EM: Inductive Sources

Motivation

Rugged terrain

Minerals

Groundwater

Losing Stream

1 - Water table 2 - Unsaturated zone 3 - Saturated zone 4 - Flow direction

High resolution near surface

Outline

Setup

- Basic experiment
- Transmitters, Receivers

Frequency Domain EM

- Vertical Magnetic Dipole
- Effects of Frequency
- Case History Groundwater

Time Domain EM

- Vertical Magnetic Dipole
- Propagation with Time
- Case History Oil and gas

Important questions

- What is the target?
 - at the surface? At depth?. 1D, 2D, 3D?
- Transmitter
 - Location: surface? in the air?
 - Waveform: frequency or time?
 - "Size" and orientation?
- Exciting the target
 - Conductivity of the target and host
 - Geometry of the target (Coupling)
- Receiver and data
 - What fields to measure?
 - What instrument?
- Where to collect data? How many? How accurate?
- What is depth of investigation?
- What is the "footprint" of the transmitter"
 - These are questions of SURVEY DESIGN

Basic Experiment

waveform

• Transmitter:

 Produces a primary magnetic field

• Exciting the target:

- Time varying magnetic fields generate electric fields everywhere
- Producing currents in conductors
- Receiver:
 - Induced currents produce secondary magnetic fields

Transmitter

Airborne Survey

Resolve

Deep Targets

Transmitter

• Frequency or Time?

• Key factor is moment

Field

m = I (current) A (area) N (# of turns)

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left(\frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{|\mathbf{r}|^5} - \frac{\mathbf{m}}{|\mathbf{r}|^3} \right)$$
Primary
Magnetic

Airborne Survey

Resolve

7

Exciting the target

- Primary field from a loop
- Fields fall off
 - 1/r³ geometric decay
 - Attenuation
- Want to be as close as possible to target
 - Ground based systems
 - Helicopter
 - Fixed wing aircraft
- Always concerned about coupling

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left(\frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{|\mathbf{r}|^5} - \frac{\mathbf{m}}{|\mathbf{r}|^3} \right)$$

Receiver and Data

Receiver: Frequency Domain

- Primary field
 - always "on"
 - large compared to secondary fields
- Primary removal
 - Compute and subtract
 - Bucking coil

- Main requirement:
 - Know positions of Tx and Rx
 - Keep them in one unit

Receiver: Time Domain

- Primary field has off-time
- Measure secondary fields
- Receivers can be mounted on transmitter loop or above it

SkyTEM

Important questions

- What is the target?
 - at the surface? At depth?. 1D, 2D, 3D?
- Transmitter
 - Location: surface? in the air?
 - Waveform: frequency or time?
 - "Size" and orientation?
- Exciting the target
 - Conductivity of the target and host
 - Geometry of the target (Coupling)
- Receiver and data
 - What fields to measure?
 - What instrument?
- Where to collect data? How many? How accurate?
- What is depth of investigation?
- What is the "footprint" of the transmitter"
 - These are questions of SURVEY DESIGN

Footprint of Airborne EM system

Depth (m)

- What volume of earth is "seen" by the airborne system?
 - Where are the currents?
- Currents depend on
 - Transmitter
 - Waveform: frequency or time
 - Background conductivity
- Simple case: loop source over homogeneous earth

Current density

Vertical Magnetic Dipole (VMD)

- Some questions
 - Where, and how strong, are the currents?
 - How do they change with transmitter frequency?
 - How do they depend upon the conductivity?
 - What do the resulting magnetic fields look like?

Vertical Magnetic Dipole over a halfspace (FDEM)

Current Density

 Currents in the earth flow in planes parallel to the Tx

Secondary Magnetic Flux Density

• Frequency = 10 kHz

Effects of Frequency

- Frequency at 100 kHz
- Skin depth = 16 m
- Currents are concentrated at surface

$$\delta = 503 \sqrt{\frac{\rho}{f}}$$

Effects of Frequency

- Frequency at 10 kHz
- Skin depth = 50 m
- Currents diffusing downward and outward

$$\delta = 503 \sqrt{\frac{\rho}{f}}$$

Summary: Effects of Frequency

 $\delta = 503 \sqrt{\frac{\rho}{f}}$

Layered earth

- 3 layers + air,
- ρ_2 varies

- Four different cases:
 - Halfspace

 $\rho_2 = 100 \ \Omega m$

- Resistive

 $\rho_2 = 1000 \ \Omega m$

- Conductive

 $\rho_2=10\;\Omega m$

- Very conductive $ho_2 = 1 \ \Omega m$
- Fields
 - J_y imag
 - Secondary B imag

Current density (J_v imag)

 $\rho_2 = 10 \ \Omega m$

Depth (m)

22

B_z sounding curves

Back to the "shielding" problem

Shielding: DC with resistive layer

Resistivity models (thin **resistive** layer)

Currents and measured data at MN

Shielding: EM with resistive layer

Resistivity models (thin resistive layer)

