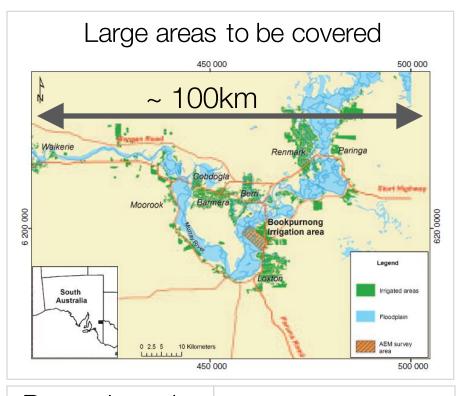
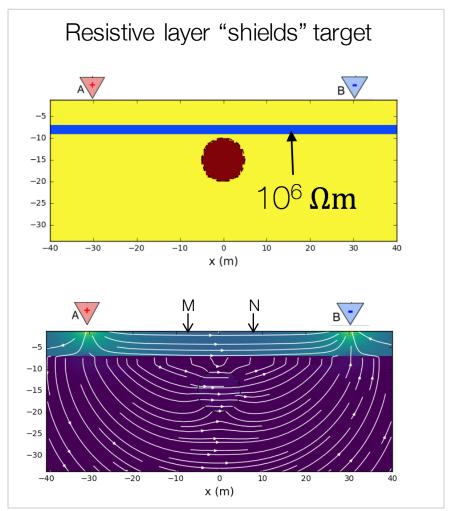
EM Fundamentals

Motivation: applications difficult for DC



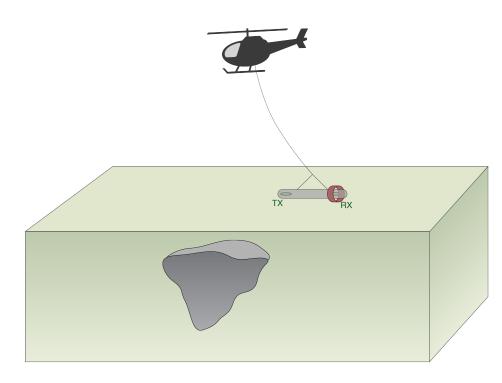


Outline

- Basic Survey
- Ampere's and Faraday's Laws (2-coil App)
- Circuit model for EM induction
- Frequency and time domain data
- Sphere in homogeneous earth
- Cyl code
- Energy losses in the ground

Setup:

transmitter and receiver are in a towed bird

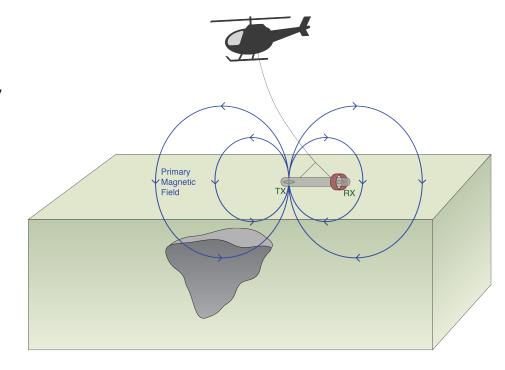


Setup:

 transmitter and receiver are in a towed bird

Primary:

Transmitter produces a primary magnetic field



Setup:

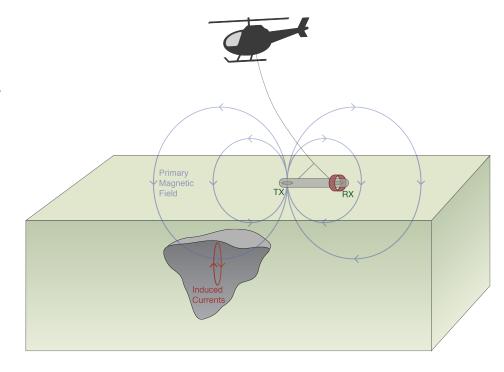
 transmitter and receiver are in a towed bird

Primary:

Transmitter produces a primary magnetic field

Induced Currents:

 Time varying magnetic fields generate electric fields everywhere and currents in conductors



Setup:

 transmitter and receiver are in a towed bird

Primary:

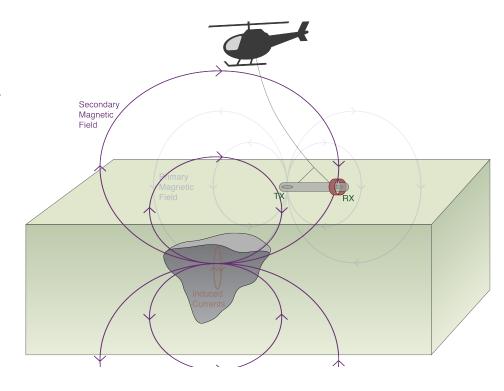
Transmitter produces a primary magnetic field

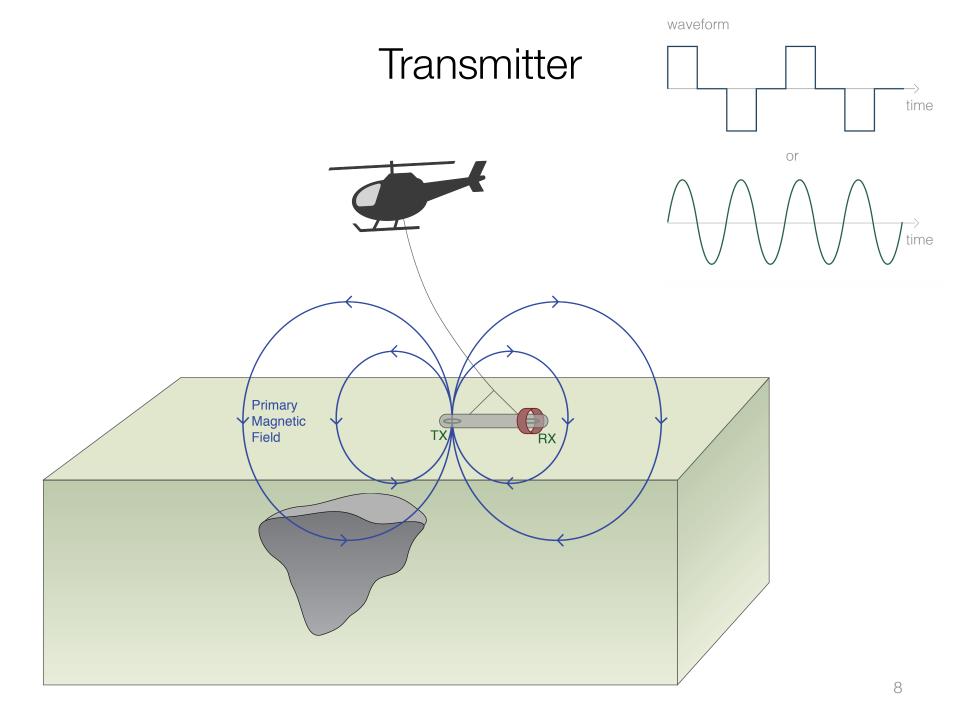
Induced Currents:

 Time varying magnetic fields generate electric fields everywhere and currents in conductors

Secondary Fields:

 The induced currents produce a secondary magnetic field.





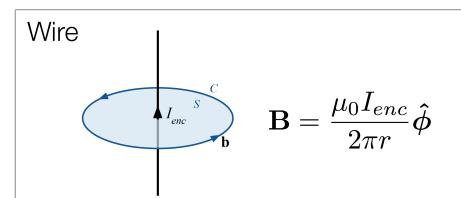
Basic Equations: Quasi-static

	Time	Frequency
Faraday's Law	$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$	$\nabla \times \mathbf{E} = -i\omega \mathbf{B}$
Ampere's Law	$\nabla \times \mathbf{h} = \mathbf{j} + \frac{\partial \mathbf{d}}{\partial t}$	$\nabla \times \mathbf{H} = \mathbf{J} + i\omega \mathbf{D}$
No Magnetic Monopoles	$\nabla \cdot \mathbf{b} = 0$	$\nabla \cdot \mathbf{B} = 0$
Constitutive	$\mathbf{j} = \sigma \mathbf{e}$	${f J}=\sigma{f E}$
Relationships (non-dispersive)	$\mathbf{b} = \mu \mathbf{h}$	$\mathbf{B} = \mu \mathbf{H}$
	$\mathbf{d}=arepsilon\mathbf{e}$	$\mathbf{D}=arepsilon\mathbf{E}$

