
EM: Grounded Sources
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Outline

• Basic experiment
• FDEM: Electric dipole in a whole space
• TDEM: Electric dipole in a whole space
• Currents in grounded systems
• Conductive Targets: currents and data
• Resistive Targets: currents and data
• Case History: Barents Sea
• Synthetic Example: Gradient Array
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Motivational examples
Marine EM for hydrocarbon

Volcanoes

Oil and Gas Gas hydrates

Galvanic source TEM
- LoTEM (ground)
- HeliSAM (Rx on the air)
- GREATEM (Rx on the air)

Minerals
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Basic experiment

DC resistivity Inductive source
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Electric Dipole in a whole space: FDEM

• Electric dipole in a whole space
– 0 Hz (DC), 0.01 S/m

DC current density

JDC(r) =
1

4⇡|r|3

✓
3r(m · r)

|r|2 �m

◆

EDC(r) =
1

4⇡�|r|3

✓
3r(m · r)

|r|2 �m

◆

• Geometric decay: 1/r3

• Currents path is geometric for 
homogeneous earth, but electric 
field is dependent upon σ
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Electric Dipole in a whole space: FDEM

• Electric dipole in a whole space
– 1000 Hz, 0.01 S/m, δ= 160 m

Current density (Real part)

DC + EM induction

Current density (Imaginary part)

EM induction
½ δ ½ δ

� =

r
2

!µ�
.Skin depth:
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Electric Dipole in a whole space: FDEM

• Electric dipole in a whole space
– 1 kHz, 0.01 S/m, δ= 160 m

Remove DC part
Re (J) –JDC Im (J)

EM induction EM induction
½ δ ½ δ

� =

r
2

!µ�
.Skin depth:
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Electric Dipole in a whole space: FDEM

• Electric dipole in a whole space
– 10 kHz, 0.01 S/m, δ= 50 m

EM induction EM induction
1 δ 1 δ

� =

r
2

!µ�
.Skin depth:

Re (J) –JDC Im (J)
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Electric Dipole in a whole space: FDEM

• Electric dipole in a whole space
– 100 kHz, 0.01 S/m, δ= 16 m

EM induction EM induction
1 δ 1 δ

� =

r
2

!µ�
.Skin depth:

Re (J) –JDC Im (J)
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Electric Dipole in a whole space: FDEM

• Electric dipole in a whole space
– 1000 kHz, 0.01 S/m, δ= 5 m

Re (J) –JDC

EM induction EM induction
1 δ 1 δ

� =

r
2

!µ�
.Skin depth:

Im (J)
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Summary: 
FDEM Electric Dipole in a whole space

½ δ1 δ

� =

r
2

!µ�
.

1 kHz10 kHz100 kHz
1 δ

Re (J) –JDC

In time…



Electric Dipole in a whole space: TDEM

Re (J) – Re(JDC)

d =

r
2t

µ�

1 d 1 δ

j
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f=104 kHz, δ = 2 mt=10-4 ms, d = 4 m

� =

r
2

!µ�
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Electric Dipole in a whole space: TDEM

j Re (J) – Re(JDC)

1 d 1 δ
13

d =

r
2t

µ�

f=103 kHz, δ = 5 mt=10-3 ms, d = 13 m

� =

r
2

!µ�
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Electric Dipole in a whole space: TDEM

j Re (J) – Re(JDC)

1 d 1 δ
14

d =

r
2t

µ�

f=102 kHz, δ = 16 mt=10-2 ms, d = 40m

� =

r
2

!µ�
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Electric Dipole in a whole space: TDEM

j Re (J) – Re(JDC)

2/5 d 1 δ
15

d =

r
2t

µ�

f=101 kHz, δ	= 50 mt=10-1 ms, d = 126m

� =

r
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!µ�
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Electric Dipole in a whole space: TDEM

j Re (J) – Re(JDC)

1/5 d ½ δ
16

d =

r
2t

µ�

f=1 kHz, δ = 160 mt=1 ms, d = 400m

� =

r
2

!µ�
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Diffusing currents

10-3 ms 10-2 ms 10-1 ms

1 d 1 d 1/2 d

d =

r
2t

µ�
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Bipole Sources
• Extended line sources

– Grounded term (galvanic) + wire path (inductive)
– Straight line

– Crooked line (horse shoe)

B A

B A
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Grounded Sources: On the surface
• Ability to detect target depends on 

– Geometry, conductivity of target & host
– Geometry of TX
– Frequency or time
– Fields and components measured

• e, b, db/dt

– Location of Tx and Rx with respect to 
the target

• Lots of variables…
– Use an example to highlight important 

concepts
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#2 Ground currents

lim
t!0+

Currents: Grounded System

• t = 0- Steady state 
• t = 0   Shut off current 
• t = 0+ Off-time

What happens when we shut the system off? 
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B A
#1 Wire path

#2 Ground currents

B A

#1 Wire path

t = 0+

t1

t2

t3

• Immediately after shut off: image 
current at the surface 

• Successive time: currents diffuse 
downwards and outwards

Currents: Grounded System
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B A
#1 Wire path