Shielding: EM with resistive layer

Shielding: DC with conductive layer

A+ в A+ в A+ в 500 **Ω**m -5 -5-10 -10 -10 Resisitivity (ohm-m Ωm € ^{−15} × ^{−20} -15 -15 -20 -20 Ωm -25 -25 -25 -30 -30 -30 -40 -20 40 -10 20 30 -40 -30 40 30 x (m) x (m) x (m)

Currents and measured data at MN

Resistivity models (thin **conductive** layer)

Shielding: EM with conductive layer

Outline

Setup

- Basic experiment
- Transmitters, Receivers

Frequency Domain EM

- Vertical Magnetic Dipole
- Effects of Frequency
- Questions
- Case History Groundwater
 Time Domain EM
- Vertical Magnetic Dipole
- Propagation with Time
- Case History Oil and gas

Case History: Bookpurnong

Viezzoli et al., 2009

Setup

Irrigation Area

Geoscience Australia project

• Characterizing river salination

Properties

Location map for salinity measurements

Unit	Conductivity
Saline water	High, 3 - 5 S/m
Fresh water	Low, 0.01 S/m

Conductivity from salinity measurements

Survey

Resolve system (2008)

Flight lines

Horizontal Co-planar (HCP) frequencies:

- 382, 1822, 7970, 35920 and 130100 Hz

Vertical Co-axial (VCA) frequencies: - 3258 Hz Horizontal Co-planar

Horizontal Co-planar (HCP) data

Processing: 1D inversion

4s/Hp

1.6

Data fit

37

Interpretation

Conductivity model (stitched) RESOLVE (depth = 8.6 m) $imes 10^{6}$ 6.2 0.5 -Osing Stream 6.199 Conductivity (log(S/m)) 0 (m) 6.198 Morthing 6.197 -0.5 Gaining Stream -1 6.196 -1.5 6.195 -2 4.6 4.62 4.58 4.59 4.61 4.63 Easting (m) $imes 10^5$

Losing Stream

1 – Water table2 – Unsaturated zone3 – Saturated zone4 – Flow direction

Synthesis

Hydrological model

Conductivity model (stitched)

Outline

Setup

- Basic experiment
- Transmitters, Receivers

Frequency Domain EM

- Vertical Magnetic Dipole
- Effects of Frequency
- Case History Ground water

Time Domain EM

- Vertical Magnetic Dipole
- Propagation with Time
- Case History Oil and gas

EM with Inductive Sources

- Induction principles are the same for
 - FDEM: Frequency domain EM
 - TDEM: Time domain EM

EM with Inductive Sources: Time Domain

time	b	db/dt
t < 0	b_0	0
t = 0	b_0	$-b_0\delta(t)$
t > 0	secondary	secondary

 $\delta(t)$: Dirac-delta function

Vertical Magnetic Dipole over a halfspace (TDEM)

Current Density

• Time: 0.01ms

Magnetic flux density

• Time: 0.01ms

• Time: 0.002ms

 $d = 1260\sqrt{t\rho}$

diffusion distance = 18 m

• Time: 0.01ms

$$d = 1260 \sqrt{t\rho}$$

• diffusion distance = 38 m

• Time: 0.035ms

 $d = 1260\sqrt{t\rho}$

• diffusion distance = 75 m

• Time: 0.110ms

$$d=1260\sqrt{t\rho}$$

• diffusion distance = 132 m

Summary: propagation through time

50

Important points

- Currents flow in same plane as transmitter currents
- Currents diffuse outward downward
- Each transmitter has a "footprint"
- Max resolution controlled by earliest time
- Depth of investigation controlled by latest time

magnetic field (on-time) 1.7e-08 50 Magnetic field (T) Depth (m) 8.6e-09 -50 0.0e+00 -50 Distance (m) Jv 4.4e-07 me at 0.002 ms 50 Current density (A/m²) Depth (m) 0.0e+00 -504.4e-07 -5050 0 Distance (m)

Important points

- Currents flow in same plane as transmitter currents
- Currents diffuse outward downward
- Each transmitter has a "footprint"
- Max resolution controlled by earliest time
- Depth of investigation controlled by latest time

magnetic field (on-time) 1.7e-08 50 Magnetic field (T) Depth (m) 8.6e-09 -50 0.0e+00 -50 Distance (m) Jv 2.3e-09 ime at 0.035 ms 50 Current density (A/m²) Jepth (m) 0.0e+00 -50 9-2.3e-09 -500 50 Distance (m)

Layered earth

- 3 layers + air,
- ρ_2 varies

- Four different cases:
 - Halfspace

 $\rho_2 = 100 \ \Omega m$

- Resistive

 $\rho_2 = 1000 \ \Omega m$

- Conductive

 $\rho_2=10\;\Omega m$

- Very conductive $\rho_2 = 1 \ \Omega m$
- Fields
 - j_y off-time
 - **b** off-time

