbf{E} \end{aligned}$

^{*} Solve with sources and boundary conditions

Ampere's Law

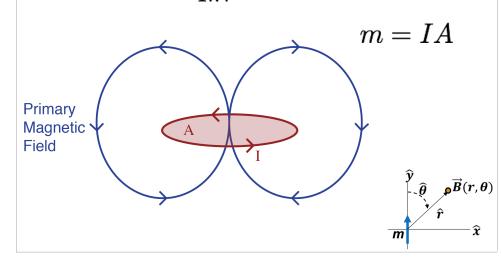
$$abla imes \mathbf{H} = \mathbf{J}$$

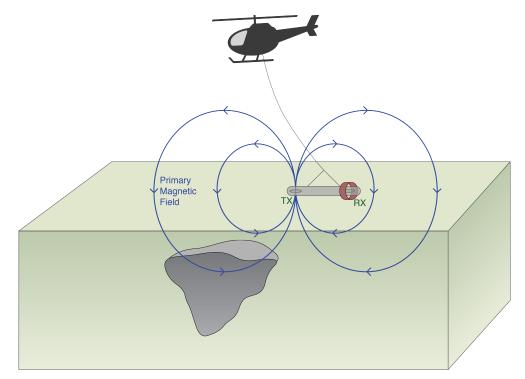


Right hand rule

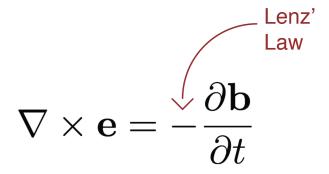
Current loop

$$\mathbf{B} = \frac{\mu_0 m}{4\pi r^3} (2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\boldsymbol{\theta}})$$



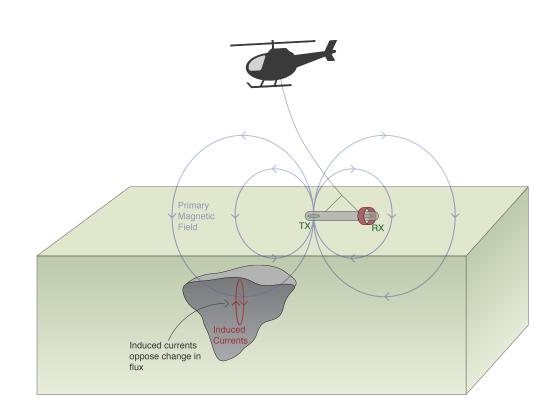


Faraday's Law and Induced Currents



Ohm's Law

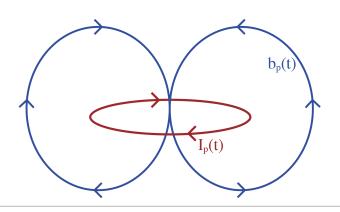
$$\mathbf{j} = \sigma \mathbf{e}$$



Two Coil Example: Harmonic

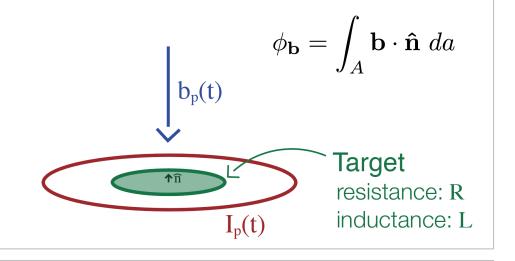
Source (red loop)

Time varying current → Time varying magnetic flux



Target (green loop)

Time varying magnetic flux



Faraday's Law

$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

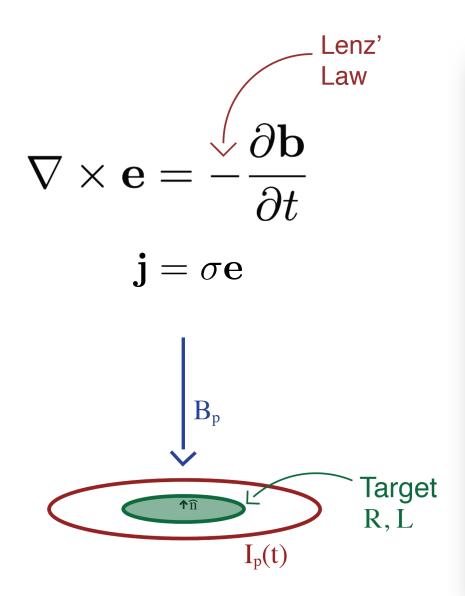
Ohm's Law

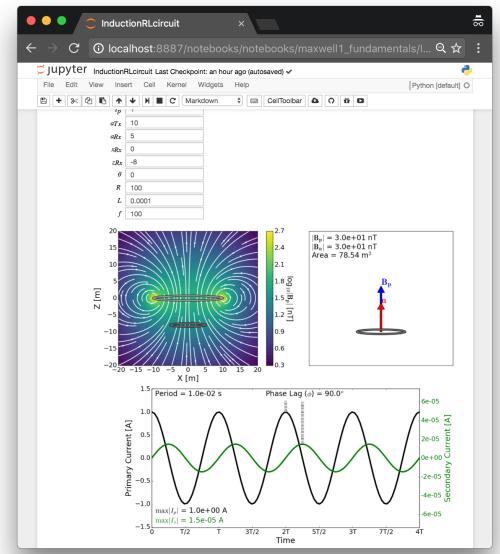
$$\mathbf{j} = \sigma \mathbf{e}$$

EMF (voltage) is related to time rate of change in flux.

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} \quad \text{volume}$$

App for Faraday's Law





Two Coil Example: Harmonic

Induced Currents

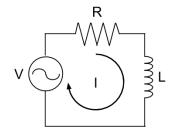
$$I_p(t) = I_p \cos \omega t$$

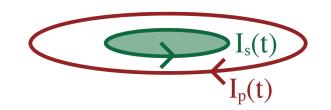
$$I_s(t) = I_s \cos(\omega t - \psi)$$

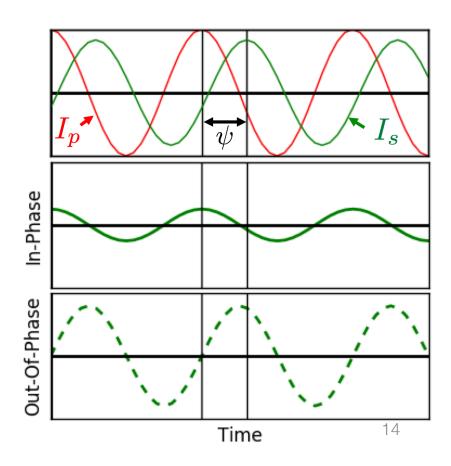
$$= \underbrace{I_s \cos\psi\cos\omega t + \underbrace{I_s \sin\psi\sin\omega t}}_{\text{In-Phase}}$$
 Out-of-Phase Real Quadrature Imaginary

