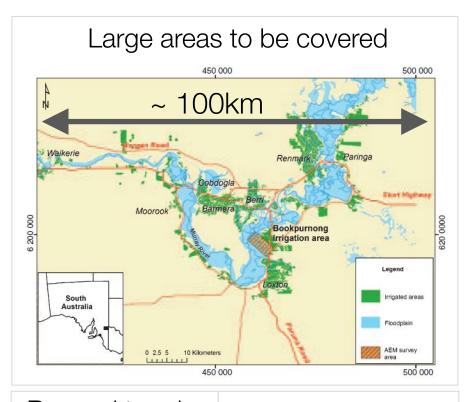
#### **EM Fundamentals**



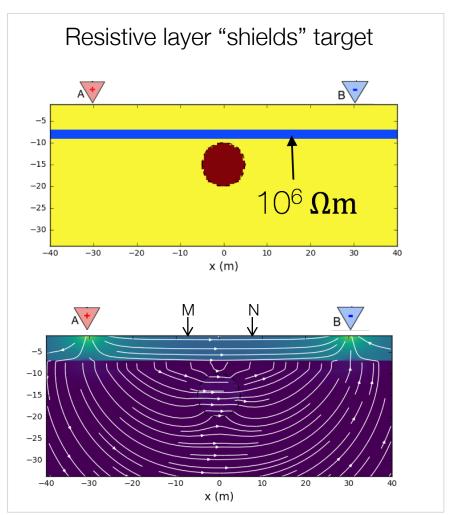


## Motivation: applications difficult for DC







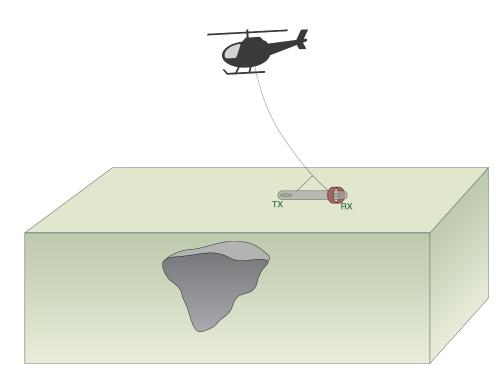


#### Outline

- Basic Survey
- Ampere's and Faraday's Laws (2-coil App)
- Circuit model for EM induction
- Frequency and time domain data
- Sphere in homogeneous earth
- Cyl code
- Energy losses in the ground

#### Setup:

 transmitter and receiver are in a towed bird

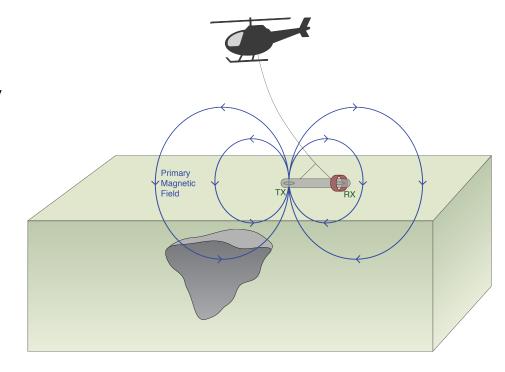


#### Setup:

 transmitter and receiver are in a towed bird

#### Primary:

Transmitter produces a primary magnetic field



#### Setup:

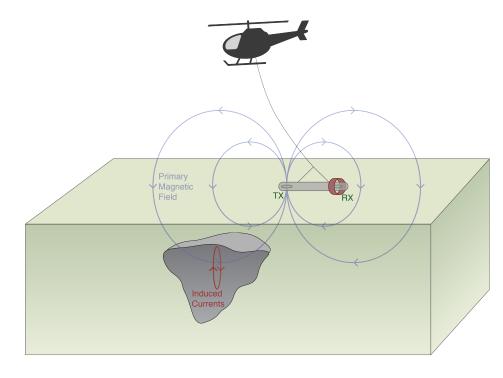
 transmitter and receiver are in a towed bird

#### Primary:

Transmitter produces a primary magnetic field

#### Induced Currents:

 Time varying magnetic fields generate electric fields everywhere and currents in conductors



