EM: Grounded Sources

Outline

- Basic experiment
- FDEM: Electric dipole in a whole space
- TDEM: Electric dipole in a whole space
- Currents in grounded systems
- Conductive Targets: currents and data
- Resistive Targets: currents and data
- Case History: Barents Sea
- Synthetic Example: Gradient Array

Motivational examples

Oil and Gas (EOR)

Gas hydrates

Galvanic source TEM

- LoTEM (ground)
- HeliSAM (Rx on the air)
- GREATEM (Rx on the air)

Minerals

Volcanoes

Basic experiment

Electric dipole in a whole space
0 Hz (DC), 0.01 S/m

DC current density

$$\mathbf{E}_{DC}(\mathbf{r}) = \frac{1}{4\pi\sigma|\mathbf{r}|^3} \left(\frac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{|\mathbf{r}|^2} - \mathbf{m}\right)$$

$$\mathbf{J}_{DC}(\mathbf{r}) = \frac{1}{4\pi |\mathbf{r}|^3} \left(\frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{|\mathbf{r}|^2} - \mathbf{m} \right)$$

- Geometric decay: 1/r³
- Current path is geometric for homogeneous earth, but electric field is dependent upon σ

Skin depth: $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$.

- Electric dipole in a whole space •
 - 1000 Hz, 0.01 S/m, δ = 160 m

Current density (Real part)

Current density (Imaginary part)

 $\text{Re}(J) - J^{\text{DC}}$

٠

– 100 kHz, 0.01 S/m, δ= 16 m

Im (J)

 $Re(J) - J^{DC}$

٠

Summary: FDEM Electric Dipole in a whole space

 $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$

 $\operatorname{Re}(\mathbf{J}) - \mathbf{J}^{\operatorname{DC}}$

In time...

f=10⁴ kHz, δ = 2 m $t=10^{-4}$ ms, d = 4 m $d = \sqrt{\frac{2t}{\mu\sigma}}$ $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$ $Re(J) - Re(J^{DC})$ $10^{0.4}$ $10^{-0.4}$ 40 40 $10^{-2.0}$ (Mm Nm $10^{-3.6}$ Mm Mm $10^{-3.2}$ Mm $10^{-5.2}$ $10^{-5.2}$ 20 20 Z (m) 0 0 -20 -20 -40 -40 $10^{-6.8}$ $10^{-6.8}$ °**↑** 1 d 20 40 80 20 40 80 60 -20 0 60 -20**†** 1 δ X (m) X (m)

Z (m)

 $t=10^{-3}$ ms, d = 13 m f=10³ kHz, δ = 5 m $d = \sqrt{\frac{2t}{\mu\sigma}}$ $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$ $Re(J) - Re(J^{DC})$ $10^{-4.4}$ $10^{-2.8}$ 40 40 $10^{-5.0}$ (2 $10^{-5.6}$ $10^{-5.6}$ Current density (A/m 2 Current density (A/m²) 10-2.8 (A/m²) 10-2.8 (A/m²) 20 20 Z (m) Z (m) 0 0 -20 -20 -40 -40 $10^{-6.8}$ $10^{-6.8}$ 20 40 80 20 40 80 -20 0 60 -20 0 60 $\frac{1}{1}\delta$ X (m) X (m) 1 d

t=10⁻² ms, d = 40m f=10² kHz, δ = 16 m $d = \sqrt{\frac{2t}{\mu\sigma}}$ $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$ $Re(J) - Re(J^{DC})$ $10^{-5.6}$ $10^{-4.1}$ 40 40 Current density $(Am^{-6.2} \ e^{-0.1})^{-6.2}$ $10^{-4.7}$ (, $_{\rm C}$ m/s) (, $_{\rm C}$ m/s) (, $_{\rm C}$ m/s) (, $_{\rm Content}$ density (A/m $_{\rm C}$) (, $_{\rm Content}$ density (, $_{\rm Content}$ 20 20 Z (m) 0 0 -20 -20 -40 -40 $10^{-6.8}$ $10^{-8.1}$ x (m) ⁴⁰ 20 60 80 20 40 80 -20 0 -20 0 60 1 1δ X (m) d