Phase Lag

$$\psi = \frac{\pi}{2} + \tan^{-1} \left(\frac{\omega L}{R} \right)$$







Two Coil Example: Harmonic

Induced Currents

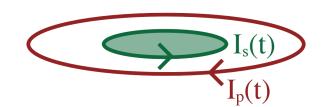
$$I_p(t) = I_p \cos \omega t$$

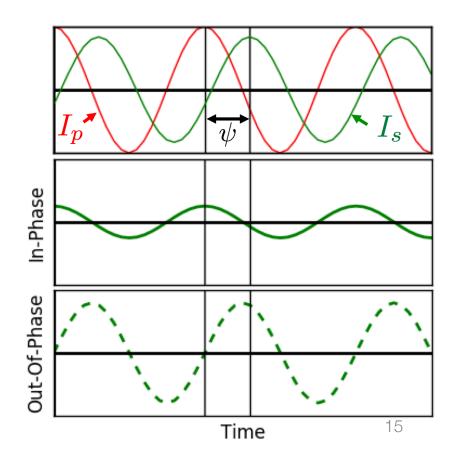
Phase Lag

$$\psi = \frac{\pi}{2} + \tan^{-1} \left(\frac{\omega L}{R} \right)$$



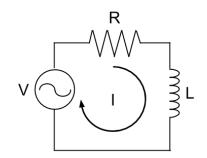
Induction number

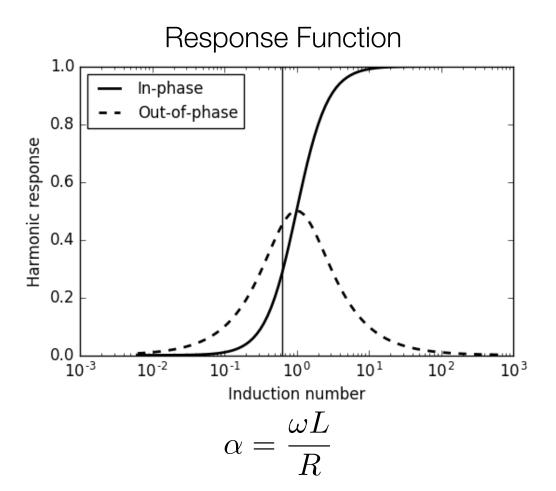


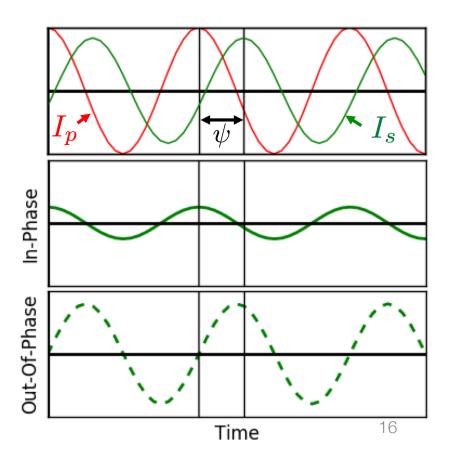


Response Function

- Quantifies how a target responds to a time varying magnetic field
- Partitions real and imaginary parts

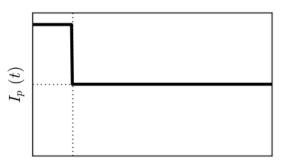


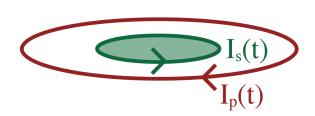




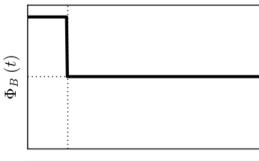
Two Coil Example: Transient

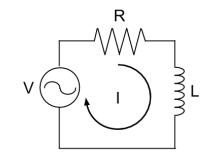
Primary currents



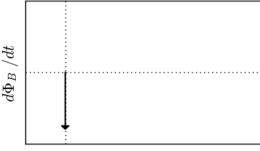


Magnetic flux





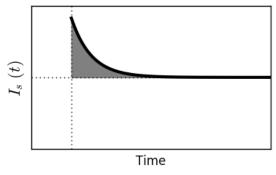
Time-variation of magnetic flux



 $I_s(t) = I_s e^{-t/\tau}$ $\tau = L/R$

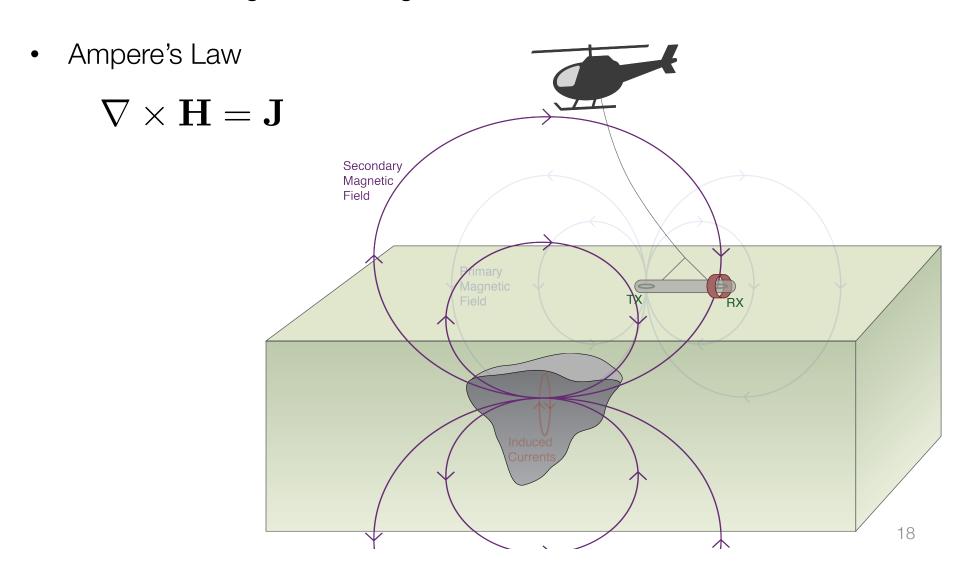
$$\tau = L/R$$

Secondary currents



Secondary magnetic fields

Induced currents generate magnetic fields

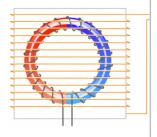


Receiver and Data

Magnetometer

- Measures:
 - Magnetic fields
 - 3 components
- eg. 3-component fluxgate

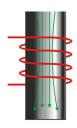
 $\mathbf{b}(t)$



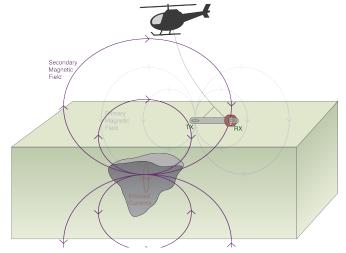
Fluxgate

Coil

- Measures:
 - Voltage
 - Single component that depends on coil orientation
 - Coupling matters
- eg. airborne frequency domain
 - ratio of Hs/Hp is the same as Vs/Vp