#### Setup:

 transmitter and receiver are in a towed bird

#### Primary:

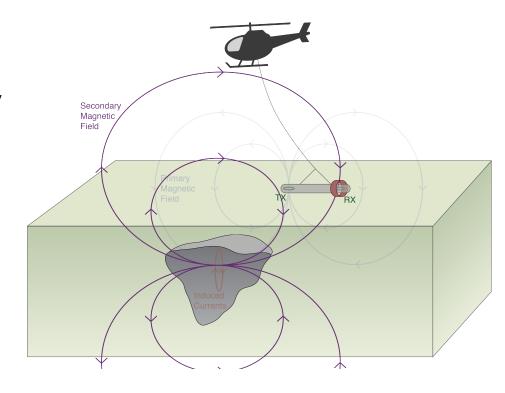
Transmitter produces a primary magnetic field

#### Induced Currents:

 Time varying magnetic fields generate electric fields everywhere and currents in conductors

#### Secondary Fields:

 The induced currents produce a secondary magnetic field.



# waveform Transmitter time or Primary Magnetic Field

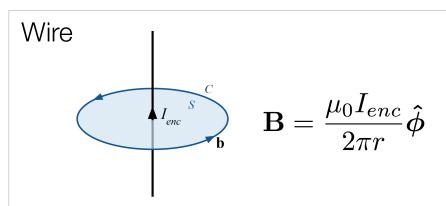
## Basic Equations: Quasi-static

|                                                   | Time                                                                                                 | Frequency                                                                                                                         |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Faraday's<br>Law                                  | $\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$                                 | $\nabla \times \mathbf{E} = -i\omega \mathbf{B}$                                                                                  |
| Ampere's<br>Law                                   | $ abla 	extbf{h} = 	extbf{j} + rac{\partial 	extbf{d}}{\partial t}$                                 | $\nabla \times \mathbf{H} = \mathbf{J} + i\omega \mathbf{D}$                                                                      |
| No Magnetic<br>Monopoles                          | $\nabla \cdot \mathbf{b} = 0$                                                                        | $\nabla \cdot \mathbf{B} = 0$                                                                                                     |
| Constitutive<br>Relationships<br>(non-dispersive) | $\mathbf{j} = \sigma \mathbf{e}$ $\mathbf{b} = \mu \mathbf{h}$ $\mathbf{d} = \varepsilon \mathbf{e}$ | $egin{aligned} \mathbf{J} &= \sigma \mathbf{E} \ \mathbf{B} &= \mu \mathbf{H} \ \mathbf{D} &= arepsilon \mathbf{E} \end{aligned}$ |

<sup>\*</sup> Solve with sources and boundary conditions

### Ampere's Law

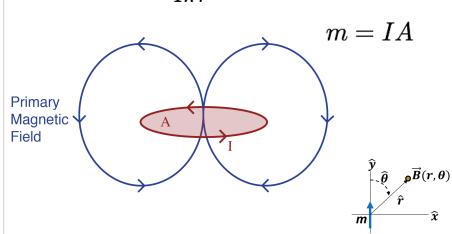
#### $abla imes \mathbf{H} = \mathbf{J}$

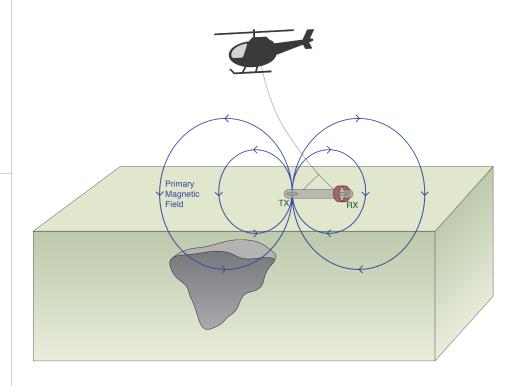


#### Right hand rule

#### Current loop

$$\mathbf{B} = \frac{\mu_0 m}{4\pi r^3} (2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\boldsymbol{\theta}})$$

