Ground Penetrating Radar

Motivation

Sink holes

Salt Water Intrusions

Rock glacier

Archeology

Underground tank

Outline

- Basic experiment
- Physical property
- Physics
- Data and Processing
- Case history: rock glacier

Basic Experiment

Basic Equations

	Frequency
$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$	$ abla imes {f E} = - i \omega {f B}$
$ abla imes \mathbf{h} = \mathbf{j} + \frac{\partial \mathbf{d}}{\partial t}$	$ abla imes \mathbf{H} = \mathbf{J} + i\omega \mathbf{D}$
$\nabla \cdot \mathbf{b} = 0$	$\nabla \cdot \mathbf{B} = 0$
$\mathbf{j} = \sigma \mathbf{e}$ $\mathbf{b} = \mu \mathbf{h}$ $\mathbf{d} = c\mathbf{e}$	$\mathbf{J} = \sigma \mathbf{E}$ $\mathbf{B} = \mu \mathbf{H}$ $\mathbf{D} = \epsilon \mathbf{E}$
	Time $\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$ $\nabla \times \mathbf{h} = \mathbf{j} + \frac{\partial \mathbf{d}}{\partial t}$ $\nabla \cdot \mathbf{b} = 0$ $\mathbf{j} = \sigma \mathbf{e}$ $\mathbf{b} = \mu \mathbf{h}$ $\mathbf{d} = \mathbf{s} \mathbf{e}$

* Solve with sources and boundary conditions

Basic Equations: Wave Equation

Physical properties

 $v = \frac{c}{\sqrt{\varepsilon}}$

Material	Relative Permittivity	Conductivity (mS/m)	Average Velocity (m/ns)
Air	1	0	3
Fresh Water	80	0.5	0.033
Sea Water	80	3000	0.01
Ice	3-4	0.01	0.16
Dry Sand	3-5	0.01	0.15
Saturated Sand	20-30	0.1-1	0.06
Limestone	4-8	0.5-2	0.12
Shales	5-15	1-100	0.09
Silts	5-30	1-100	0.07
Clays	5-40	2-1000	0.06
Granite	4-6	0.01-1	0.13
Anhydrites	3-4	0.01-1	0.13

Attenuation: Skin Depth

Electric Dipole in a Whole Space

10⁵ Hz

 $\lambda = \frac{v}{f}$

Waves and Rays $v = \frac{c}{\sqrt{\varepsilon}}$

Waves and Rays $v = \frac{c}{\sqrt{\varepsilon}}$

Processing

Gain Control

Outline

- Basic experiment
- Physical property
- Physics
- Data and Processing
- Questions?

• Case history: rock glacier

Case History: Furggwanghorn

Merz et al, 2015

Setup

- Downslope movement shown to increase from 1.5 m/yr to 4.0 m/yr.
- Aim: characterize rock units and evolution of glacier
- Surface GPR: unsuccessful (too close to scatterers)
- Helicopter GPR used

Properties

Velocity from cross well GPR

Material	Velocity (m/µs)
(a & b) Unconsolidated sediments	> 140
(c) Ice	> 140
(d) Ice + partial melt	110 - 130
(e) Compact debris	130 – 140
Saturated sediments	80 -100
Bedrock	110 -130

Survey

Ground-GPR

Heli-GPR

Survey lines

- Initial Ground-Based Survey
 - 2 systems
 - Frequencies: 25 MHz and 50 MHz
- Heli-GPR
 - Frequency: 60 MHz
 - Flight height: 15-20 m
 - Line separation ~15 m

Data and Processing

Interpretation

Synthesis

- Interpreted with thinskinned tectonic model
- Major shear zone acts as a décollment
- Rock glacier lobes act as nappes
- Lobes appear to move down-slope
- Tectonic model applicable to other glaciers

Summary

- Basic experiment
- Physical property
- Physics
- Data and Processing
- Case history: rock glacier

End of GPR

- Introduction to EM
- DCR
- EM Fundamentals
- Inductive sources
 - Lunch: Play with apps
- Grounded sources
- Natural sources
- GPR
- - The Future