Coil



Coupling

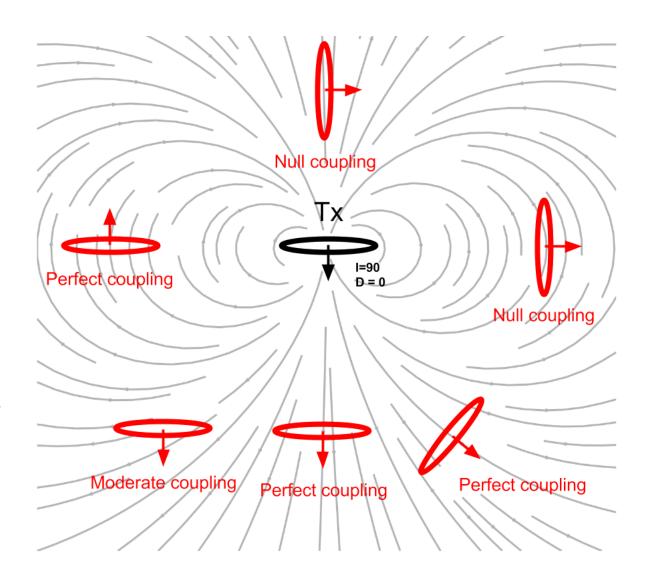
Transmitter: Primary

$$I_p(t) = I_p \cos(\omega t)$$

$$\mathbf{B}_p(t) \sim I_p cos(\omega t)$$

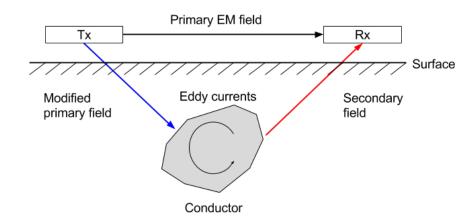
Target: Secondary

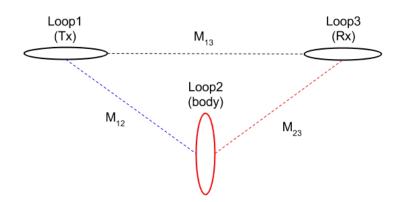
$$EMF = -\frac{\partial \phi_{\mathbf{B}}}{\partial t}$$
$$= -\frac{\partial}{\partial t} (\mathbf{B}_p \cdot \hat{\mathbf{n}}) A$$



FDEM

Circuit model of EM induction





Coupling coefficient

Depends on geometry

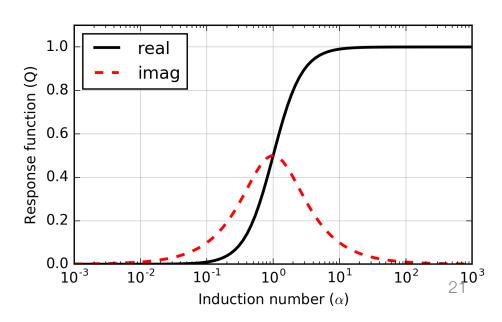
$$M_{12} = \frac{\mu_0}{4\pi} \oint \oint \frac{dl_1 \cdot dl_2}{|\mathbf{r} - \mathbf{r}'|^2}.$$

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_{Q}$$

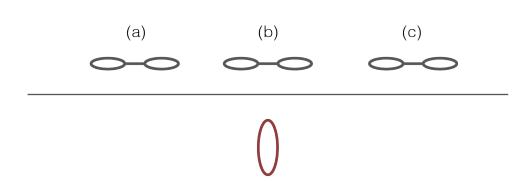
Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$ of target