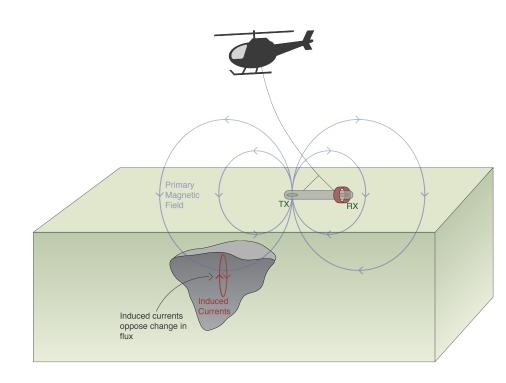


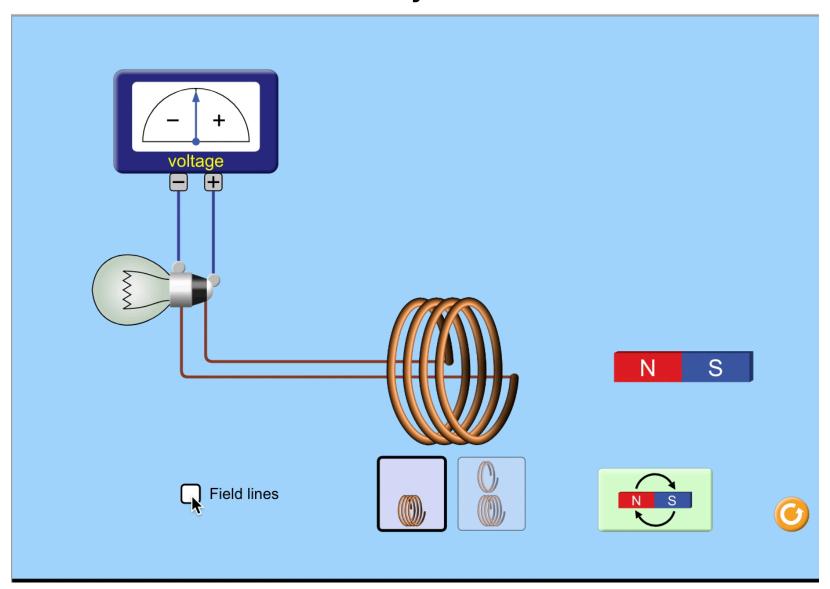


$$abla imes \mathbf{e} = - \frac{\partial \mathbf{b}}{\partial t}$$

Ohm's Law

$$\mathbf{j} = \sigma \mathbf{e}$$





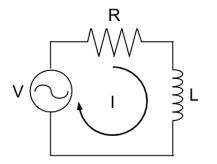
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

Magnetic Flux

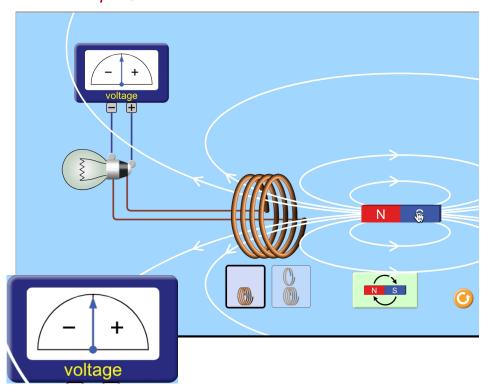
$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} = \mathbf{0}$$



## $\phi_b$ : constant



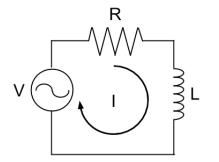
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

