#### Induced Polarization



## **Motivation**



#### Permafrost



#### Geotechnical



#### Groundwater

# Losing Stream 3







## Outline

- Sources of IP
- Conceptual model of IP
- Chargeability
- IP data
- Pseudosections
- Two stage DC-IP inversion
- Case history: Mt. Isa

### Induced Polarization

- Injected currents cause materials to become polarized
- Microscopic causes  $\rightarrow$  macroscopic effect
- Phenomenon is called induced polarization









### Conceptual Model of IP

#### Membrane polarization







Electrode polarization



### Chargeability

#### Minerals at 1% Concentration in Samples



### Chargeability

Minerals at 1% Concentration in Samples



| Material type         | Chargeability (msec.) |
|-----------------------|-----------------------|
| 20% sulfides          | 2000 - 3000           |
| 8-20% sulfides        | 1000 - 2000           |
| 2-8% sulfides         | 500 - 1000            |
| volcanic tuffs        | 300 - 800             |
| sandstone, siltstone  | 100 - 500             |
| dense volcanic rocks  | 100 - 500             |
| shale                 | 50 - 100              |
| granite, granodiorite | 10 - 50               |
| limestone, dolomite   | 10 - 20               |

| Material type         | Chargeability (msec.) |
|-----------------------|-----------------------|
| ground water          | 0                     |
| alluvium              | 1 - 4                 |
| gravels               | 3 - 9                 |
| precambrian volcanics | 8 - 20                |
| precambrian gneisses  | 6 - 30                |
| schists               | 5 - 20                |
| sandstones            | 3 - 12                |

### Chargeability

Initially - neutral



Apply electric field, build up charges



Charge polarization, Electric dipole





### IP data

- Seigel (1959):
  - Introduced chargeability:  $\eta$
  - Effect reduces conductivity

$$\sigma_{\eta} = \sigma_{\text{effective}} = \sigma(1 - \eta) \qquad \eta \in [0, 1)$$

• Theoretical chargeability data

$$d^{IP} = \frac{\phi_s}{\phi_\eta} = \frac{\phi_\eta - \phi_\sigma}{\phi_\eta}$$

• Not directly measureable



### IP data: time domain

• IP decay



• IP datum

Dimensionless:

Value at individual time channel:

Area under decay curve:

$$\eta = \phi_s / \phi_\eta$$

 $\phi_s(t)$ 

$$M = \frac{1}{\phi_{\eta}} \int_{t_1}^{t_2} \phi_s(t) dt$$

### IP data: frequency domain

• Percent frequency effect:

$$PFE = 100(\frac{\rho_{a2} - \rho_{a1}}{\rho_{a1}})$$

 $\rho_{a1}$ : apparent resistivity at  $f_1$  $\rho_{a2}$ : apparent resistivity at  $f_2$ 



11

#### • Phase

 $\psi$  : phase difference between Input current and measured potential



## Summary of IP data types

- Time domain:
  - Theoretical chargeability (dimensionless)
  - Integrated decay time (msec)
- Frequency domain:
  - PFE (dimensionless)
  - Phase (mrad)





### **IP** data

• IP signals due to a perturbation (small change) in the conductivity

$$\sigma_{\eta} = \sigma(1 - \eta) \qquad \qquad \eta \in [0, 1)$$

An IP datum can be written as •

$$d_i^{IP} = \sum_{j=1}^M J_{ij} \eta_j \qquad i = 1, \dots, N$$
$$J_{ij} = \frac{\partial log \phi^i}{\partial log \sigma_j} \qquad \text{sensitivities for the} \text{ DC resistivity problem}$$

In matrix form ullet

$$\mathbf{d}^{IP} = \mathbf{J}\boldsymbol{\eta}$$

 ${f J}$  is an N×M matrix  $_{_{13}}$ 

## Summary of IP data

- Time domain:
  - Theoretical chargeability (dimensionless)
  - Integrated decay time (msec)
- Frequency domain:
  - PFE (dimensionless)
  - Phase (mrad)
- For all data types: linear problem
  - Same as magnetics or gravity

$$\mathbf{d}^{IP} = \mathbf{J}\boldsymbol{\eta}$$





### IP pseudosections



### IP pseudosections



#### IP pseudosections

#### 3) The "UBC-GIF model"



∞ 0 17

Pole-Dipole

### **IP** Inversion



#### Example 1: buried prism



• Pole-dipole; n=1,8; a=10m; N=316; ( $\alpha_s$ ,  $\alpha_x$ ,  $\alpha_z$ )=(.001, 1.0, 1.0)



### Example 2: prism with geologic noise



• Pole-dipole; n=1,8; a=10m; N=316; ( $\alpha_s$ ,  $\alpha_x$ ,  $\alpha_z$ )=(.001, 1.0, 1.0)



#### Example 3: UBC-GIF model



• Pole-dipole; n=1,8; a=10m



## Induced Polarization: Summary

- Sources of IP
- Conceptual model of IP
- Chargeability
- IP data
- Pseudosections
- Two stage DC-IP inversion
- Case history: Mt. Isa
- Questions
- Case history: Mt. Isa

#### Case history: Mt. Isa

Rutley et al., 2001

## Setup

• Mt. Isa (Cluny propect)





Geologic model

#### Question

• Can conductive, chargeable units, which would be potential targets within the siltstones, be identified with DC / IP data?

#### Properties



#### Resistivity and Chargeability

| Rock Unit                | Conductivity | Resistivity ( $\Omega \cdot m$ ) | Chargeability |
|--------------------------|--------------|----------------------------------|---------------|
| Native Bee Siltstone     | Moderate     | Moderate (~10)                   | Low           |
| Moondarra Siltstone      | Moderate     | Moderate (~10)                   | Low           |
| Breakaway Shale          | Very High    | Very Low (~0.1)                  | Low-None      |
| Mt Novit Horizon         | High         | Low (~1)                         | High          |
| Surprise Creek Formation | Low          | High (~1000)                     | None          |
| Eastern Creek Volcanics  | Low          | High (~1000)                     | None          |

## Recap: Synthesis from DC

- Identified a major conductor  $\rightarrow$  black shale unit
- Some indication of a moderate conductor



Can a chargeable, moderate conductor in the siltstones be identified?

### Survey and data

- Eight survey lines
- Two configurations





Apparent chargeability, dipole- pole.



#### Processing

#### 3D chargeability model

#### Animation





## Interpretation



A: Resistive, Non-chargeable

 B: Moderate conductivity; low chargeabilty

C: Very high conductivity (> 10 S/m)

**E and F:** High conductivity and high chargeability

G: Other chargeable regions

# Synthesis



- A: Surprise Creek Formation
  - Resistive, non-chargeable

B: Moondarra and Native Bee siltstones

#### C: Breakaway Shales

- Very high conductivity

#### E and F: Mt Novit Horizon

 High conductivity and high chargeability

G: Other chargeable regions within siltstone complex





## Induced Polarization: Summary

- Sources of IP
- Conceptual model of IP
- Chargeability
- IP data
- Pseudosections
- Two stage DC-IP inversion
- Case history: Mt. Isa
- Questions

# End of IP

- Introduction to EM
- DCR
- EM Fundamentals
- Inductive sources
  - Lunch: Play with apps
- Grounded sources
- Natural sources
- GPR
- Induced polarization



• The Future