^{*} Solve with sources and boundary conditions

Ampere's Law

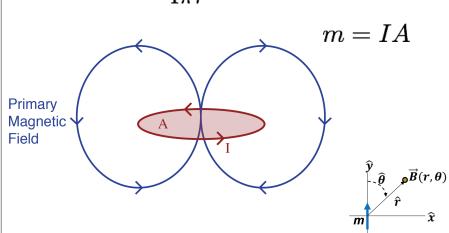
$abla imes \mathbf{H} = \mathbf{J}$

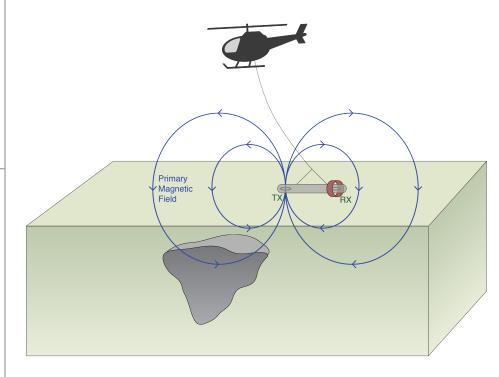


Right hand rule

Current loop

$$\mathbf{B} = \frac{\mu_0 m}{4\pi r^3} (2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\boldsymbol{\theta}})$$

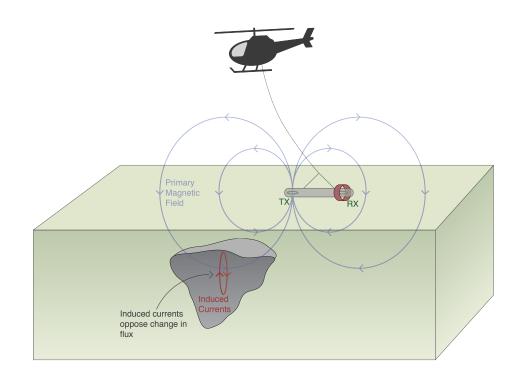


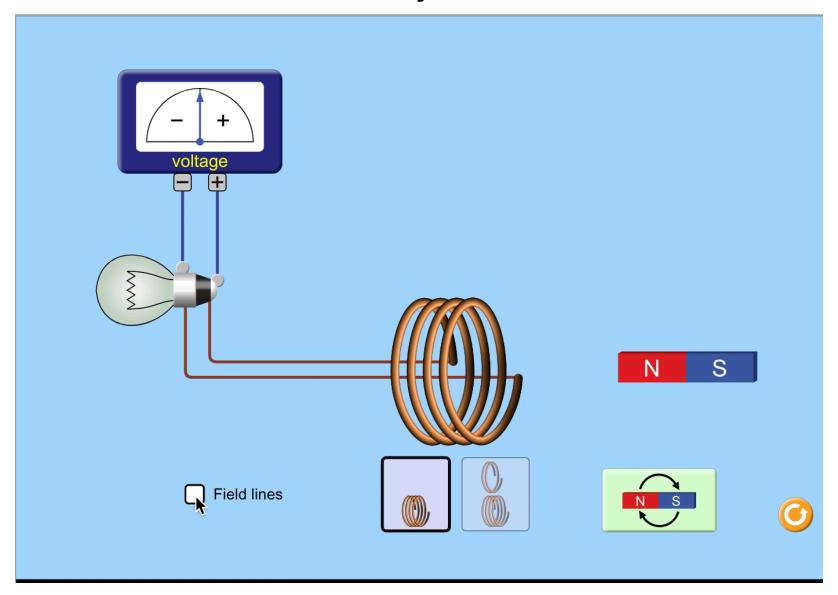


$$abla imes \mathbf{e} = - \frac{\partial \mathbf{b}}{\partial t}$$

Ohm's Law

$$\mathbf{j} = \sigma \mathbf{e}$$





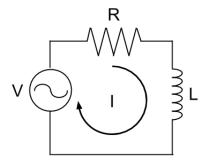
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

Magnetic Flux

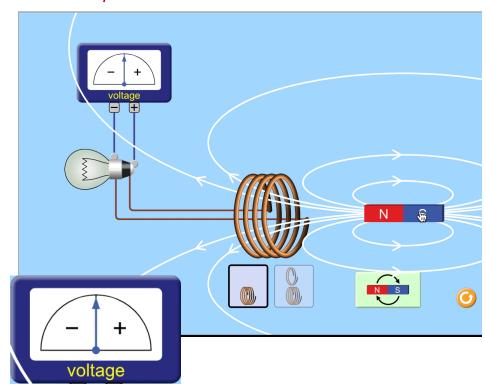
$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} = \mathbf{0}$$



ϕ_b : constant



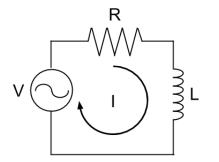
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

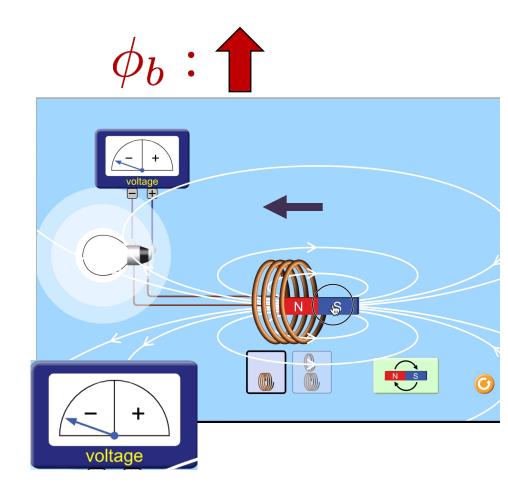
Magnetic Flux

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} < \mathbf{0}$$





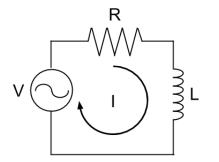
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