Z (m)

t=10⁻¹ ms, d = 126m f=10¹ kHz, δ = 50 m $d = \sqrt{\frac{2t}{\mu\sigma}}$ $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$ $Re(J) - Re(J^{DC})$ $10^{-7.2}$ $10^{-5.6}$ 40 40 10^{-6.3} () 10^{-7.8} () 10^{-7.8} () 20 20 Z (m) Z (m) 0 0 -20 -20 -40 -40 $10^{-7.5}$ $10^{-8.6}$ 20 40 60 80 -20 20 40 60 -20 0 0 80 **†** ⁸⁰ 2/5 **d** 1 1δ X (m) X (m)

t=1 ms, d = 400m

 $d = \sqrt{\frac{2t}{\mu\sigma}}$

Diffusing currents

 $d = \sqrt{\frac{2t}{\mu\sigma}}$

Bipole Sources

- Extended line sources
 - Grounded term (galvanic) + wire path (inductive)
 - Straight line

- Crooked line (horse shoe)

Grounded Sources: On the surface

- Ability to detect target depends on
 - Geometry, conductivity of target & host
 - Geometry of TX
 - Frequency or time
 - Fields and components measured
 - e, b, db/dt
 - Location of Tx and Rx with respect to the target
- Lots of variables...
 - Use an example to highlight important concepts

- $t = 0^-$ Steady state
 - t = 0 Shut off current
 - $t = 0^+$ Off-time

What happens when we shut the system off?

#1 Wire path

- Immediately after shut off: image current at the surface
- Successive time: currents diffuse downwards and outwards

#2 Ground currents

- Immediately after shut off: ground currents are still there
- Successive time: currents diffuse downwards and outwards

Grounded Source: Halfspace Currents

- Parameters:
 - halfspace (0.01 S/m)
 - **t=0**⁻, steady state

XY plane at Z=-100 m

Grounded Source: Halfspace currents

• Cross section of currents, t = 0.04 to 10 ms

Grounded sources: with a target

- Block in a halfspace
 - DC
 - Good coupling if $h < r_{AB}$

- Vortex currents
 - Good coupling (magnetic fields)
 - Good signal for conductor
 - Resistor more difficult
- Galvanic currents
 - Good coupling (electric fields)
 - Good signal for conductor and resistor

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **t=0**⁻, steady state

XY plane at Z=-100 m

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **0.04** ms, d = 80 m

XY plane at Z=-100 m

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **0.1** ms, d = 126 m

XY plane at Z=-100 m

XZ plane at Y=0 m 9.5e-05 -50 7.1e-05 -1001 d -Current density (A/m²) -150Ê -200 N 4.7e-05 -250 -300 2.4e-05 -350 -150 -100 -50 0 50 100 150 0.0e+00 X (m)

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - 1 ms, d = 400 m

- Grounded wire
 - A conductor (1S/m) in a halfspace (0.01 S/m)
 - **10** ms, d = 1270 m

Steady State (galvanic current)

EM induction (vortex current)

Galvanic current t = 0⁻

Vortex current t = 1 ms

Galvanic current

t = 10 ms

Cross section 4.0e-04 .0e-04 -100 -150 Ê -200 -250 -300 1.0e-04 -350 -100 0 50 100 150 0.0e+00 X (m) 8.4e-06 -5 36-06 1.5 Z (m) -200 4.2e-06 -250 -300 2.1e-06 -35 -100 -50 0 50 100 0.0e+00 X (m) 2.9e-08

EM induction (galvanic current)

- Tx • Rx Data: e_x field -50 -100 -150(E) -200(Ha -250 -300 В А \mathbf{r}_{AB} В А r_{AB} 200 h 100 h -200 -100 , *X (m)* 100 -200 200