Conductor in a resistive earth: Frequency

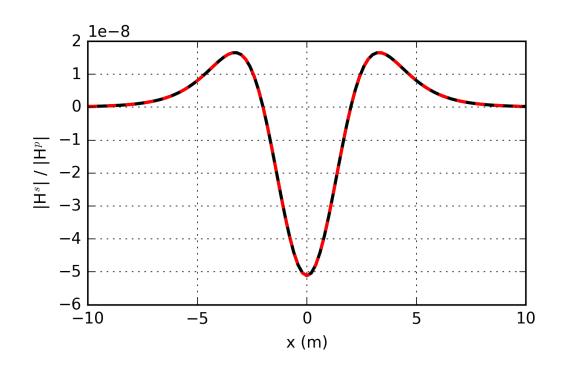
Profile over the loop

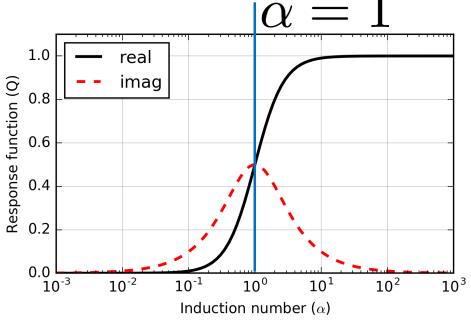


Induction number

$$\alpha = \frac{\omega L}{R}$$

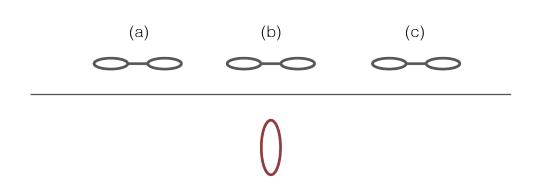
• When $\alpha = 1$





Conductor in a resistive earth: Frequency

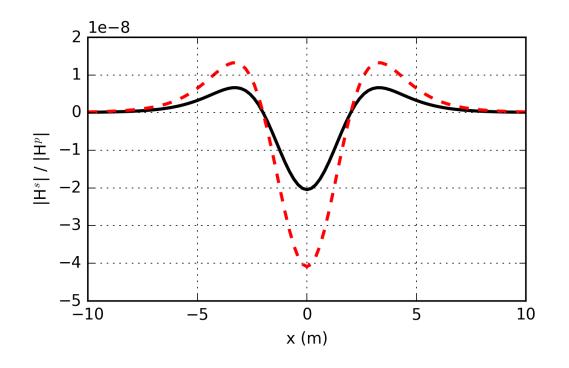
Profile over the loop

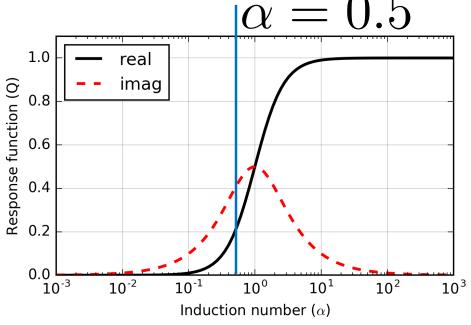


Induction number

$$\alpha = \frac{\omega L}{R}$$

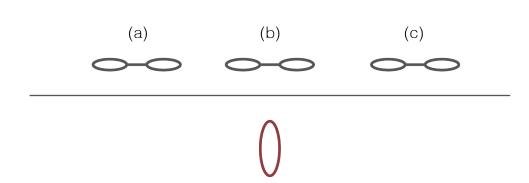
- When $\alpha < 1$
 - Real < Imag





Conductor in a resistive earth: Frequency

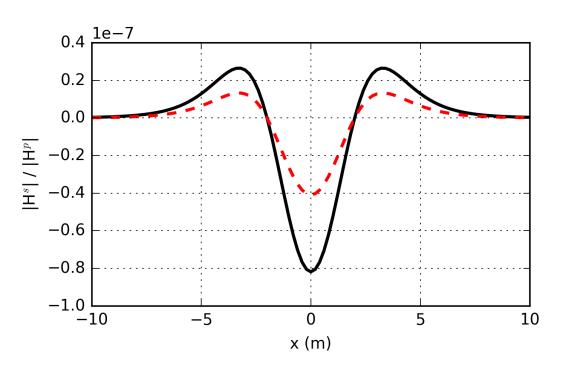
Profile over the loop

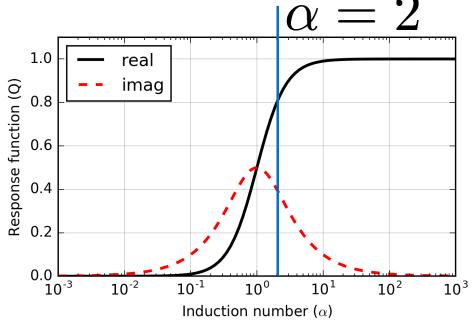


Induction number

$$\alpha = \frac{\omega L}{R}$$

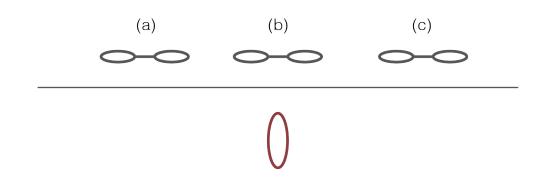
- When $\alpha > 1$
 - Real > Imag

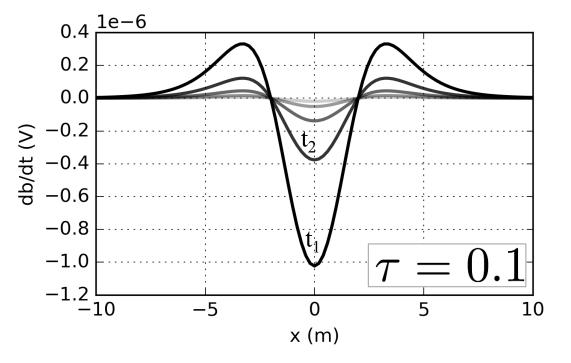




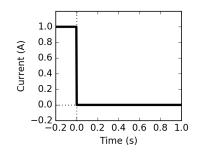
Conductor in a resistive earth: Transient

Profile over the loop



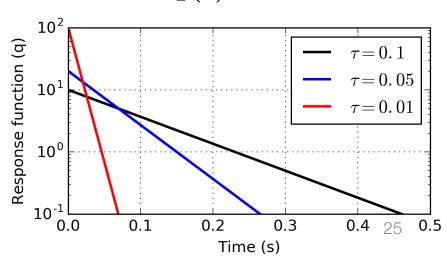


- Time constant $\tau = L/R$
- Step-off current in Tx



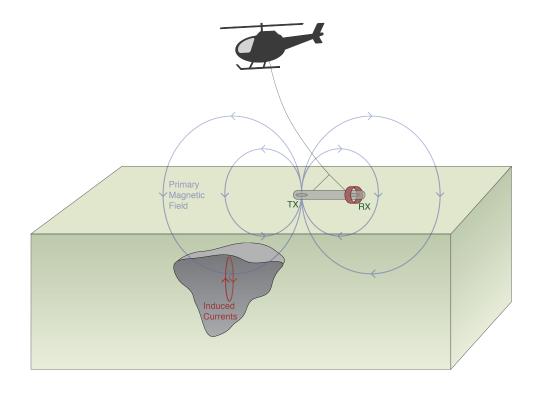
• Response function depends on time, au

$$q(t) = e^{-t/\tau}$$



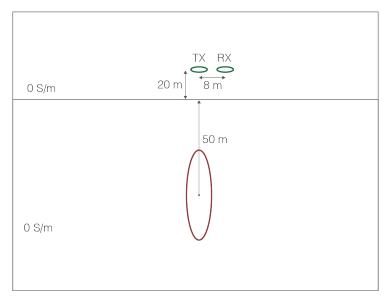
Recap: what have we learned?

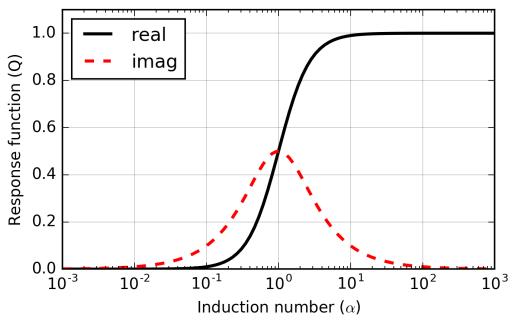
- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model provides representative results
 - Applicable to geologic targets?

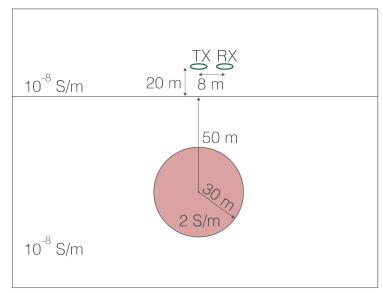


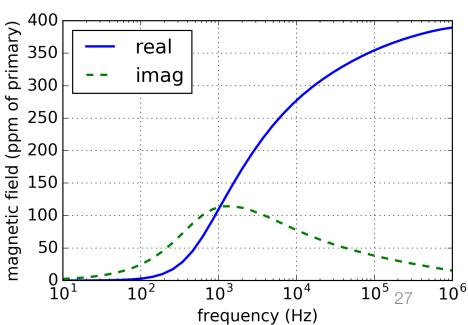
Sphere in a resistive background

How representative is a circuit model?



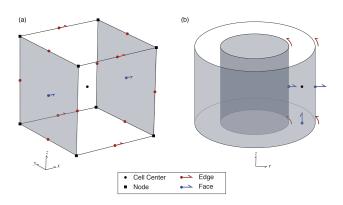




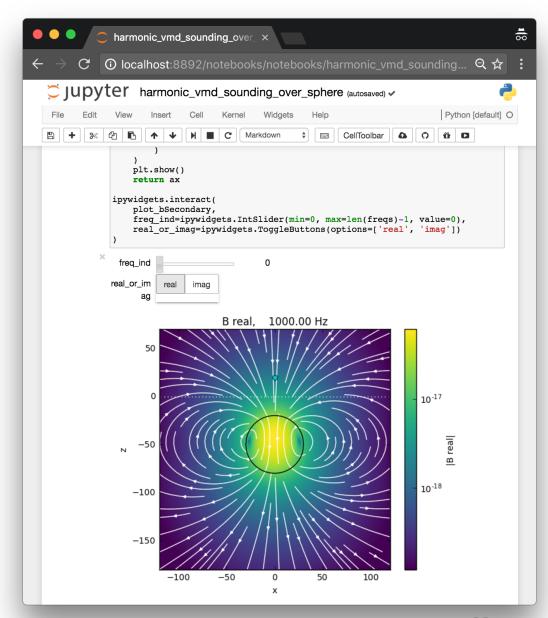


Cyl Code

- Finite Volume EM
 - Frequency and Time



- Built on SimPEG
- Open source, available at: http://em.geosci.xyz/apps.html

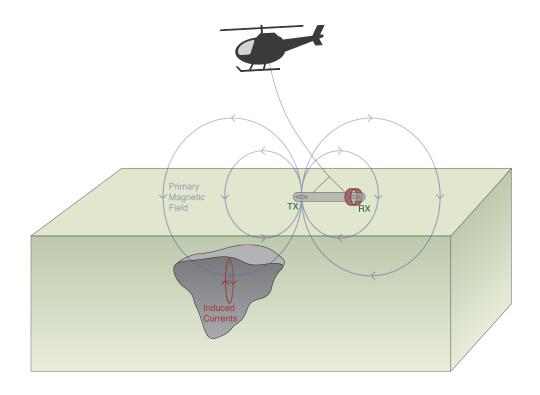


Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model is a good proxy

Major item not yet accounted for...

- Propagation of energy from
 - Transmitter to target
 - Target to receiver



How do EM fields and fluxes behave in a conductive background?