 $\rho_2=10\;\Omega m$

 $\rho_2 = 1 \ \Omega m$

54

 $\rho_2 = 10 \ \Omega m$

 $\rho_2=1~\Omega m$

db_z/dt sounding curves

Summary: airborne example

TDEM Receiver

Magnetometer

- Measures:
 - Magnetic field
 - 3 components
- eg. 3-component fluxgate

Fluxgate

Coil

- Measures:
 - Voltage
 - Single component that depends on coil orientation
 - Coupling matters
- Airborne TDEM: measure db/dt

Squid

Some Airborne TDEM Systems

Outline

Setup

Frequency Domain EM

Time Domain EM

- Vertical Magnetic Dipole
- Propagation with Time
- Effects of Background Conductivity
- Transmitters and receivers
- Decay Curves
- Questions
- Case History Oil and gas

Case History: Kasted

Vilhelmsen et al. (2016)

Setup

A) Survey Area: Kasted, Demark

B) Borehole locations

Local Geology: W-E cross-section

Properties

Geological Units	Resistivity (Ωm)
Palaeogene Clay	1-10
Clay Till	25-60
Sand Till	>50
Meltwater Sand and Gravel	>60
Glaciolacustrine Clay	10-40
Miocene Silt and Sand	>40
Miocene Clay	10-40
Sand	>40
Clay	1-60

- Buried valleys with clays beneath
- Infill (water-bearing): coarse sand and gravel
- Clays are conductive (1-40 Ωm)
- Water-bearing sands and gravels are more resistive (>40 Ωm)

- Low moment (LM) used to image near surface structures
- High moment (HM) used to image deeper structures

Data

Blue: data used for Kasted study

- 333 line km of data, 100 m line-spacing
- Data points with strong coupling to cultural noise were removed (~30%)

Processing (inversion)

- Spatially constrained 1D inversion \rightarrow quasi-3D approach
- 9,500 soundings were inverted using 25 layers

Approximate depth to the top of Paleogene clay layer

Interpretation

Delineation of valley structures

- Inversion results used to construct geological model.
- Delineated 20 buried and cross-cutting valley structures.
Synthesis

MODFLOW-USG groundwater model

- 3D geologic model incorporated into MODFLOW-USG groundwater modeling tool
- Extracted water from 2 wells.
- Downdraw between the two wells correlated with the resistive valley structures

End of Inductive Sources

Case History: Wadi Sahba

Colombo et al. 2016

Setup

• Oil and gas exploration in the Middle East: Major structures to stratigraphic traps and low relief structures

Challenges for processing seismic data

Example seismic sections

Distance

• Strong effects from near surface anomalies even after static corrections

Properties

P-velocity and conductivity:

$$v_p = g(\phi)$$
 v_p : P-velocity
 $\sigma = f(\phi)$ ϕ : porosity

- Poor seismic data:
 - strong scattering effects probably caused by flower faults
 - velocity inversions (high to low v_p)
- From previous multi-physics analyses:
 - strong structural similarity between the inverted resistivity, and the existing seismic results

Geologic map

Flower faults

Survey

System Configuration

- Peak Tx current: 1200 A
- Dipole moment: 1.7x10⁶ A-m²
- Stacked TEM curve spacing: ~2.7 m
- Total soundings: ~1.6 million

Comparisons: airborne and ground EM

EM data

Apparent resistivity map

Comparison: EM and Seismic data

21 km

Processing: EM inversion

Conductivity model

- 1D inversion for each sounding location
- Lateral constraint is used

Cooperative inversion: Seismic + EM

• How EM can help seismic tomography inversion?

Velocity (v_p): high to low (significant challenge) Conductivity (σ): high to low

 \mathbf{m}_s : Slowness $v_p = g(\phi)$ $\sigma = f(\phi)$ ϕ : porosity \mathbf{m}_{σ} : Conductivity $\psi(\mathbf{m}_{\mathbf{s}},\mathbf{m}_{\sigma}) = \psi_m(\mathbf{m}_s) + \frac{1}{\lambda_1}\psi_d(\mathbf{m}_s) + \frac{1}{\lambda_2}\psi_x(\mathbf{m}_s,\mathbf{m}_{\sigma}) + \frac{1}{\lambda_3}\psi_{rp}(\mathbf{m}_s,\mathbf{m}_{\sigma})$ $\|
abla \mathbf{m_s} imes
abla \mathbf{m}_{\sigma}\|_2^2$ Gallardo and Meju, 2004

Cooperative inversion: Seismic + EM

 V_p depth slices at 340 m below sea level

Static correction

Estimated statics on plan map

Static corrected sections

Time

Distance

Pre-stack depth migration

• Impact of the improved v_p model to a pre-stack depth migration:

 $v_{\rm p}$ cross sections at A-A'

Cross sections at A-A'

Interpretation and Synthesis

Common image gathers

Interpretation and Synthesis

3D prestack depth migration co-rendered with EM

Common image gathers

- High resolution near surface conductivity from EM improves velocity model
- Helps seismic imaging:
 - Static correction
 - Pre-stack depth migration