Data: b_y field

Data: b_z field

Resistor: currents

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **t=0**⁻, steady state

XY plane at Z=-100 m

Resistor: currents

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **0.04** ms, d = 80 m

XY plane at Z=-100 m

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **0.1** ms, d = 126 m

XY plane at Z=-100 m

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **1** ms, d = 400 m

- Grounded wire
 - A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
 - **10** ms, d = 1270 m

DC (galvanic current)

EM induction (galvanic current)

EM induction (galvanic current)

Galvanic current t = 10 ms

Galvanic current t = 1 ms

Galvanic current

t = 0-

Data: e_x field

Data: by field

Data: b_z field

Data summary

t = 1ms

Geometric Complexities

• Coupling: Back to finding thin plates...

- DCR: good coupling
- EM: good coupling

- DCR: poor coupling
- EM: poor coupling
- Arbitrary target requires multiple excitation directions
- Forward simulations necessary

Grounded Sources: Summary

- Basic experiment
- FDEM: Electric dipole in a whole space
- TDEM: Electric dipole in a whole space
- Currents in grounded systems
- Conductive Targets: currents and data
- Resistive Targets: currents and data
- Questions
- Case History: Barents Sea
- DC/EM Inversion

Grounded sources: two examples

- Land EM
 - Large offset time domain system
 - Looking for sediments below basalts

- Marine EM (towed Tx, Rx array)
 - Multiple transmitters, frequencies
 - Looking for a resistive target

Case History: Mesozoic sediments beneath Deccan traps, India

Strack and Pandey, 2007

Setup

- Trap basalts (onshore)
 - flat lying basalt layers fed by fissures
- Complex geology (offshore)
- Challenging for Seismic
- Find Mesozoic sediments and then look for reservoirs

Previous DCR survey (ONGC)

Resistivity section

 Sediments exist but unclear where and how thick.
Interpretation weak

Survey

Мар

Long offset time domain EM (LOTEM)

- Rx component: Ex, Ey, and Hz
- # of Tx: 10
- Tx current: 400 A (full-duty cycle)

Survey design: basalt thickness

Apparent resistivity changes with varying thickness of Deccan Traps:
1.5, 2 and 3 km

Survey design: sediment resistivity

 Apparent resistivity changes with varying resistivity of Silurian Sediments

Data

- Stacked data
- Time range: 1ms-10s
- High S/N ratio until 1s
- Similar to synthetic data

Processing

1D inversions (stitched)

Location map

The sediment thickness:

- Largest at L
- Smallest at K

Interpretation: dyke. Profile R

Surface outcrop

Occam's Inversion

Extended view

Dyke is a resistor

Interpretation: sediment conductance and drill target

Synthesis

Actual well results						Pre-drill Prediction	
Age	Formation		Depth (m)	Litho log	Lithological Description	Tectonics	
Upper Cretaceous to Paleocene	Deccan Trap		-1000 -1200		Basalt / weathered basalt with amygdales at places traversed by calcite Dominantly sandstone with clay intercalations. Sandstone is light grey to brown, fine to	drift phase	Trap basalt
	Wadhwan		- 1400		red hard and compact	Late	
Upper Jurassic to Lower Cretaceous	Dhrangadh ra	Upper	-1600 -1800 -2000		Dominantly claystone with intercalations of sand Sandstone brownish grey medium grained hard and compact Dominantly claystone, dark grey to brown with sandstone intercalations Sandstone white to light grey mod. Hard and	Transitional early drift phase	Sediments
		Lower	-2200 -2400 -2600		compact non-calc. Dominantly claystone Tuff Conglomerate (Polymictic) Sandstone light brown to colorless. Medium to very coarse grained. Claystone brick red to maroon in color Sandstone brown, fine to coarse grained with alterations of siltstone and claystone		
Jurassic (?)	Lodhika	Lower Upper	-2800 -3000 -3200		Basalt / Dolerite Amygdaloidal basalt with red / maroon colored claystone Basalt. Fine grained fractured tuff. Light green to dark green with chocolate brown clasts, hard and compact	Rift seque	Basalt
					Tuff		