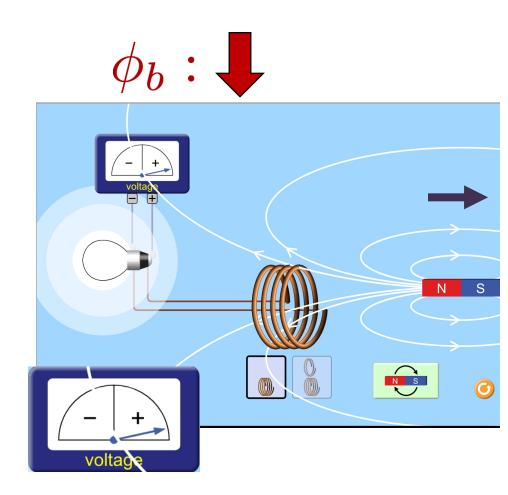
Magnetic Flux

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} > \mathbf{0}$$

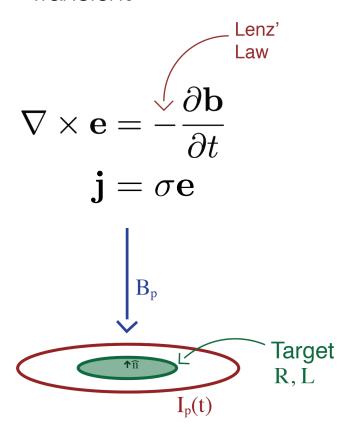


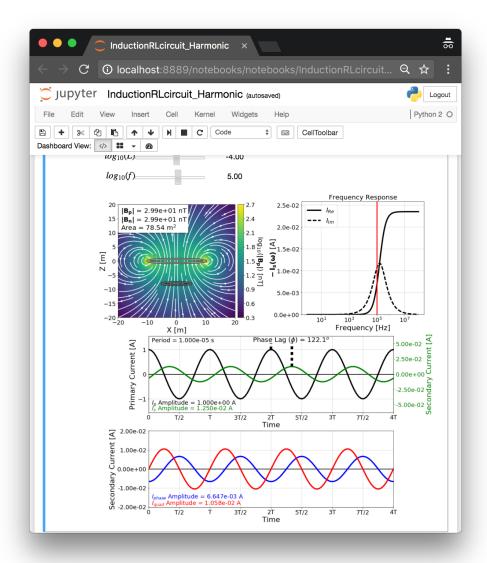


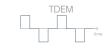
App for Faraday's Law

2 Apps:

- Harmonic
- Transient

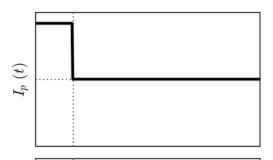


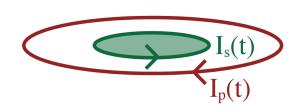




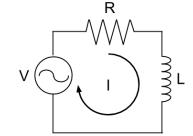
Two Coil Example: Transient

Primary currents

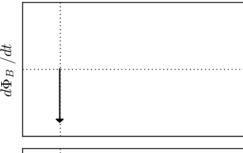


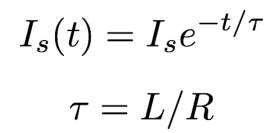


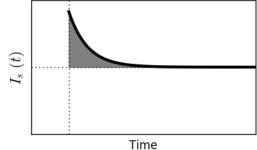
Magnetic flux



Time-variation of magnetic flux

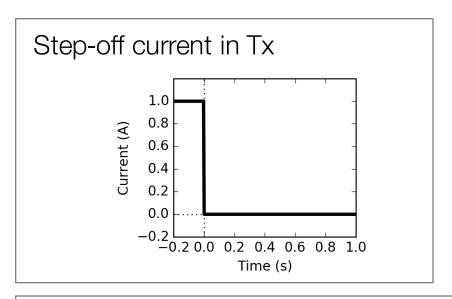


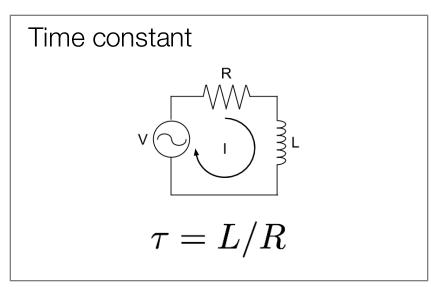


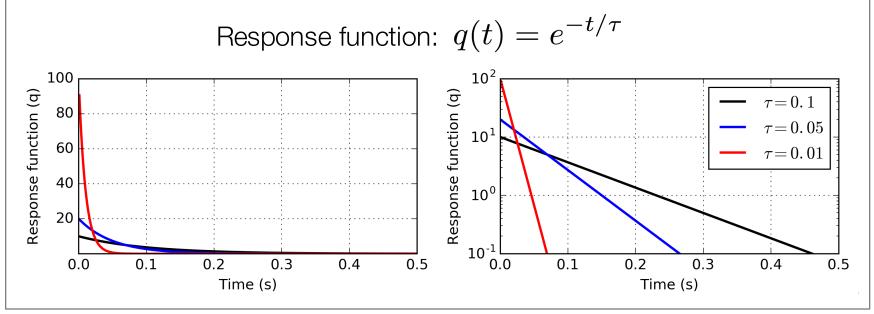


$$\tau = L/R$$

Response Function: Transient

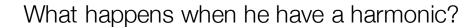


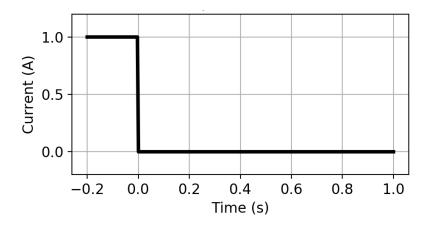


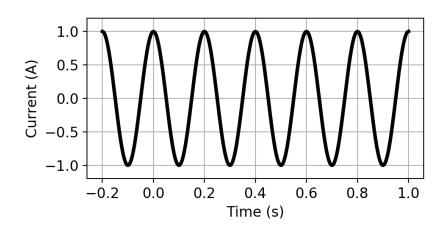


Transient and Harmonic Signals

We have seen a transient pulse...







Two Coil Example: Harmonic

Induced Currents

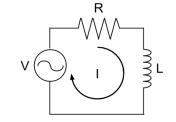
$$I_p(t) = I_p \cos \omega t$$

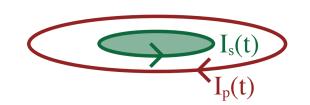
$$I_s(t) = I_s \cos(\omega t - \psi)$$

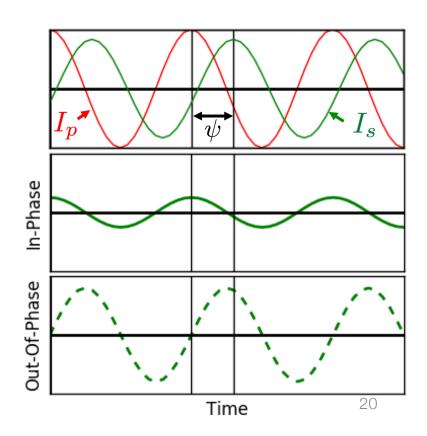
$$= \underbrace{I_s \cos \psi \cos \omega t}_{\text{In-Phase}} \underbrace{I_s \sin \psi \sin \omega t}_{\text{Out-of-Phase}}$$
Real Quadrature Imaginary

Phase Lag

$$\psi = \frac{\pi}{2} + \tan^{-1} \left(\frac{\omega L}{R} \right)$$







Two Coil Example: Harmonic

Induced Currents

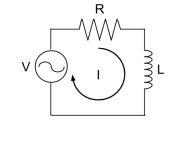
$$I_p(t) = I_p \cos \omega t$$

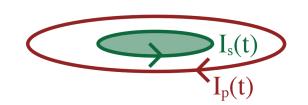
$$I_s(t) = I_s \cos(\omega t - \psi)$$

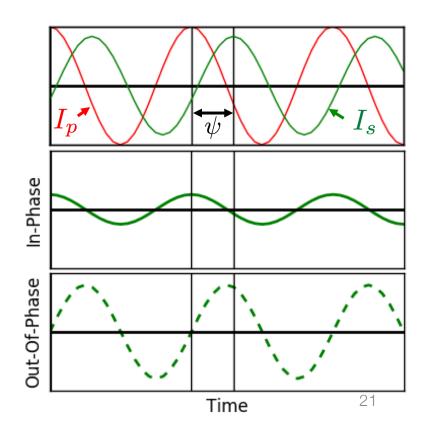
$$= \underbrace{I_s \cos \psi \cos \omega t}_{\text{In-Phase}} \underbrace{I_s \sin \psi \sin \omega t}_{\text{Out-of-Phase}}$$
Real Quadrature Imaginary

Phase Lag

$$\psi = \frac{\pi}{2} + \tan^{-1} \left(\frac{\omega L}{R} \right)$$

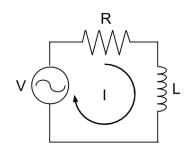


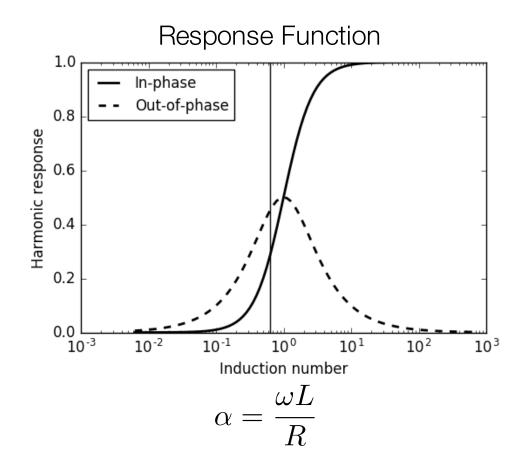


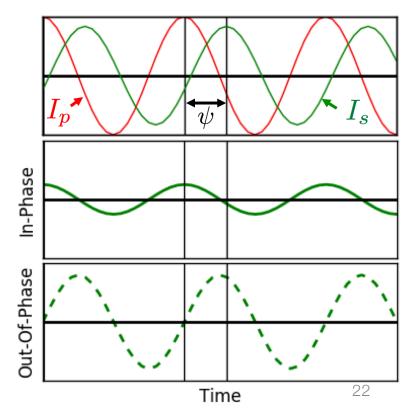


Response Function

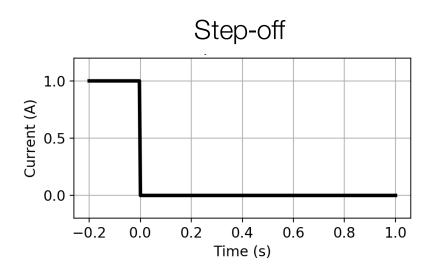
- Quantifies how a target responds to a time varying magnetic field
- Partitions real and imaginary parts

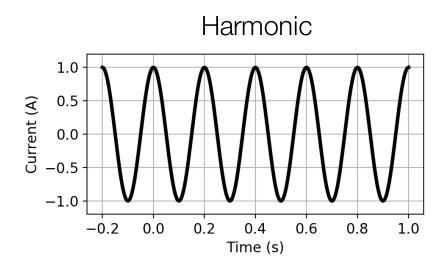


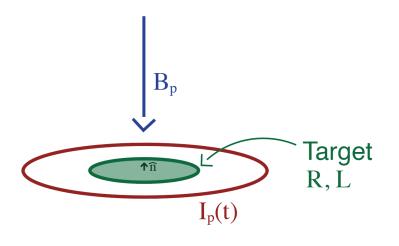




Response Functions: Summary







In both:

Induce currents

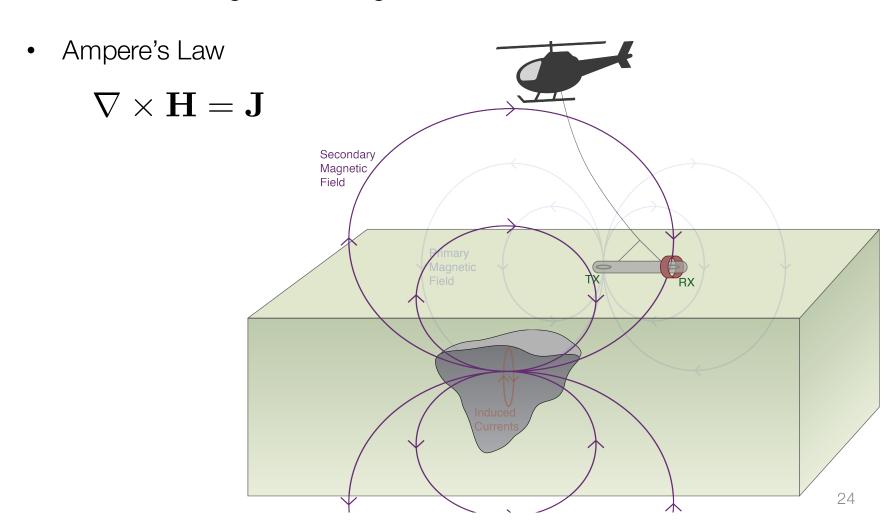
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