Revisit Maxwell's equations

First order equations

$$abla imes \mathbf{e} = -rac{\partial \mathbf{b}}{\partial t}$$
 $\mathbf{j} = \sigma \mathbf{e}$

$$\mathbf{b} = \mu \mathbf{h}$$

$$abla imes \mathbf{d} = \varepsilon \mathbf{e}$$

Second order equations

$$\nabla^2 \mathbf{h} - \underbrace{\mu \sigma \frac{\partial \mathbf{h}}{\partial t}}_{\text{diffusion}} - \underbrace{\mu \epsilon \frac{\partial^2 \mathbf{h}}{\partial t^2}}_{\text{wave propagation}} = 0$$

In frequency

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0$$
$$k^2 = \omega^2 \mu \varepsilon - i\omega \mu \sigma$$

Plane waves in a homogeneous media

In frequency

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0$$

$$k^2 = \omega^2 \mu \varepsilon - i\omega \mu \sigma$$

Quasi-static

$$\frac{\omega\varepsilon}{\sigma}\ll 1$$

even if...

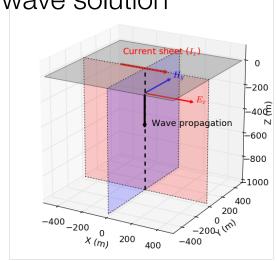
$$\sigma = 10^{-4} S/m$$

$$f = 10^4 Hz$$

then

$$\frac{\omega\varepsilon}{\sigma} \sim 0.005$$

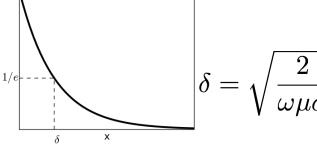
$$k = \sqrt{-i\omega\mu\sigma} = (1-i)\sqrt{\frac{\omega\mu\sigma}{2}}$$
$$\equiv \alpha - i\beta$$



$$\mathbf{H} = \mathbf{H}_0 e^{-\alpha x} e^{-i(\beta x - \omega t)}$$
attenuation phase

Skin depth

 δ : skin depth



32

Plane waves in a homogeneous media

In time

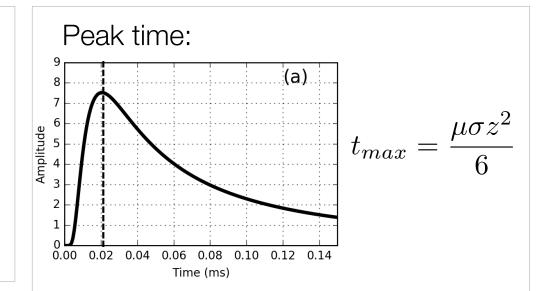
$$\nabla^2 \mathbf{h} - \mu \epsilon \frac{\partial^2 \mathbf{h}}{\partial t^2} - \mu \sigma \frac{\partial \mathbf{h}}{\partial t} = 0$$

$$\mathbf{h}(t=0) = \mathbf{h}_0 \delta(t)$$

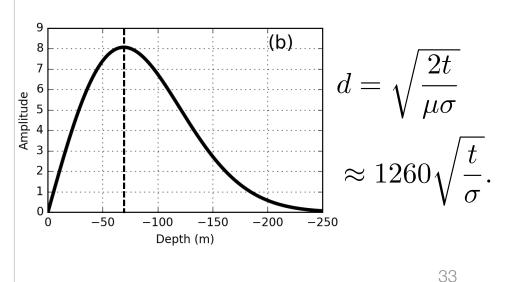
Solution for quasi-static

$$\mathbf{h}(t) = -\frac{(\mu\sigma)^{1/2}z}{2\pi^{1/2}t^{3/2}}e^{-\mu\sigma z^2/(4t)}.$$

z: depth (m)

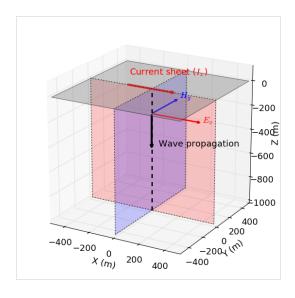


Diffusion distance

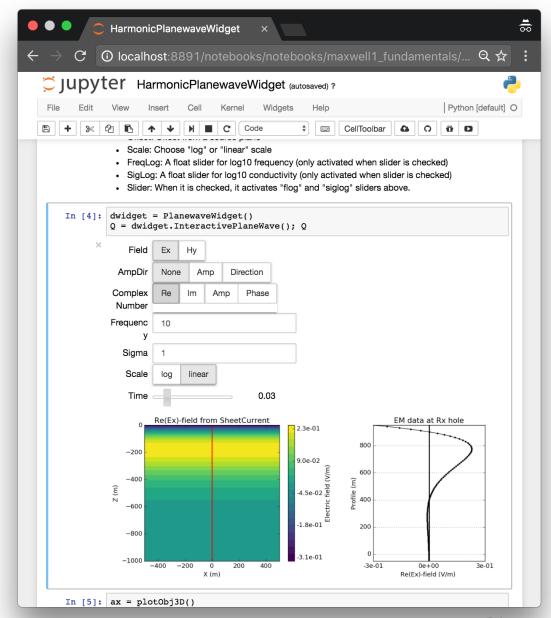


Frequency Domain App: Plane waves

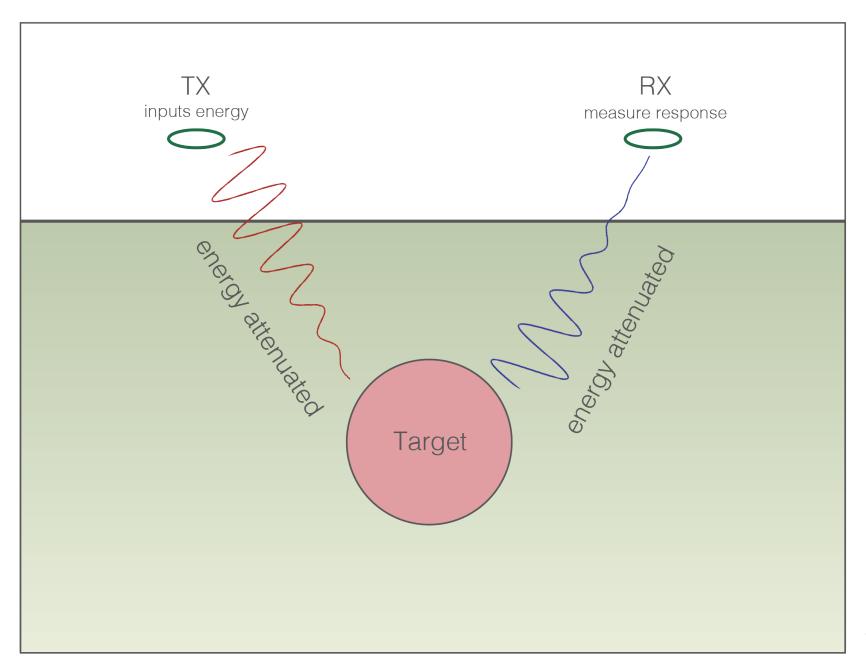
Plane wave



$$\mathbf{H} = \mathbf{H}_0 e^{-\alpha x} e^{-i(\beta x - \omega t)}$$
attenuation phase