#2 Ground currents

• Immediately after shut off: ground 
currents are still there

• Successive time: currents diffuse 
downwards and outwards

Currents: Grounded System

B A

#2 Ground currents

t1

t2

t3

t = 0+
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B A
#1 Wire path

#2 Ground currents

B A

#1 Wire path

t = 0+

t1

t2

t3

B A

#2 Ground currents

t1

t2

t3

t = 0+

Currents: Grounded System

23



• Parameters:
– halfspace (0.01 S/m)
– t=0-, steady state

Grounded Source: Halfspace Currents 

XY plane at Z=-100 m XZ plane at Y=0 m
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Grounded Source: Halfspace currents
• Cross section of currents, t = 0.04 to 10 ms

t=0.02 ms t=0.04 ms

t=0.1 ms t=1 ms t=10 ms
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Grounded sources: with a target
• Block in a halfspace

– DC
• Good coupling if h < rAB

– Vortex currents
• Good coupling (magnetic fields)
• Good signal for conductor 
• Resistor more difficult

– Galvanic currents
• Good coupling (electric fields)
• Good signal for conductor and 

resistor

h

rABB A

h

rABB A

h

rABB A
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• Grounded wire
– A conductor (1S/m) in a halfspace (0.01 S/m)
– t=0-, steady state

Conductor: currents

XY plane at Z=-100 m XZ plane at Y=0 m
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• Grounded wire
– A conductor (1S/m) in a halfspace (0.01 S/m)
– 0.04 ms, d = 80 m

Conductor: currents

XY plane at Z=-100 m XZ plane at Y=0 m

1 d
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Conductor: currents

XY plane at Z=-100 m XZ plane at Y=0 m

• Grounded wire
– A conductor (1S/m) in a halfspace (0.01 S/m)
– 0.1 ms, d = 126 m

1 d
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Conductor: currents

XY plane at Z=-100 m XZ plane at Y=0 m

• Grounded wire
– A conductor (1S/m) in a halfspace (0.01 S/m)
– 1 ms, d = 400 m

1 d
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Conductor: currents

XY plane at Z=-100 m XZ plane at Y=0 m

• Grounded wire
– A conductor (1S/m) in a halfspace (0.01 S/m)
– 10 ms, d = 1270 m
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1/3 d



Conductor: currents

h

rABB A

h

rABB A

Steady State (galvanic current)

EM induction (vortex current)

EM induction (galvanic current)

Galvanic current 
t = 0-

Vortex current
t = 1 ms

Galvanic current 
t = 10 ms

h

rABB A

Cross section
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Data: ex field

h

rABB A

h

rABB A

�

Conductor

Halfspace

0.04 ms 1 ms 10 ms
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Data: by field

h

rABB A

h

rABB A

�

Conductor

Halfspace

0.04 ms 1 ms 10 ms
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Data: bz field

h

rABB A

h

rABB A

�

Conductor

Halfspace

Anomaly: not always bulls-eye

0.04 ms 1 ms 10 ms

35



• Grounded wire
– A resistor (10-4 S/m) in a halfspace (0.01 S/m)
– t=0-, steady state

Resistor: currents

XY plane at Z=-100 m XZ plane at Y=0 m

36



• Grounded wire
– A resistor (10-4 S/m) in a halfspace (0.01 S/m)
– 0.04 ms, d = 80 m

Resistor: currents

XY plane at Z=-100 m XZ plane at Y=0 m

1 𝑑
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Resistor: currents

XY plane at Z=-100 m XZ plane at Y=0 m

• Grounded wire
– A resistor (10-4 S/m) in a halfspace (0.01 S/m)
– 0.1 ms, d = 126 m

1 𝑑
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Resistor: currents

XY plane at Z=-100 m XZ plane at Y=0 m

• Grounded wire
– A resistor (10-4 S/m) in a halfspace (0.01 S/m)
– 1 ms, d = 400 m

1 𝑑
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Resistor: currents

XY plane at Z=-100 m XZ plane at Y=0 m

• Grounded wire
– A resistor (10-4 S/m) in a halfspace (0.01 S/m)
– 10 ms, d = 1270 m
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Resistor: currents

DC (galvanic current)

EM induction (galvanic current)

EM induction (galvanic current)

h

rABB A

h

rABB A

Galvanic current 
t = 0-

Galvanic current
t = 1 ms

Galvanic current 
t = 10 ms

Cross section

h

rABB A
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Data: ex field

h

rABB A

�

Resistor

Halfspace

h

rABB A
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0.04 ms 1 ms 10 ms



Data: by field

Resistor

Halfspace

h

rABB A

� h

rABB A

0.04 ms 1 ms 10 ms
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Data: bz field

h

rABB A

� h

rABB A

Halfspace

Resistor
0.04 ms 1 ms 10 ms
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Data summary

ex

by

Conductor Resistor Halfspace

bz
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t = 1ms



• Coupling: Back to finding thin plates…

• Arbitrary target requires multiple excitation directions 
• Forward simulations necessary