Generate secondary magnetic fields

$$\nabla \times \mathbf{h} = \mathbf{j}$$

Secondary magnetic fields

Induced currents generate magnetic fields

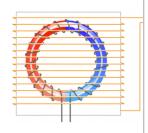


Receiver and Data

Magnetometer

- Measures:
 - Magnetic fields
 - 3 components
- eg. 3-component fluxgate

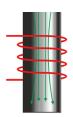
$\mathbf{b}(t)$



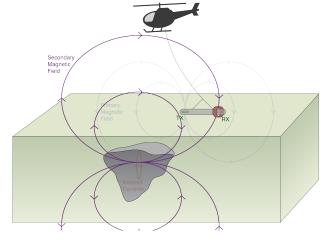
Fluxgate

Coil

- Measures:
 - Voltage
 - Single component that depends on coil orientation
 - Coupling matters
- eg. airborne frequency domain
 - ratio of Hs/Hp is the same as Vs/Vp



Coil



Coupling

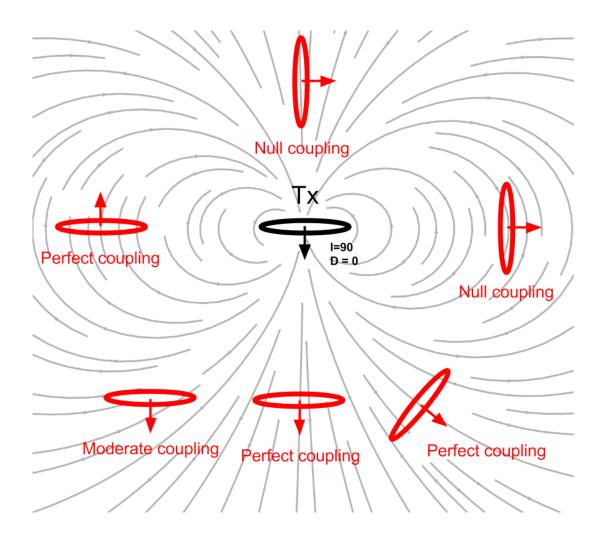
Transmitter: Primary

$$I_p(t) = I_p \cos(\omega t)$$

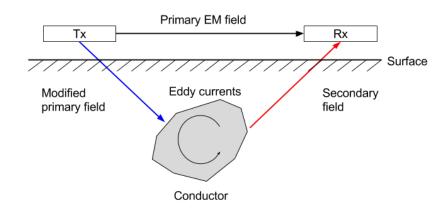
$$\mathbf{B}_p(t) \sim I_p cos(\omega t)$$

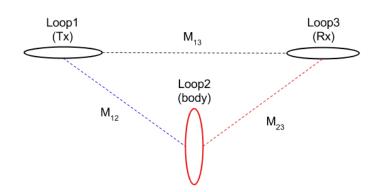
Target: Secondary

$$EMF = -\frac{\partial \phi_{\mathbf{B}}}{\partial t}$$
$$= -\frac{\partial}{\partial t} (\mathbf{B}_p \cdot \hat{\mathbf{n}}) A$$



Circuit model of EM induction





Coupling coefficient

Depends on geometry

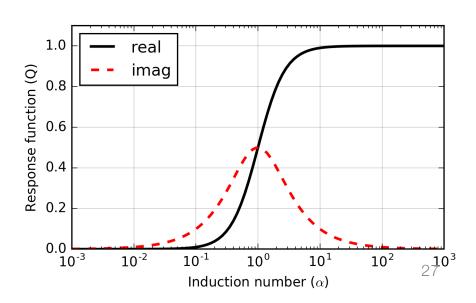
$$M_{12} = \frac{\mu_0}{4\pi} \oint \oint \frac{dl_1 \cdot dl_2}{|\mathbf{r} - \mathbf{r}'|^2}.$$

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + \imath\alpha}{1 + \alpha^2}\right]}_{Q}$$

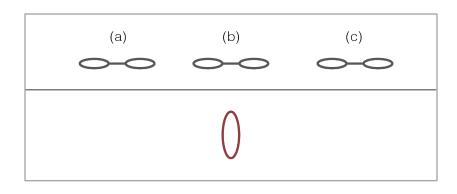
Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$ of target



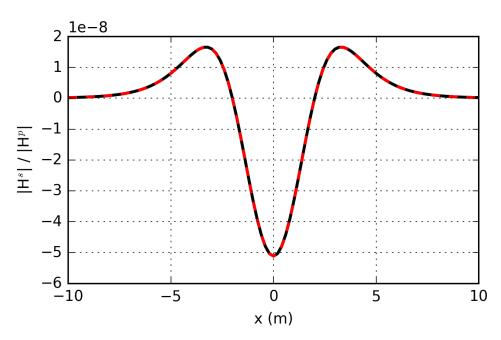
Conductor in a resistive earth: Frequency

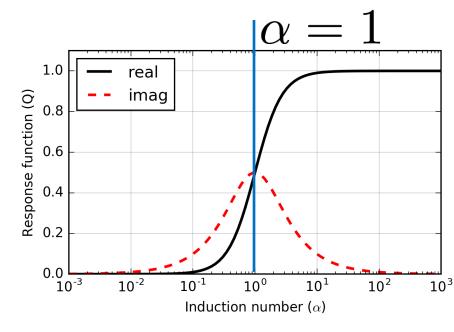
Profile over the loop



$$\alpha = \frac{\omega L}{R}$$

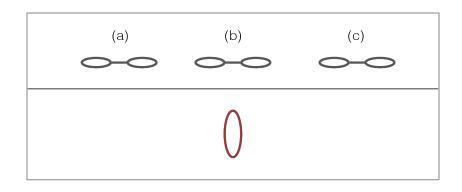
- When $\alpha=1$
 - Real = Imag





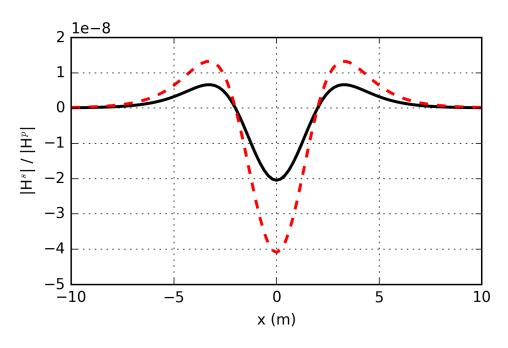
Conductor in a resistive earth: Frequency

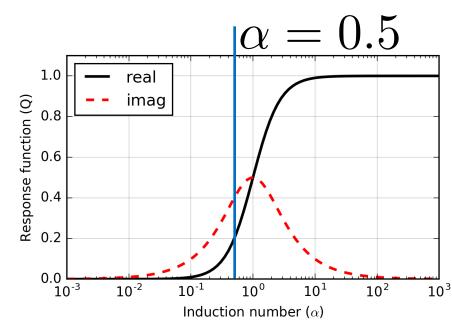
Profile over the loop



$$\alpha = \frac{\omega L}{R}$$

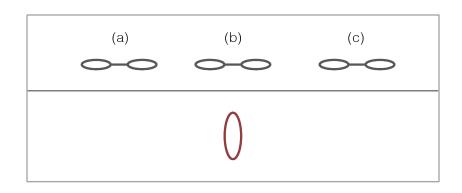
- When $\alpha < 1$
 - Real < Imag





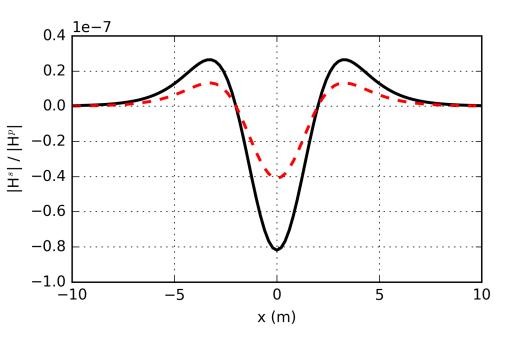
Conductor in a resistive earth: Frequency