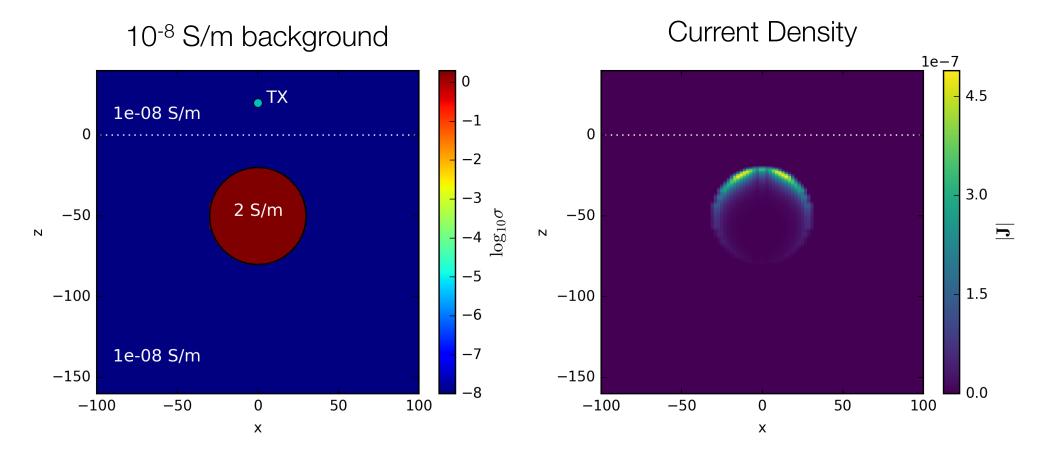


Effects of background resistivity

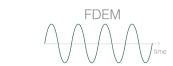


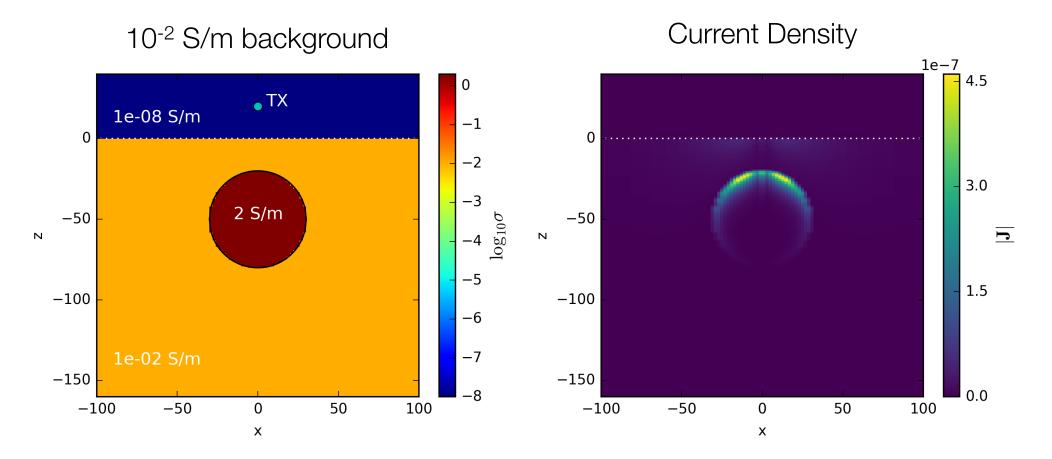
Effects of background resistivity: Frequency

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

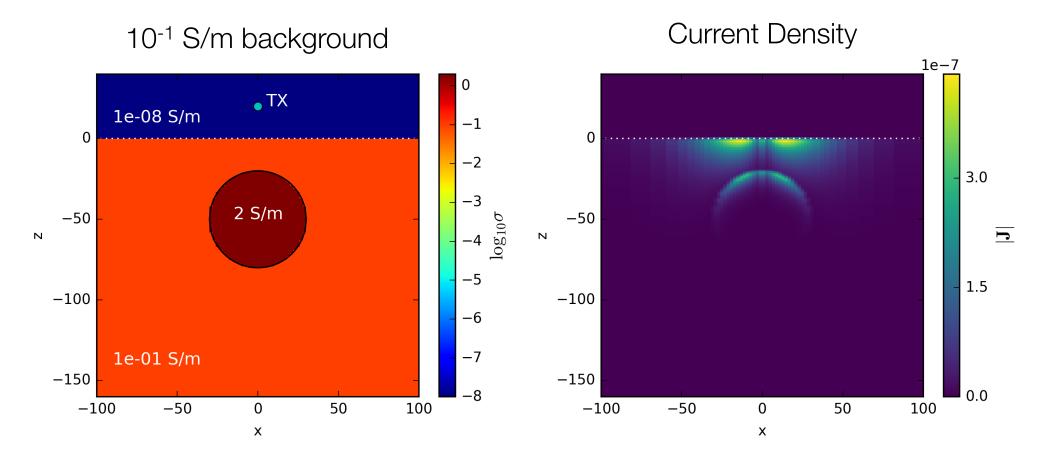


- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

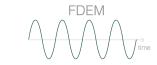


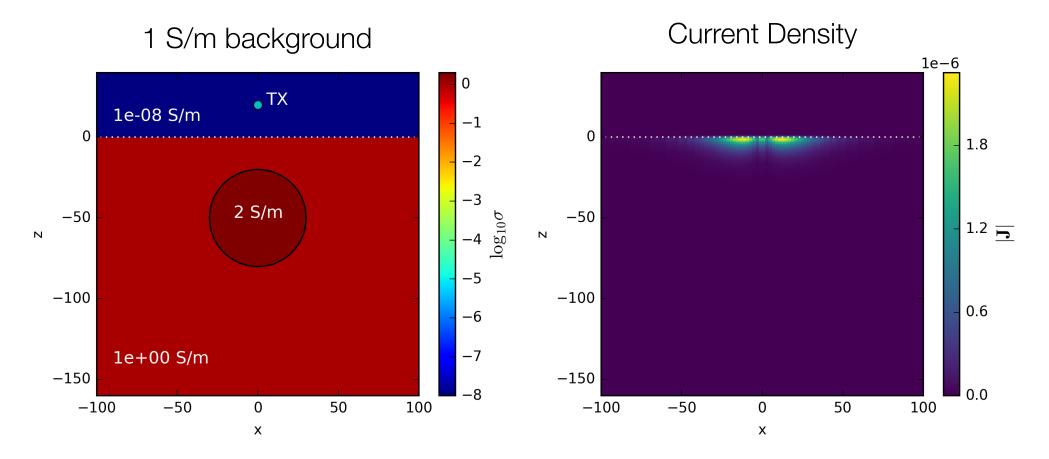


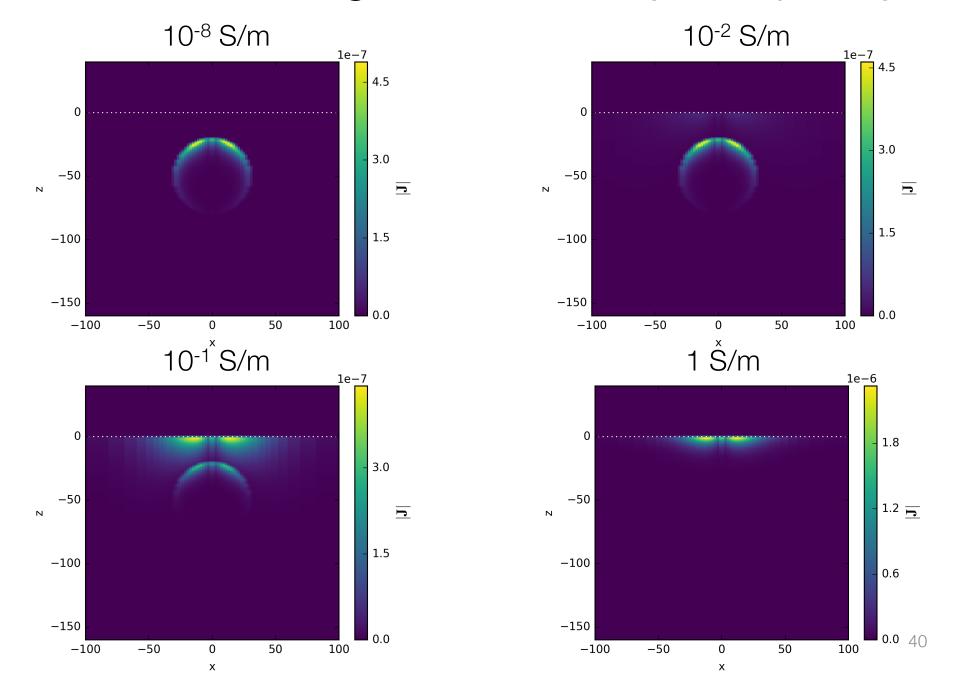
- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz



