EM: Grounded Sources

Outline

- Basic experiment
- FDEM: Electric dipole in a whole space
- TDEM: Electric dipole in a whole space
- Currents in grounded systems
- Conductive Targets: currents and data
- Resistive Targets: currents and data
- Case History: Barents Sea
- Synthetic Example: Gradient Array

Motivational examples

Marine EM for hydrocarbon

Oil and Gas

Gas hydrates

Galvanic source TEM

- LoTEM (ground)
- HeliSAM (Rx on the air)
- GREATEM (Rx on the air)

Minerals

Volcanoes

- Electric dipole in a whole space
 - 0 Hz (DC), 0.01 S/m

DC current density

$$\mathbf{E}_{DC}(\mathbf{r}) = \frac{1}{4\pi\sigma|\mathbf{r}|^3} \left(\frac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{|\mathbf{r}|^2} - \mathbf{m}\right)$$

$$\mathbf{J}_{DC}(\mathbf{r}) = \frac{1}{4\pi |\mathbf{r}|^3} \left(\frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{|\mathbf{r}|^2} - \mathbf{m} \right)$$

- Geometric decay: 1/r³
- Currents path is geometric for homogeneous earth, but electric field is dependent upon σ

Skin depth: $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$.

- Electric dipole in a whole space
 - 1000 Hz, 0.01 S/m, δ= 160 m

6

Current density (Imaginary part)

- Skin depth: $\delta = \sqrt{rac{2}{\omega\mu\sigma}}.$
- Electric dipole in a whole space
 - 100 kHz, 0.01 S/m, δ= 16 m

Skin depth: $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}.$

- Electric dipole in a whole space
 - 1000 kHz, 0.01 S/m, δ= 5 m

Summary: \Box

 $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$

Re $(\mathbf{J}) - \mathbf{J}^{\text{DC}}$

In time...

t=1 ms, d = 400m f=1 kHz, δ = 160 m $d = \sqrt{\frac{2t}{\mu\sigma}}$ $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$ $\operatorname{Re}(J) - \operatorname{Re}(J^{DC})$ $10^{-7.1}$ $10^{-8.7}$ 40 40 10^{-8.7} (°) 10^{-8.7} (°) Current density (A/m 10^{-7.2} (10^{-7.3} (10^{-7.4} (10^{-7.} 20 20 Z (m) Z (m) 0 0 -20 -20 -40 -40 $10^{-8.7}$ $10^{-7.5}$ 80 ⁸⁰ 1∕2 δ -20 0 20 40 60 -20 0 20 40 60 X (m) X (m) 1/5 d

Diffusing currents

$$d = \sqrt{\frac{2t}{\mu\sigma}}$$

Bipole Sources

- Extended line sources
 - Grounded term (galvanic) + wire path (inductive)
 - Straight line

В

Α

Grounded Sources: On the surface

- Ability to detect target depends on
 - Geometry, conductivity of target & host
 - Geometry of TX
 - Frequency or time
 - Fields and components measured
 - e, b, db/dt
 - Location of Tx and Rx with respect to the target
- Lots of variables...
 - Use an example to highlight important concepts

- \rightarrow t = 0⁻ Steady state
 - t = 0 Shut off current
 - $t = 0^+$ Off-time

What happens when we shut the system off?

- Immediately after shut off: image current at the surface
- Successive time: currents diffuse downwards and outwards

#2 Ground currents

- Immediately after shut off: ground currents are still there
- Successive time: currents diffuse downwards and outwards

Grounded Source: Halfspace Currents

- Parameters: •
 - halfspace (0.01 S/m) —
 - **t=0**⁻, steady state

X (m)

Grounded Source: Halfspace currents

• Cross section of currents, t = 0.04 to 10 ms

Grounded sources: with a target

- Block in a halfspace
 - DC
 - Good coupling if $h < r_{AB}$

- Vortex currents
 - Good coupling (magnetic fields)
 - Good signal for conductor
 - Resistor more difficult
- Galvanic currents
 - Good coupling (electric fields)
 - Good signal for conductor and resistor

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **t=0**⁻, steady state

XY plane at Z=-100 m

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **0.04** ms, d = 80 m

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **0.1** ms, d = 126 m

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - 1 ms, d = 400 m

XY plane at Z=-100 m

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **10** ms, d = 1270 m

XY plane at Z=-100 m

- TX - Rx - 0 - 00 -

Steady State (galvanic current)

EM induction (vortex current)

t = 0⁻

Galvanic current

Vortex current t = 1 ms

EM induction (galvanic current)

Galvanic current t = 10 ms

Data: e_x field

Data: b_y field

- Tx • Rx Data: b_z field -150 -200 В А В А r_{AB} r_{AB} 200 h 100 h \ll -200 -100 0 X (m) 100 -100 -200 200 Ξ

Anomaly: not always bulls-eye

Resistor: currents

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **t=0**⁻, steady state

XY plane at Z=-100 m

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **0.04** ms, d = 80 m

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **0.1** ms, d = 126 m

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **1** ms, d = 400 m

XY plane at Z=-100 m

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **10** ms, d = 1270 m

XY plane at Z=-100 m

EM induction (galvanic current)

EM induction (galvanic current)

Galvanic current t = 0⁻

Galvanic current t = 10 ms

Data: e_x field

Data: b_y field

Data: b_z field

Data summary

t = 1ms

Geometric Complexities

• Coupling: Back to finding thin plates...