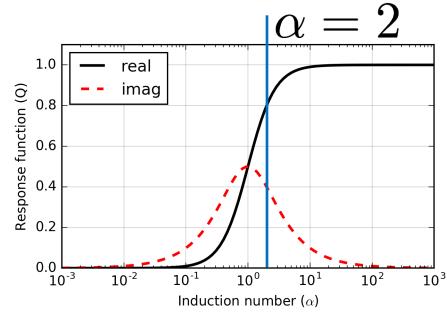
Profile over the loop



$$\alpha = \frac{\omega L}{R}$$

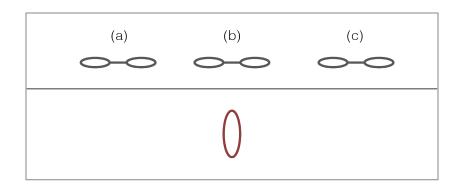
- When $\alpha > 1$
 - Real > Imag

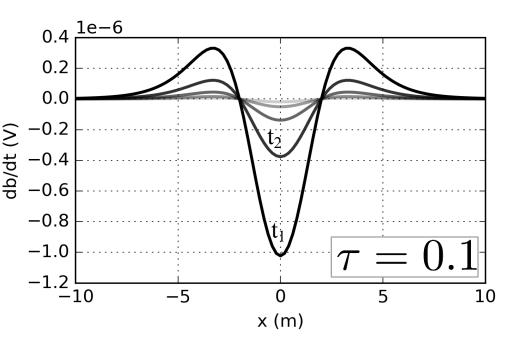




Conductor in a resistive earth: Transient

Profile over the loop

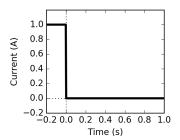




• Time constant

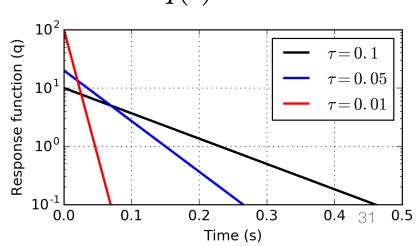
$$au = L/R$$

Step-off current in Tx



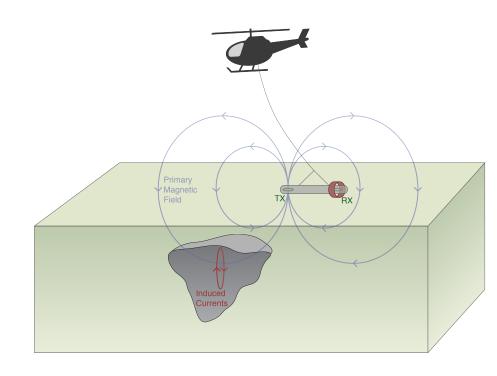
• Response function depends on time, τ

$$q(t) = e^{-t/\tau}$$



Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model provides representative results
 - Applicable to geologic targets?



You are trying to detect a conductive plate in a very resistive background using a frequency domain airborne EM survey.

- Will you expect the response currents to be in-phase (real) or out-of-phase (imaginary)?
- How are the currents affected by the orientation of the plate?

You are trying to detect a conductive plate in a very resistive background using a frequency domain airborne EM survey.

- Will you expect the response currents to be in-phase (real) or out-of-phase (imaginary)?
- How are the currents affected by the orientation of the plate?

For us:

- Setup: two-loop with target loop below: Currents in target; Response function (resistive and inductive limit)
- Current strength as a function of orientation of the plate

You are trying to detect a conductive plate in a very resistive background using a time domain airborne EM survey. Your transmitter is a step-off.

- How does the time decay change if the target is more conductive?
- How does the orientation of the plate affect the response?

You are trying to detect a conductive plate in a very resistive background using a time domain airborne EM survey. Your transmitter is a step-off.

- What do you expect the currents to look like?
- How do the currents change if the target is more conductive?
- How does the orientation of the plate affect the response?

For us:

- Setup: two-loop with target loop below: Currents in target; Response function (exp)
- Current strength as a function of orientation of the plate

Questions: EM fundamentals

You are trying to detect a target with a frequency domain loop-loop system. (image airborne or EM-31). You carry out a traverse over the target. What does the response look like if the receiver coil is:

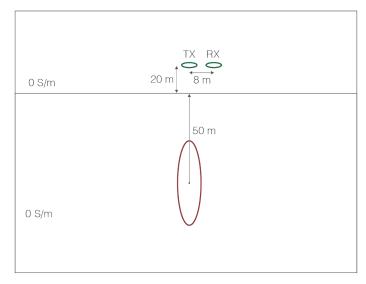
- Co-planar with the transmitter
- Perpendicular but along line
- Perpendicular but across line
- For the coplanar configuration how does the response change if the induction number is small (resistive limit) or large (inductive limit)

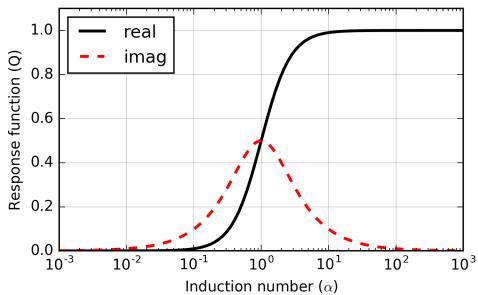
For us

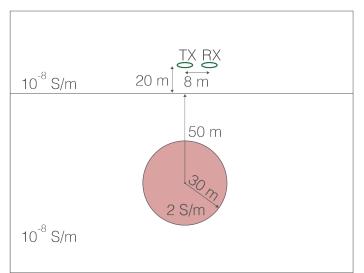
Setup: 3-coil app

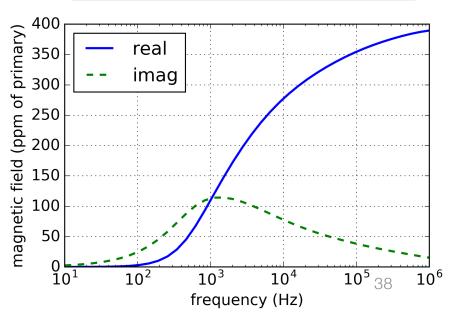
Sphere in a resistive background

How representative is a circuit model?



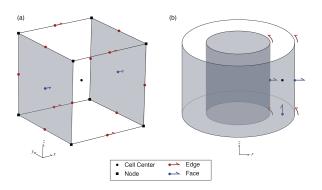






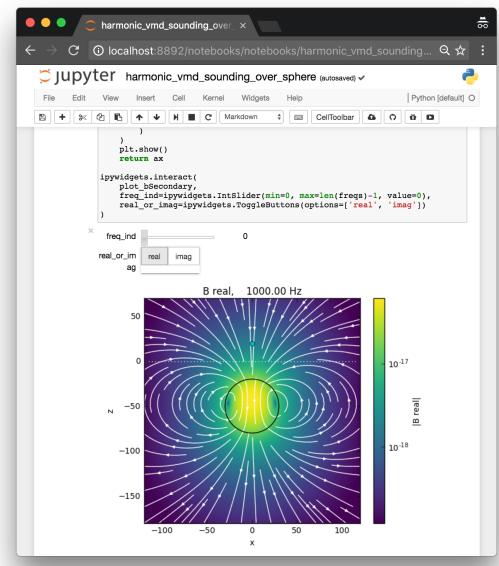
Cyl Code

- Finite Volume EM
 - Frequency and Time



- Built on SimPEG
- Open source, available at:

http://em.geosci.xyz/apps.html

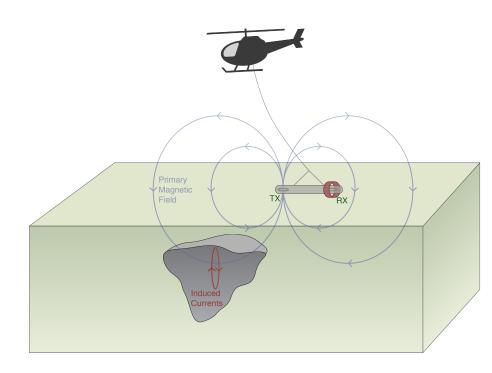


Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model is a good proxy

Major item not yet accounted for...

- Propagation of energy from
 - Transmitter to target
 - Target to receiver



How do EM fields and fluxes behave in a conductive background?