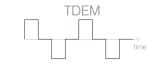
- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

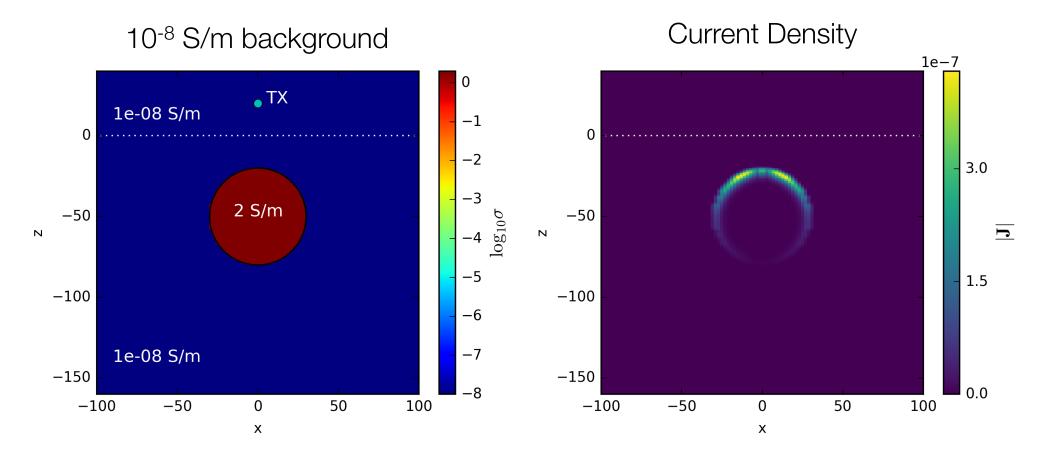




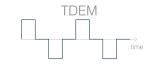


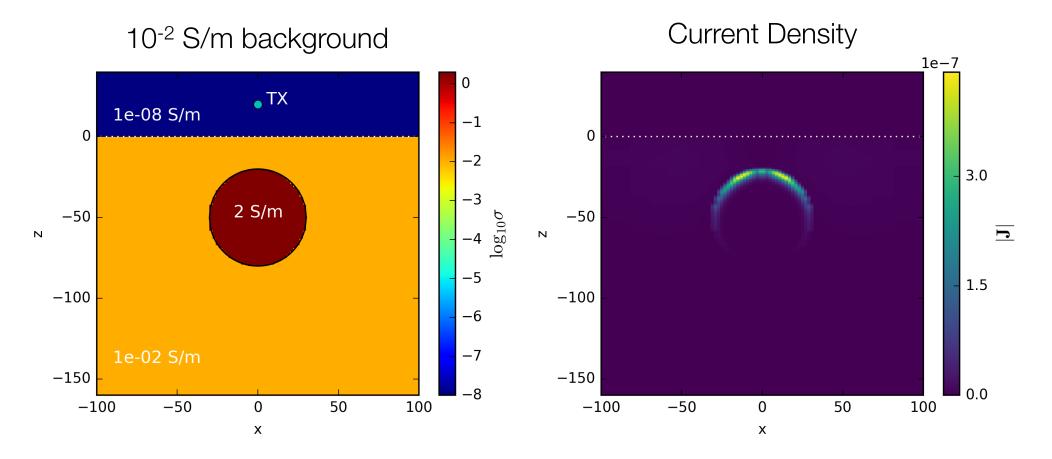
- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s



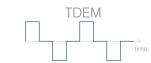


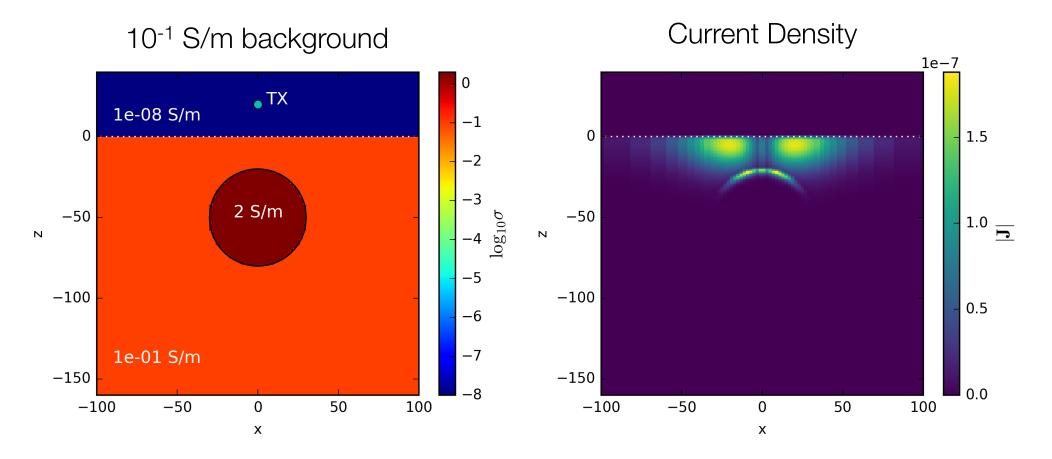
- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s



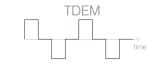


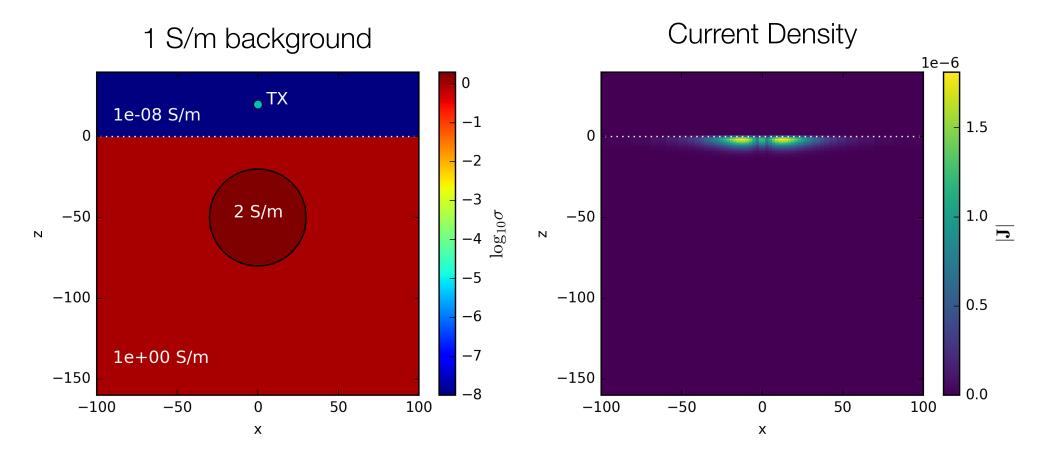
- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

