EM Fundamentals

Motivation: applications difficult for DC

Outline

- Basic Survey
- Ampere's and Faraday's Laws (2-coil App)
- Circuit model for EM induction
- Frequency and time domain data
- Sphere in homogeneous earth
- Cyl code
- Energy losses in the ground

• Setup:

 transmitter and receiver are in a towed bird

• Setup:

 transmitter and receiver are in a towed bird

• Primary:

 Transmitter produces a primary magnetic field

• Setup:

- transmitter and receiver are in a towed bird
- Primary:
 - Transmitter produces a primary magnetic field

Induced Currents:

 Time varying magnetic fields generate electric fields everywhere and currents in conductors

• Setup:

- transmitter and receiver are in a towed bird
- Primary:
 - Transmitter produces a primary magnetic field

• Induced Currents:

 Time varying magnetic fields generate electric fields everywhere and currents in conductors

Secondary Fields:

 The induced currents produce a secondary magnetic field.

Basic Equations: Quasi-static

	Time	Frequency
Faraday's Law	$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$	$ abla imes \mathbf{E} = -i\omega \mathbf{B}$
Ampere's Law	$ abla imes \mathbf{h} = \mathbf{j} + rac{\partial \mathbf{d}}{\partial t}$	$ abla imes \mathbf{H} = \mathbf{J} + i\omega \mathbf{D}$
No Magnetic Monopoles	$\nabla \cdot \mathbf{b} = 0$	$\nabla \cdot \mathbf{B} = 0$
Constitutive Relationships (non-dispersive)	$\mathbf{j} = \sigma \mathbf{e}$	$\mathbf{J}=\sigma\mathbf{E}$
	$\mathbf{b}=\mu\mathbf{h}$	${f B}=\mu {f H}$
	$\mathbf{d} = \varepsilon \mathbf{e}$	$\mathbf{D} = \varepsilon \mathbf{E}$

* Solve with sources and boundary conditions

Ampere's Law $\nabla \times \mathbf{H} = \mathbf{J}$

Faraday's Law

Faraday's Law

Magnetic Flux

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \, da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} = \mathbf{0}$$

ϕ_b : constant

App for Faraday's Law

2 Apps:

- Harmonic
- Transient

http://em.geosci.xyz/apps.html

Two Coil Example: Transient

TDEM

Response Function: Transient

Transient and Harmonic Signals

We have seen a transient pulse...

What happens when he have a harmonic?

Two Coil Example: Harmonic

Induced Currents

Two Coil Example: Harmonic

Induced Currents

Response Function

- Quantifies how a target responds to a time varying magnetic field
- Partitions real and imaginary parts

Response Functions: Summary

Secondary magnetic fields

Induced currents generate magnetic fields

Receiver and Data

Coupling

- Transmitter: Primary $I_p(t) = I_p \cos(\omega t)$ $\mathbf{B}_p(t) \sim I_p \cos(\omega t)$
- Target: Secondary

$$EMF = -\frac{\partial \phi_{\mathbf{B}}}{\partial t}$$
$$= -\frac{\partial}{\partial t} \left(\mathbf{B}_{p} \cdot \hat{\mathbf{n}} \right)$$

Circuit model of EM induction

Coupling coefficient

Depends on geometry

$$M_{12} = \frac{\mu_0}{4\pi} \oint \oint \frac{dl_1 \cdot dl_2}{|\mathbf{r} - \mathbf{r}'|^2}.$$

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_Q$$

Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$ of target

Conductor in a resistive earth: Transient

Profile over the loop

• Time constant

$$\tau = L/R$$

• Step-off current in Tx

• Response function depends on time, au

$$q(t) = e^{-t/\tau}$$

Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time
 domain systems
- Circuit model provides
 representative results
 - Applicable to geologic targets?

Sphere in a resistive background

How representative is a circuit model?

Cyl Code

- Finite Volume EM
 - Frequency and Time

- Built on SimPEG
- Open source, available at: <u>http://em.geosci.xyz/apps.html</u>

harmonic_vmd_sounding_over_ ×	5
$ o$ C 🛈 localhost:8892/notebooks/notebooks/harmonic_vmd_sounding Q $lpha$:	
CJUPYTET harmonic_vmd_sounding_over_sphere (autosaved) ~	
File Edit View Insert Cell Kernel Widgets Help Python [default] O	
E + % 1/2 E ↑ ↓ N ■ C Markdown ↓ E CellToolbar 4 ○ 1 □	
)) plt.show() return ax ipywidgets.interact(plot_bSecondary, freq_ind=ipywidgets.IntSlider(min=0, max=len(freqs)-1, value=0), real_or_imag=ipywidgets.ToggleButtons(options=['real', 'imag']))	
freq_ind 0 real_or_im real imag 0	
B real, 1000.00 Hz 50 0 -50 -50 -100 -100 -100 -100 -50 0 -10	

Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time
 domain systems
- Circuit model is a good proxy

Major item not yet accounted for...

- Propagation of energy from
 - Transmitter to target
 - Target to receiver

How do EM fields and fluxes behave in a conductive background?

Revisit Maxwell's equations

Plane waves in a homogeneous media

Plane waves in a homogeneous media

Plane Wave apps

http://em.geosci.xyz/apps.html

- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

51

10⁴ Hz

Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time
 domain systems
- Circuit model is a good proxy
- Need to account for energy losses
- Ready to look at some field examples

Today's Case Histories

Mt. Isa, Australia: Mineral Exploration

Barents Sea, Norway: Hydrocarbon de-risking

Today's Case Histories

Mt. Isa, Australia: Mineral Exploration

End of EM Fundamentals