Revisit Maxwell's equations

First order equations

$$abla imes \mathbf{e} = -rac{\partial \mathbf{b}}{\partial t}$$
 $\mathbf{j} = \sigma \mathbf{e}$

$$\mathbf{b} = \mu \mathbf{h}$$

$$abla imes \mathbf{d} = \varepsilon \mathbf{e}$$

Second order equations

$$\nabla^2 \mathbf{h} - \underbrace{\mu \sigma \frac{\partial \mathbf{h}}{\partial t}}_{\text{diffusion}} - \underbrace{\mu \epsilon \frac{\partial^2 \mathbf{h}}{\partial t^2}}_{\text{wave propagation}} = 0$$

In frequency

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0$$
$$k^2 = \omega^2 \mu \varepsilon - i\omega \mu \sigma$$

Plane waves in a homogeneous media

In frequency

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0$$

$$k^2 = \omega^2 \mu \varepsilon - i\omega \mu \sigma$$

Quasi-static

$$\frac{\omega\varepsilon}{\sigma}\ll 1$$

even if... $\sigma = 10^{-4}$

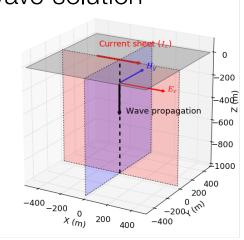
$$\sigma = 10^{-4} S/m$$
$$f = 10^4 Hz$$

then

$$\frac{\omega\varepsilon}{\sigma} \sim 0.005$$

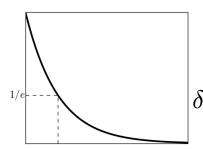
$$k = \sqrt{-i\omega\mu\sigma} = (1-i)\sqrt{\frac{\omega\mu\sigma}{2}}$$
$$\equiv \alpha - i\beta$$

Plane wave solution



$$\mathbf{H} = \mathbf{H_0} e^{-\alpha z} e^{-i(\beta z - \omega t)}$$
attenuation phase

Skin depth



 δ : skin depth

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = 503\sqrt{\frac{1}{\sigma f}}$$

43

Plane waves in a homogeneous media

In time

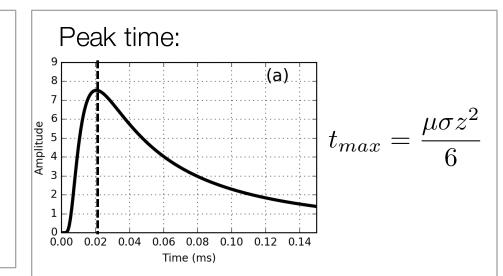
$$\nabla^2 \mathbf{h} - \mu \epsilon \frac{\partial^2 \mathbf{h}}{\partial t^2} - \mu \sigma \frac{\partial \mathbf{h}}{\partial t} = 0$$

$$\mathbf{h}(t=0) = \mathbf{h}_0 \delta(t)$$

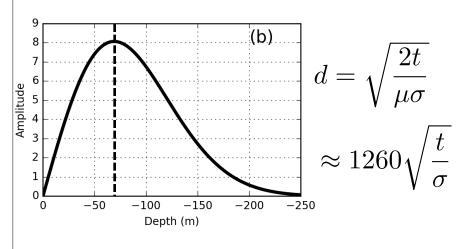
Solution for quasi-static

$$\mathbf{h}(t) = -\frac{(\mu\sigma)^{1/2}z}{2\pi^{1/2}t^{3/2}}e^{-\mu\sigma z^2/(4t)}$$

z: depth (m)



Diffusion distance



44

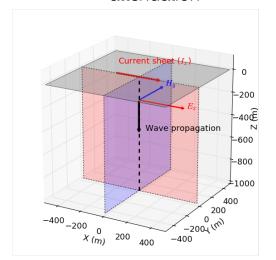
Plane Wave apps

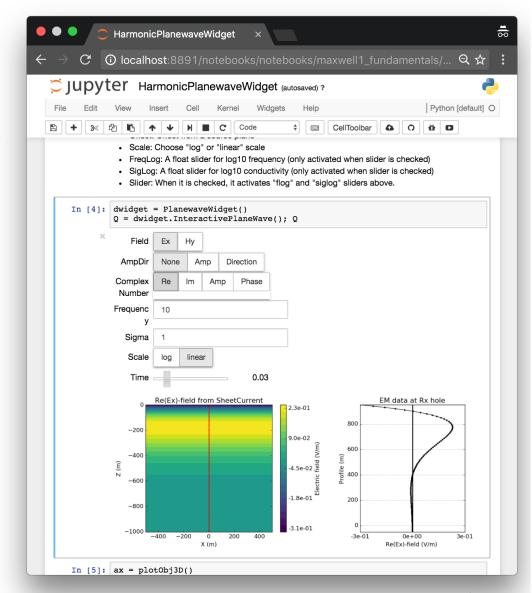
- 2 apps:
 - Transient

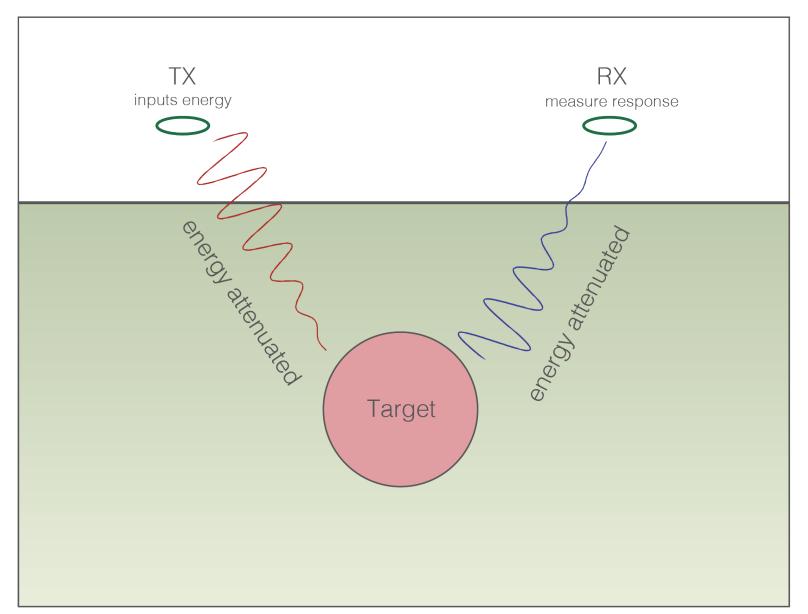
$$\mathbf{h}(t) = -\frac{(\mu\sigma)^{1/2}z}{2\pi^{1/2}t^{3/2}}e^{-\mu\sigma z^2/(4t)}$$

- Harmonic

$$\mathbf{H} = \mathbf{H_0} e^{-\alpha z} e^{-i(\beta z - \omega t)}$$
attenuation phase

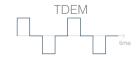


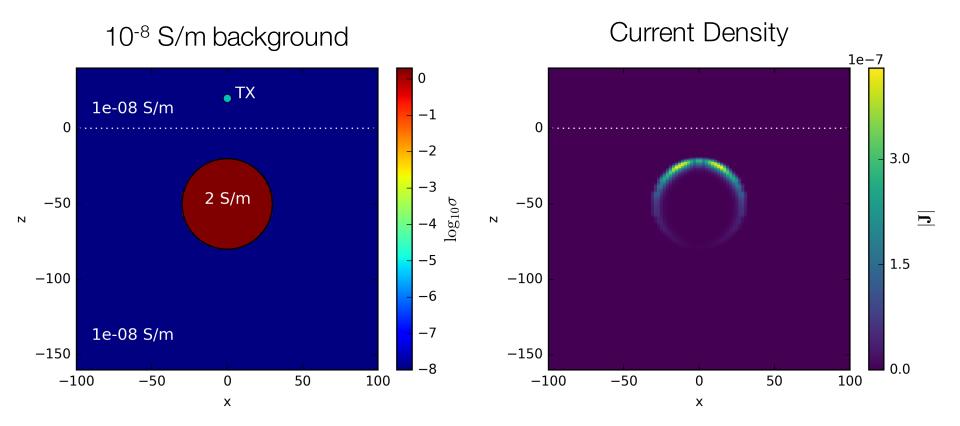




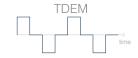
- Buried, conductive sphere
- Vary background conductivity

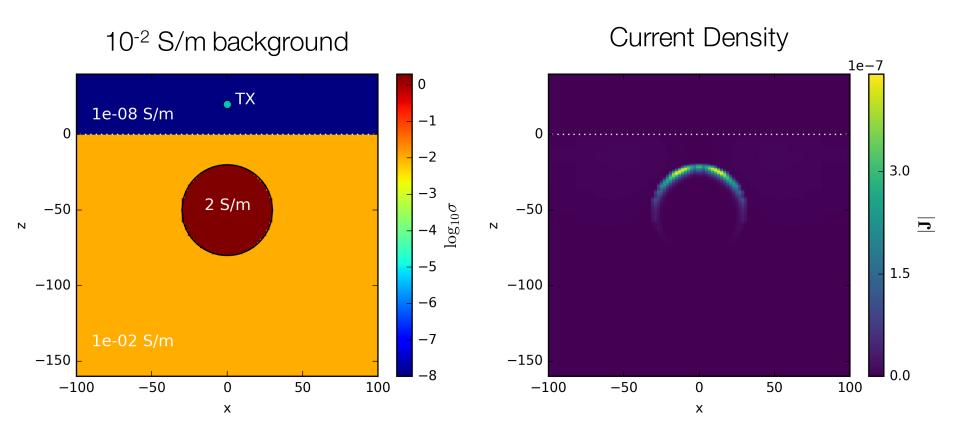
Time: 10⁻⁵ s





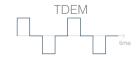
- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