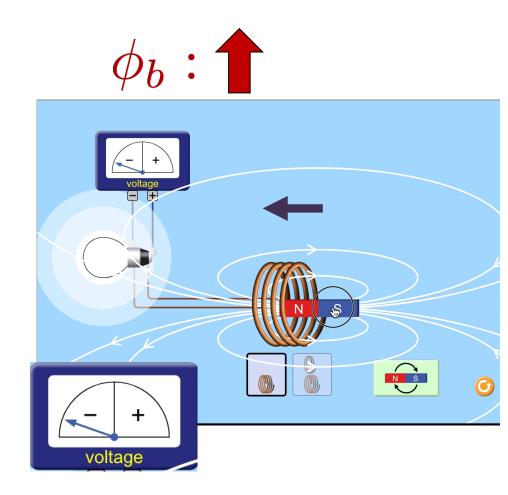
Magnetic Flux

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} < \mathbf{0}$$





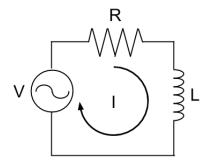
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

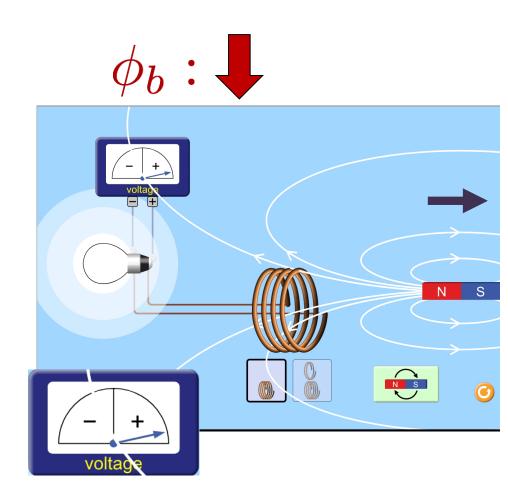
Magnetic Flux

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} > \mathbf{0}$$

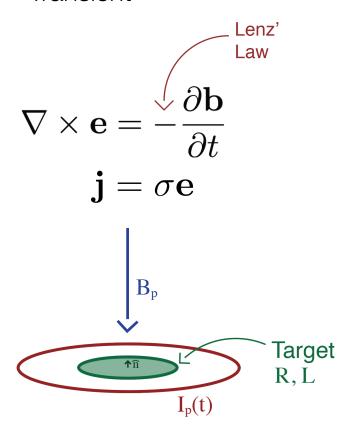


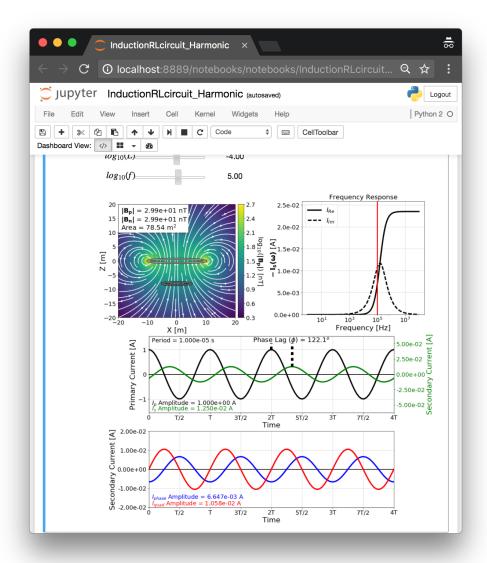


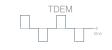
## App for Faraday's Law

#### 2 Apps:

- Harmonic
- Transient

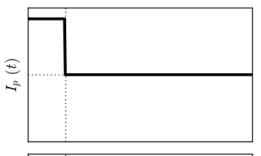


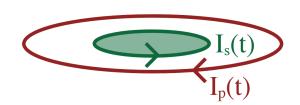




## Two Coil Example: Transient

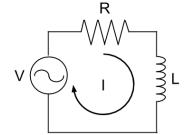
#### Primary currents



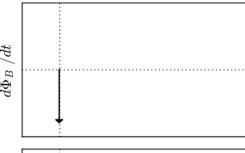


Magnetic flux





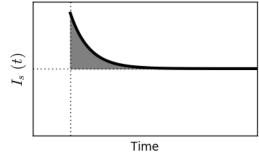
Time-variation of magnetic flux



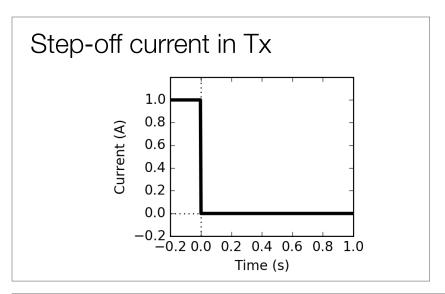
 $I_s(t) = I_s e^{-t/\tau}$  $\tau = L/R$ 