Geometric Complexities 

h

rABB A

h

rABB A

- DCR: good coupling
- EM: good coupling

- DCR: poor coupling
- EM: poor coupling
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Grounded Sources: Summary

• Basic experiment
• FDEM: Electric dipole in a whole space
• TDEM: Electric dipole in a whole space
• Currents in grounded systems
• Conductive Targets: currents and data
• Resistive Targets: currents and data

• Questions
• Case History: Barents Sea
• DC/EM Inversion 
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Grounded sources: two examples

• Marine EM (towed Tx, Rx array)
– Multiple transmitters, frequencies 
– Looking for a resistive target

• DC/EM inversions (gradient array) 
– Single transmitter 
– Traditionally only DC data used
– Wires have a large EM effect 

(contaminates “DC data”)
– EM signal contains useful information…
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Case History: Barents Sea

49

Alvarez et al., 2016. Rock Solid Images



Setup
Hoop Fault Complex, Barents Sea Marine CSEM 

• Known hydrocarbon reservoirs within the Hoop Fault Complex, Barents Sea.

• Seismic can locate oil and gas reservoirs but cannot always determine hydrocarbon 
saturation  (in particular fizz gas)

• Seismic, borehole and CSEM data used to characterize reservoir
• fluid, porosity, clay content, and hydrocarbon saturation
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Properties
a) Stø Fm. b) Nordmela Fm.

• Highly hydrocarbon-saturated reservoir (< 20% water-wet) 
significant resistivity

• CSEM can differentiate high from low quality reservoirs
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Survey
Towed CSEM and 2D seismic Survey lines

• 6 lines of 2D seismic and towed streamer 
CSEM data.

• 72 receivers collected CSEM data
• offsets from 31m to 7.8 km

• CSEM frequencies: 0.2 Hz to 3 Hz.
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Alternative Control well, productive

Central Control well, dry

Hanssen Validation well

Bjaaland Validation well



CSEM Data
CSEM data over central reservoir (1 Hz)

Survey lines

• Significant phase response over Central 
reservoir
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Amplitude 

Phase 

Towed-streamer EM



Seismic data

54

Seismic section: Line 5001

Stø

Snadd

Fuglen



Well-Log and Seismic Inversion

Litho-fluid 
Facies
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Clay Content

Total Porosity

Hanssen
Validation well

Central
Control, productive

Bjaaland
Validation well

Alternative
Control, dry



Revisiting physical properties

56
Hydrocarbon Saturation



Processing: CSEM Inversion
Vertical resistivity section along profile line 5001

Only structure constraint

• Inversion shows strong resistor at ‘Central’ and a secondary resistor at ‘Hanssen’. 57

Survey lines

Reservoir constraint between Stø and Snadd

Stø

Snadd

Hanssen
Validation well

Central
Control, productive

Bjaaland
Validation well

Alternative
Control, dry



Processing: Multi-physics Approach

58

Litho-fluid 
Facies

Clay Content

Total Porosity

Resistivity

Hanssen Central BjaalandAlternative



Interpretation
Final hydrocarbon saturation model
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Hanssen
Validation well

productive

Central
Control, productive

Bjaaland
Validation well

dry

Alternative
Control, dry



Synthesis
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Seismic
EM

Hydrocarbon saturation

+



DC/EM Inversion 
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DC/EM: Goals

• Standard DCR time domain waveform

• Compare:
– Inversions from DC data
– Inversions from EM data

• Illustrate the value of data which is 
often discarded

• Numerical example from a gradient 
arrary
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DC datum

EM portion
Generally considered noise



Survey and Data

Air

Earth

v
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EM portion
Generally considered noise

DC datum

Transmitter Measured Voltage



Gradient array

A1

A2 A3

A1

A2 A3
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• Model
– A1: high conductivity
– A2: moderate conductivity
– A3: resistive

• Survey
– 200m bi-pole (625 data)
– times: 1-600ms 



DC data

65

A1

A2



Off-time data

• TDEM data
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Off-time data

• Ex Decay curves at A1-A3

67

Block
Halfspace



DC inversion
• Recovered 3D conductivity

True Recovered
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Apparent conductivity

• Depth weighting
– Compensate for high 

sensitivity near surface 
(similar to mag.)



EM inversion

True Recovered

• Recovered 3D conductivity
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1 ms

6 ms

• No depth weighting



Conductivity models
• True, DC, and TEM conductivities

True DC EM

EM data contain signal 
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Summary
• Basic experiment
• FDEM: Electric dipole in a whole space
• TDEM: Electric dipole in a whole space
• Currents in grounded systems
• Conductive Targets: currents and data
• Resistive Targets: currents and data
• Case History: Barents Sea
• DC/EM Inversion
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End of Grounded Sources

• Introduction to EM
• DCR
• EM Fundamentals
• Inductive sources

– Lunch: Play with apps

• Grounded sources
• Natural sources
• GPR
• Induced polarization 
• The Future

Next up



End of Grounded Sources
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Next up... Natural Sources