- DCR: good coupling
- EM: good coupling

- DCR: poor coupling
- EM: poor coupling
- Arbitrary target requires multiple excitation directions
- Forward simulations necessary

Grounded Sources: Summary

- Basic experiment
- FDEM: Electric dipole in a whole space
- TDEM: Electric dipole in a whole space
- Currents in grounded systems
- Conductive Targets: currents and data
- Resistive Targets: currents and data
- Questions
- Case History: Barents Sea
- DC/EM Inversion

Grounded sources: two examples

- Marine EM (towed Tx, Rx array)
 - Multiple transmitters, frequencies
 - Looking for a resistive target

- DC/EM inversions (gradient array)
 - Single transmitter
 - Traditionally only DC data used
 - Wires have a large EM effect (contaminates "DC data")
 - EM signal contains useful information...

Case History: Barents Sea

Alvarez et al., 2016. Rock Solid Images

Setup

- Known hydrocarbon reservoirs within the Hoop Fault Complex, Barents Sea.
- Seismic can locate oil and gas reservoirs but cannot always determine hydrocarbon saturation (in particular fizz gas)
- Seismic, borehole and CSEM data used to characterize reservoir
 - fluid, porosity, clay content, and hydrocarbon saturation

- Highly hydrocarbon-saturated reservoir (< 20% water-wet) significant resistivity
- CSEM can differentiate high from low quality reservoirs

Survey

Towed CSEM and 2D seismic

- 6 lines of 2D seismic and towed streamer CSEM data.
- 72 receivers collected CSEM data
 - offsets from 31m to 7.8 km
- CSEM frequencies: 0.2 Hz to 3 Hz.

Survey lines

Alternative	Control well, productive
Central	Control well, dry
Hanssen	Validation well
Bjaaland	Validation well

CSEM Data

Survey lines

Towed-streamer EM

Significant phase response over Central reservoir

Seismic data

Seismic section: Line 5001

Well-Log and Seismic Inversion

Revisiting physical properties

Processing: CSEM Inversion

• Inversion shows strong resistor at 'Central' and a secondary resistor at 'Hanssen'.

Processing: Multi-physics Approach

Litho-fluid Facies

Clay Content

Total Porosity

Resistivity

Interpretation

Final hydrocarbon saturation model

Synthesis

Hydrocarbon saturation

DC/EM Inversion

DC/EM: Goals

- Standard DCR time domain waveform
- Compare:
 - Inversions from DC data
 - Inversions from EM data
- Illustrate the value of data which is often discarded
- Numerical example from a gradient arrary

62

Survey and Data

Transmitter

Measured Voltage

Gradient array

- Model
 - A1: high conductivity
 - A2: moderate conductivity
 - A3: resistive

- Survey
 - 200m bi-pole (625 data)
 - times: 1-600ms

DC data

-500

-1000

500

1000

0

Easting (m)

2.6e-02

-1000

-1000

-500

0

500

1000

66

1.1e-02

DC inversion

Recovered 3D conductivity

Apparent conductivity

- Depth weighting
 - Compensate for high sensitivity near surface (similar to mag.)

EM inversion

Recovered 3D conductivity

• No depth weighting

Conductivity models

True, DC, and TEM conductivities ullet

2000

1500 1000

500

-500 -1000

-1500

-200 -400 -600

-800

-1000

-1200-1400

-200 -400 -600 -800 -1000 -1200 -1400

0

-2000

-2000

 $10^{-3.0}$

-1000

-1000

Depth (m)

Depth (m)

0

Northing (m)

EM data contain signal

Summary

- Basic experiment
- FDEM: Electric dipole in a whole space
- TDEM: Electric dipole in a whole space
- Currents in grounded systems
- Conductive Targets: currents and data
- Resistive Targets: currents and data
- Case History: Barents Sea
- DC/EM Inversion

End of Grounded Sources

- Introduction to EM
- DCR
- EM Fundamentals
- Inductive sources
 - Lunch: Play with apps
- Grounded sources
- Natural sources
- GPR

Next up

- Induced polarization
- The Future

End of Grounded Sources

Next up... Natural Sources