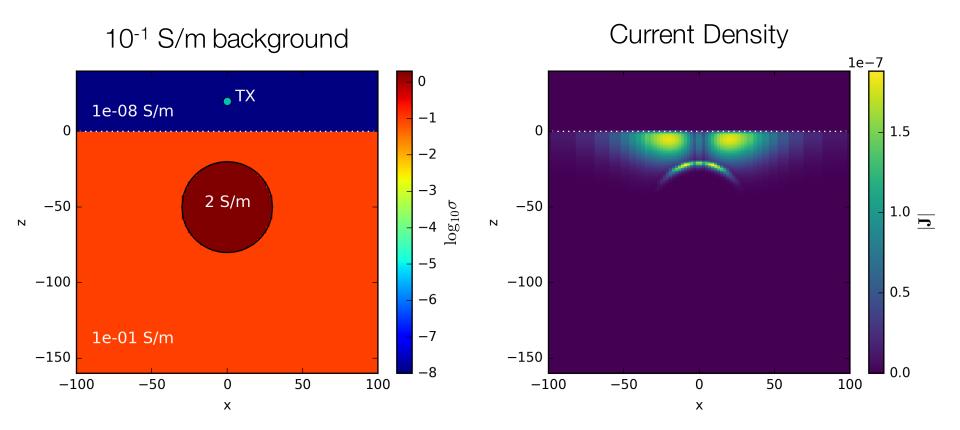




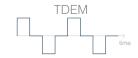
- Buried, conductive sphere
- Vary background conductivity