Case History: Barents Sea

Alvarez et al., 2016. Rock Solid Images

Setup

- Known hydrocarbon reservoirs within the Hoop Fault Complex, Barents Sea.
- Seismic can locate oil and gas reservoirs but cannot always determine hydrocarbon saturation (in particular fizz gas)
- Seismic, borehole and CSEM data used to characterize reservoir
 - fluid, porosity, clay content, and hydrocarbon saturation

- Highly hydrocarbon-saturated reservoir (< 30% water-wet) significant resistivity
- CSEM can differentiate high from low quality reservoirs

Survey

Towed CSEM and 2D seismic

- 6 lines of 2D seismic and towed streamer CSEM data.
- 72 receivers collected CSEM data
 - offsets from 31m to 7.8 km
- CSEM frequencies: 0.2 Hz to 3 Hz.

Survey lines

Alternative	Control well, dry		
Central	Control well, productive		
Hanssen	Validation well		
Bjaaland	Validation well		

CSEM Data

Survey lines

Towed-streamer EM

Significant phase response over Central reservoir

Seismic data

Seismic section: Line 5001

Well-Log and Seismic Inversion

Litho-fluid Facies

Projection of 7324/8-2 7324/7-2 7324/7-15 7324/8-1 (Hanssen) (Alternative) (Central) (Bjaaland) A' Clean oil or fizz gas sand Clean wet sand or shaly oil sand or shaly wet sand Shale 0.7500 [fraction] 0.5000 0.2500 5.na/ 0.0000 0.2000 [fraction] 0.1500 0.1000 0.0500 0.0000 **Bjaaland** Central Hanssen **Alternative** 65 Validation well Validation well Control, productive Control, dry

Total Porosity

Clay Content

Revisiting physical properties

Processing: CSEM Inversion

• Inversion shows strong resistor at Central and a secondary resistor at Hanssen.

Processing: Multi-physics Approach

Litho-fluid Facies

Clay Content

Total Porosity

Resistivity

68

Interpretation & Synthesis

Seismic

Hydrocarbon saturation

69

End of Grounded Sources

DC/EM Inversion

DC/EM: Goals

- Standard DCR time domain waveform
- Compare:
 - Inversions from DC data
 - Inversions from EM data
- Illustrate the value of data which is often discarded
- Numerical example from a gradient arrary

Survey and Data

Transmitter

Measured Voltage

Gradient array

- Model
 - A1: high conductivity
 - A2: moderate conductivity
 - A3: resistive

- Survey
 - 200m bi-pole (625 data)
 - times: 1-600ms

DC data

Off-time data

• TDEM data

Off-time data

Voltage (mV)

1.1e-02

10³

• E_x Decay curves at A1-A3

DC inversion

• Recovered 3D conductivity

Compensate for high sensitivity near surface (similar to mag.)

EM inversion

• Recovered 3D conductivity

No depth weighting

Conductivity models

True, DC, and TEM conductivities •

2000

1500

1000

500

C

-500 -1000

-1500

-200 -400

-600 -800 -1000

-1200-1400

-200 -400 -600

-800

-1000-1200

-1400

Depth (m)

Depth (m)

-2000 -1500-1000 -500

-2000

-2000

 $10^{-3.0}$

-1000

-1000

 $10^{-2.0}$

0

0

Northing (m)

EM data contain signal

Summary

- Basic experiment
- FDEM: Electric dipole in a whole space
- TDEM: Electric dipole in a whole space
- Currents in grounded systems
- Conductive Targets: currents and data
- Resistive Targets: currents and data
- Case History: Barents Sea
- DC/EM Inversion