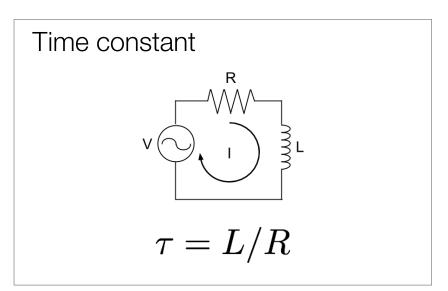
$$\tau = L/R$$

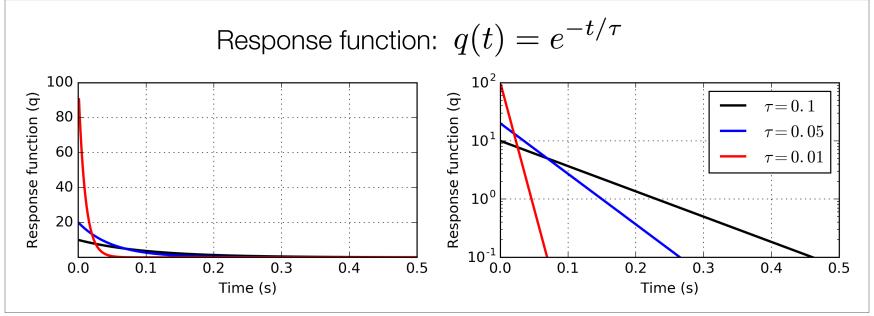
Secondary currents



### Response Function: Transient



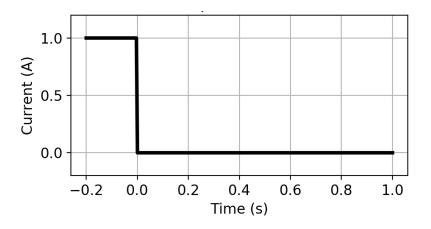


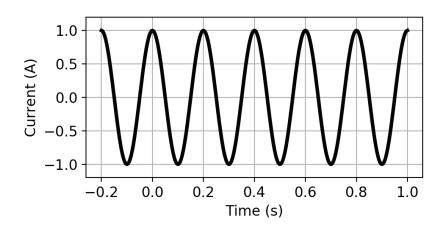


## Transient and Harmonic Signals

We have seen a transient pulse...







## Two Coil Example: Harmonic

#### **Induced Currents**

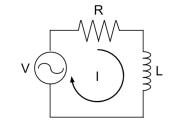
$$I_p(t) = I_p \cos \omega t$$

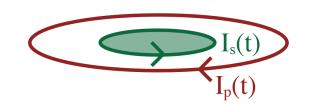
$$I_s(t) = I_s \cos(\omega t - \psi)$$

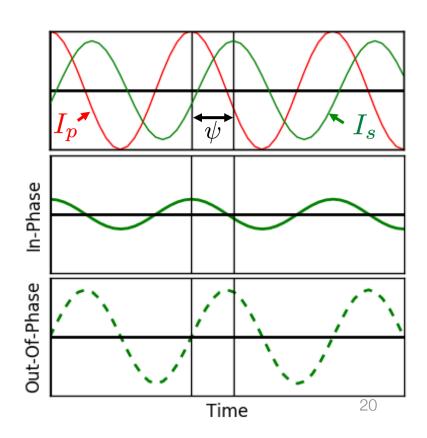
$$= \underbrace{I_s \cos \psi \cos \omega t}_{\text{In-Phase}} \underbrace{I_s \sin \psi \sin \omega t}_{\text{Out-of-Phase}}$$
Real Quadrature Imaginary