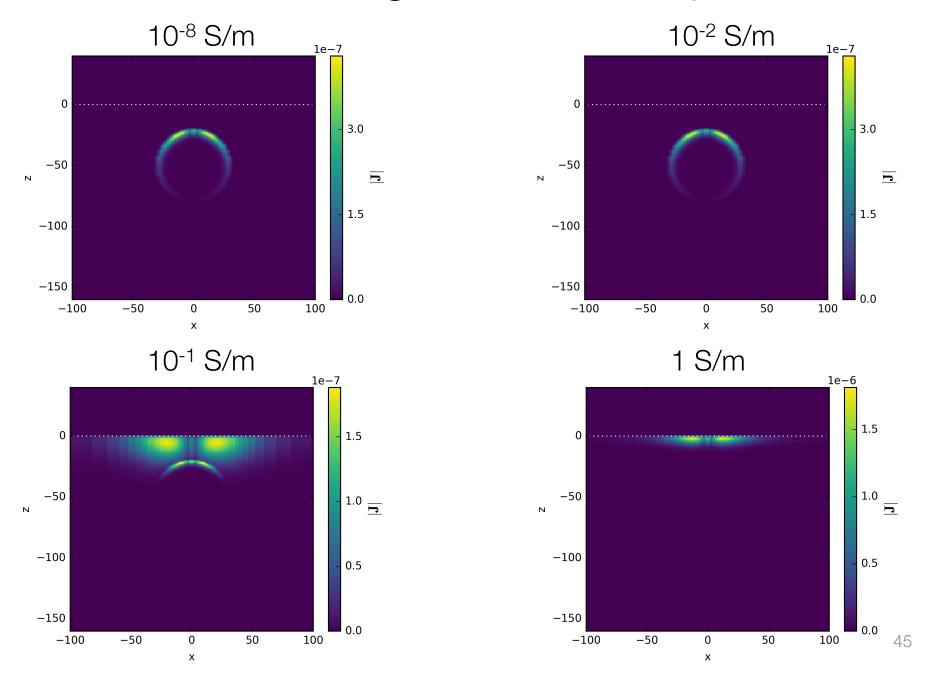




- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

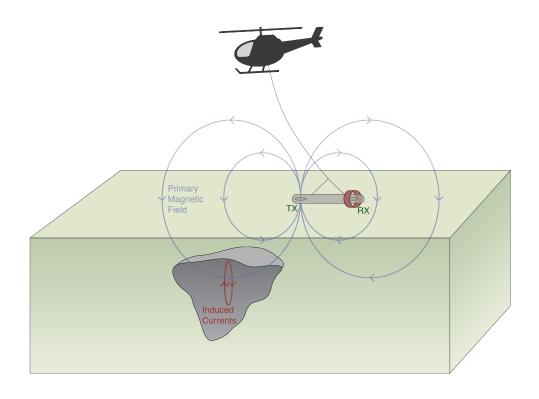




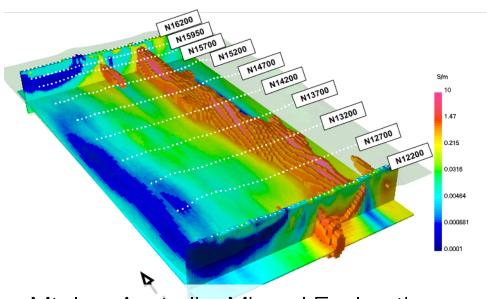


Recap: what have we learned?

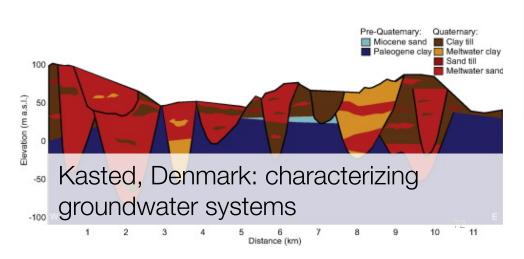
- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model is a good proxy
- Need to account for energy losses
- Ready to look at some field examples

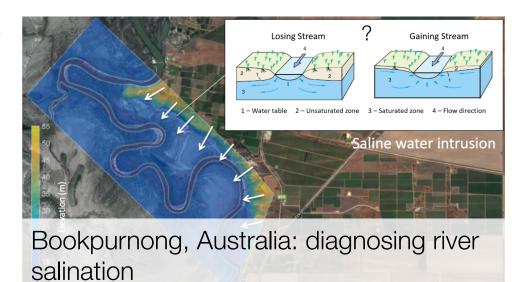


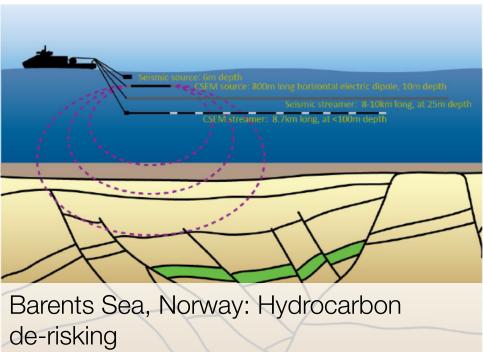
Today's Case Histories



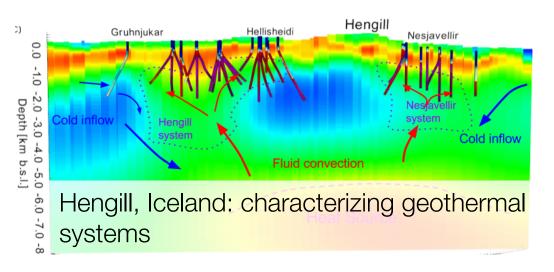
Mt. Isa, Australia: Mineral Exploration

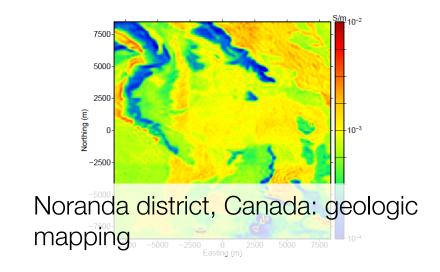


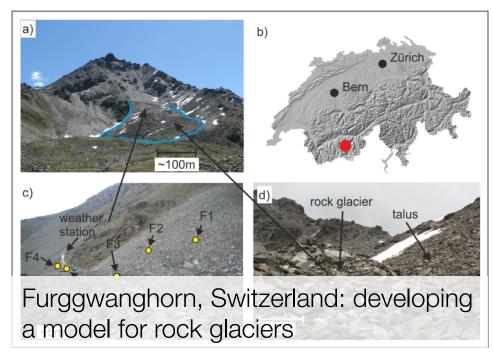


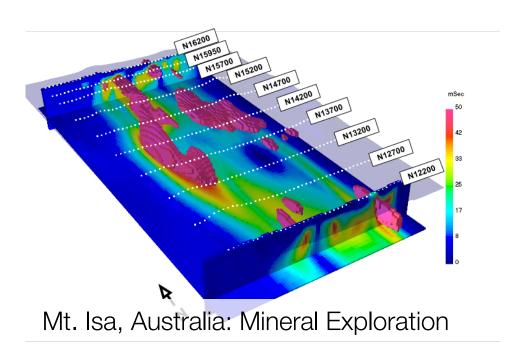


Today's Case Histories









End of EM Fundamentals

- Introduction to EM
- DCR
- EM Fundamentals

Next up

- Inductive sources
 - Lunch: Play with apps
- Grounded sources
- Natural sources
- GPR
- Induced polarization
- The Future