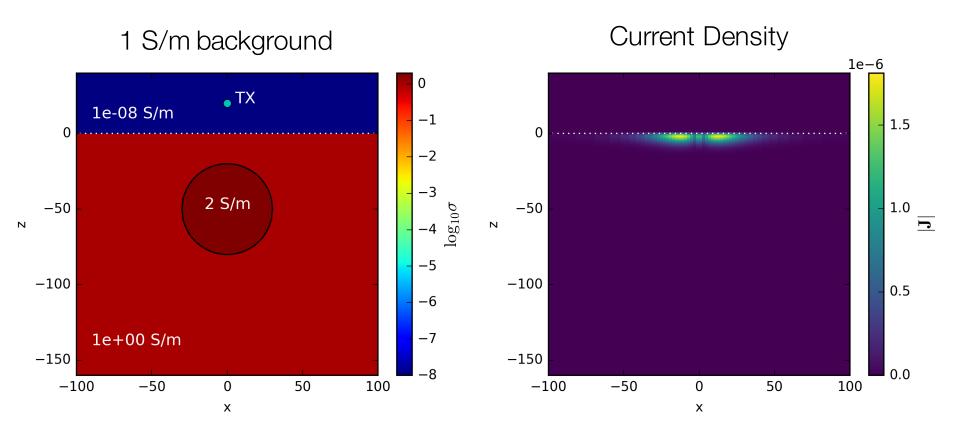
Time: 10⁻⁵ s

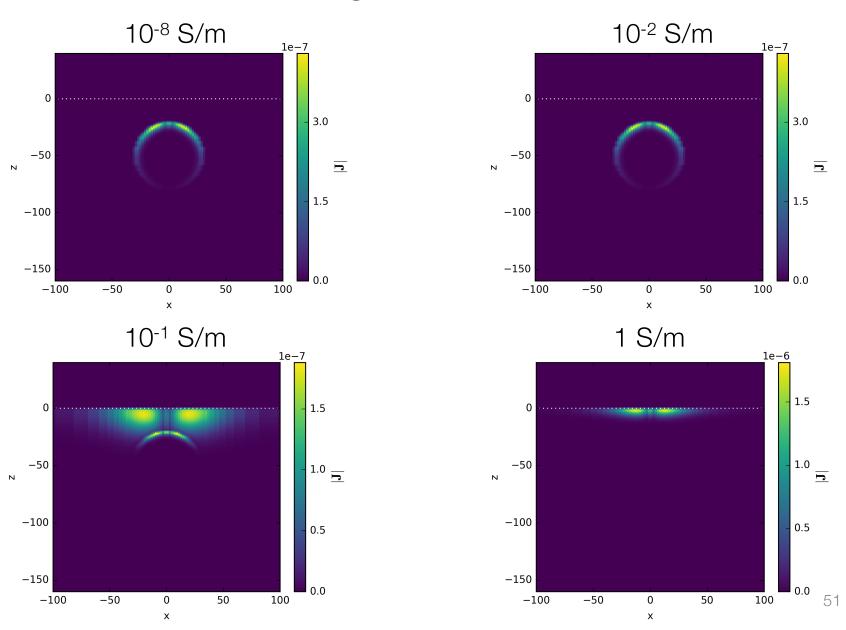


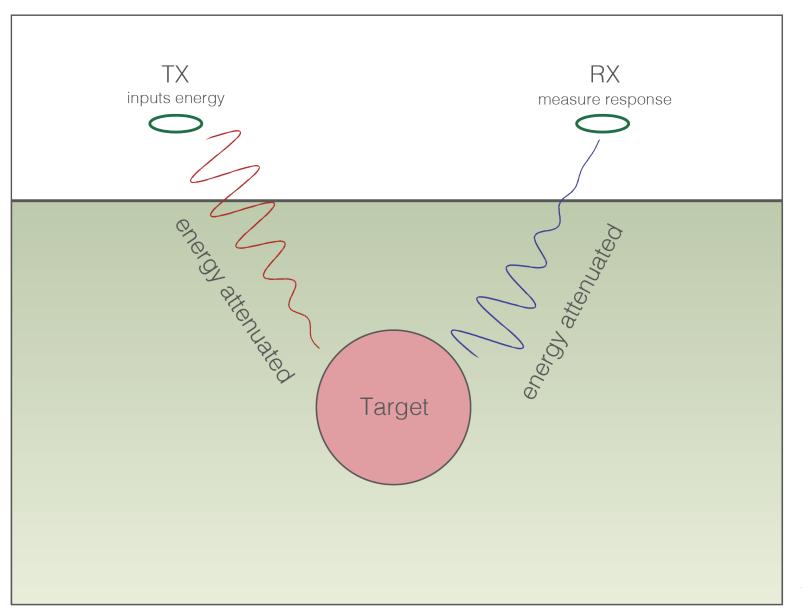


- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

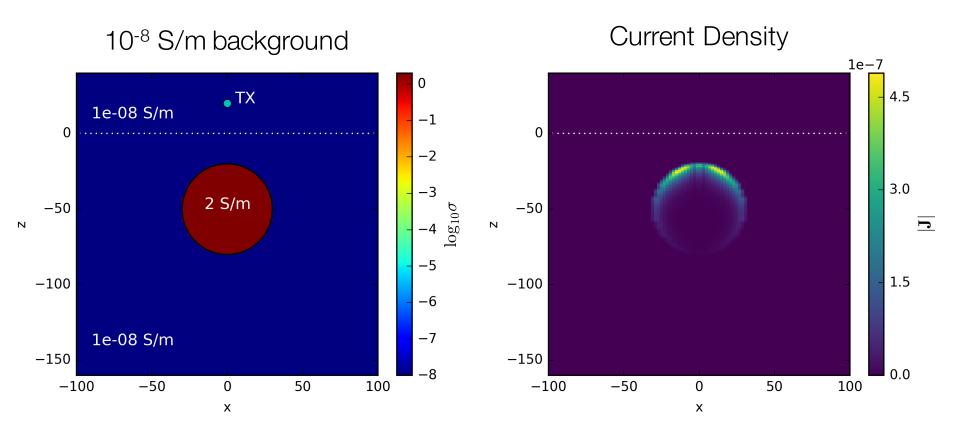




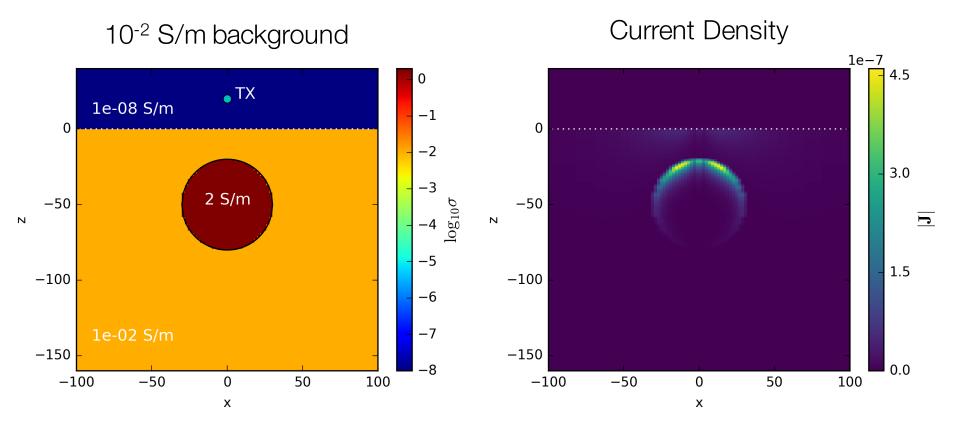




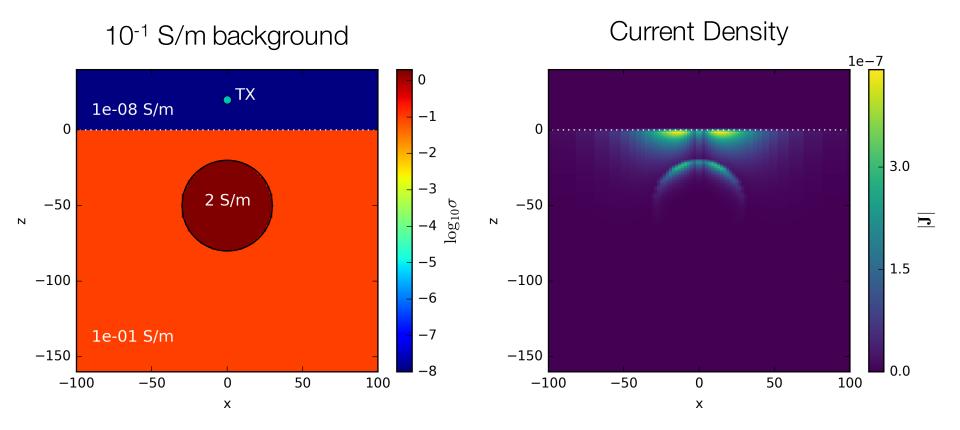
- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz



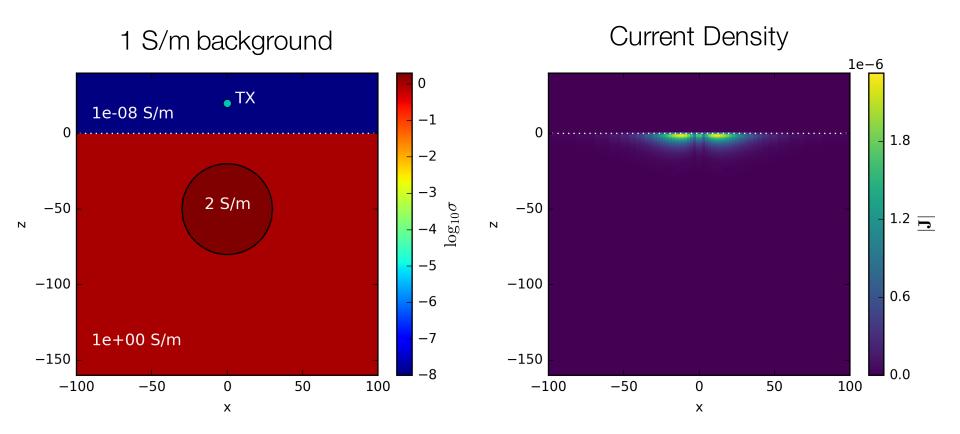
- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

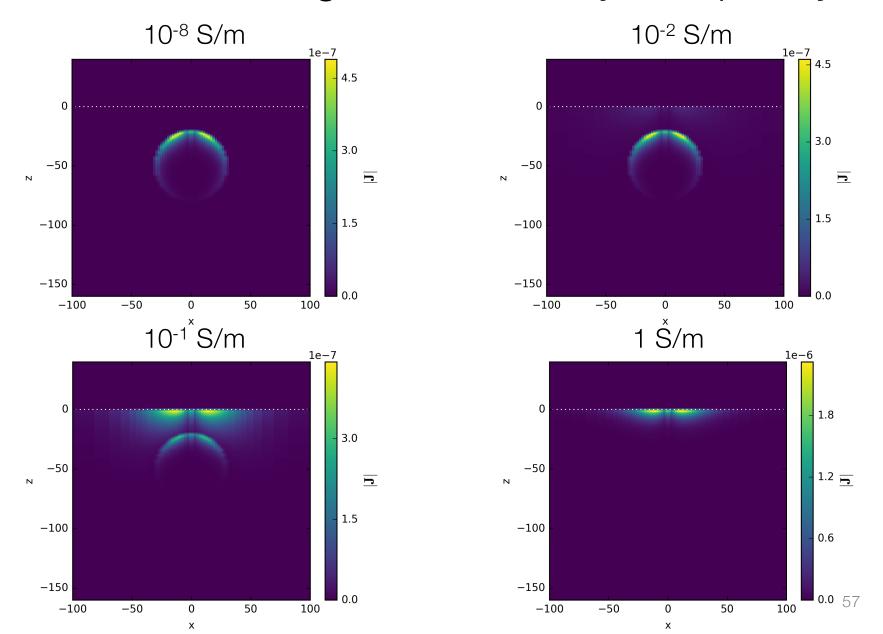


- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz



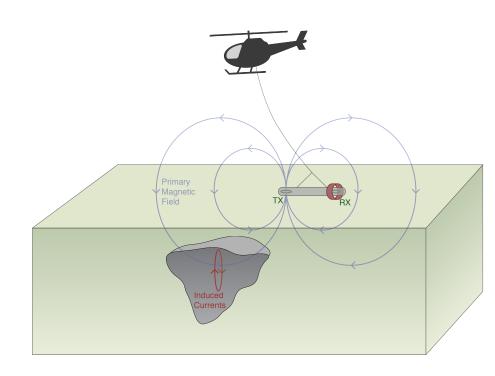
- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz



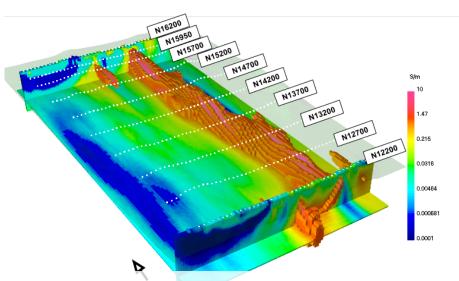


Recap: what have we learned?

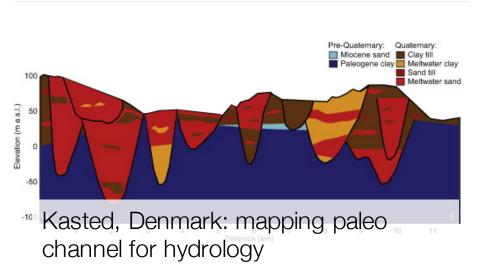
- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model is a good proxy
- Need to account for energy losses
- Ready to look at some field examples

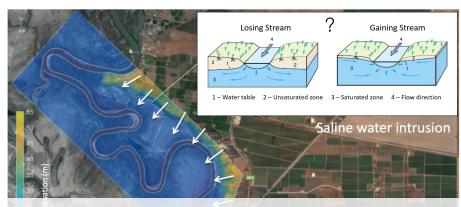


Today's Case Histories

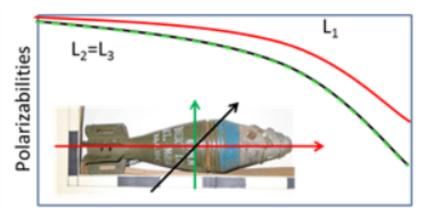


Mt. Isa, Australia: Mineral Exploration



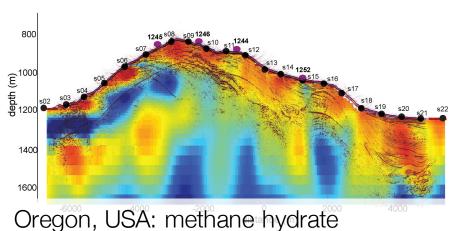


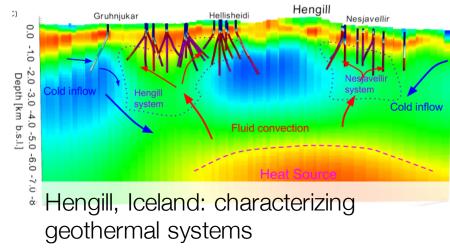
Bookpurnong, Australia: diagnosing river salination

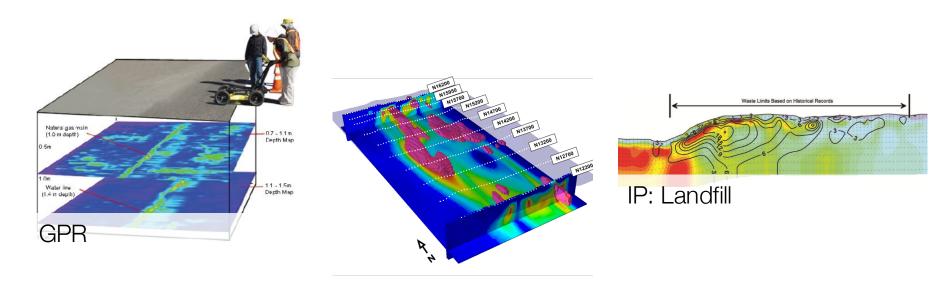


Unexploded Ordinance (UXO)

Today's Case Histories







Mt. Isa, Australia: Mineral Exploration

End of EM Fundamentals