#### **Phase Lag**

$$\psi = \frac{\pi}{2} + \tan^{-1} \left( \frac{\omega L}{R} \right)$$







## Two Coil Example: Harmonic

#### **Induced Currents**

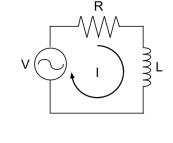
$$I_p(t) = I_p \cos \omega t$$

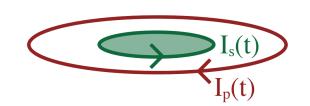
$$I_s(t) = I_s \cos(\omega t - \psi)$$

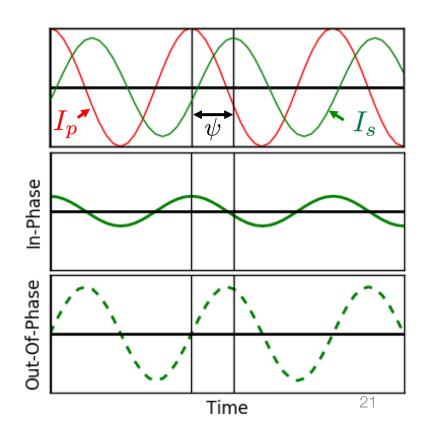
$$= \underbrace{I_s \cos \psi \cos \omega t}_{\text{In-Phase}} \underbrace{I_s \sin \psi \sin \omega t}_{\text{Out-of-Phase}}$$
Real Quadrature Imaginary

#### **Phase Lag**

$$\psi = \frac{\pi}{2} + \tan^{-1} \left( \frac{\omega L}{R} \right)$$

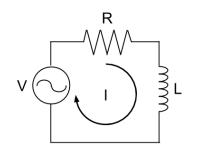


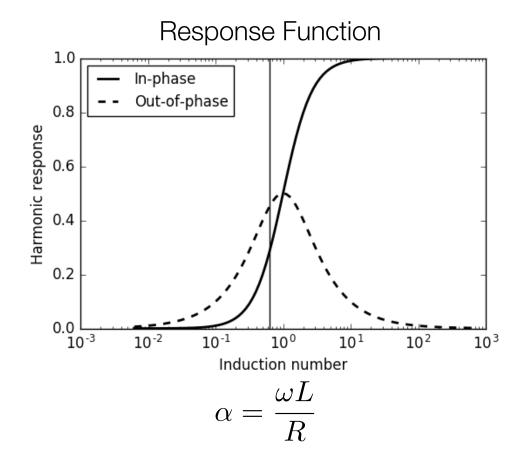


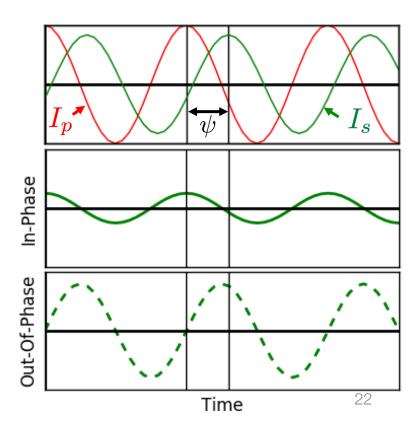


## Response Function

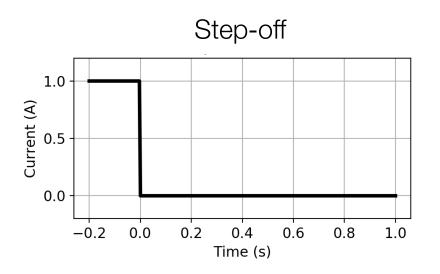
- Quantifies how a target responds to a time varying magnetic field
- Partitions real and imaginary parts

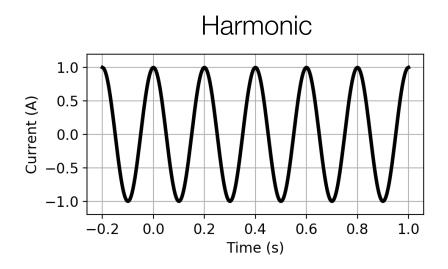






### Response Functions: Summary







#### In both:

Induce currents

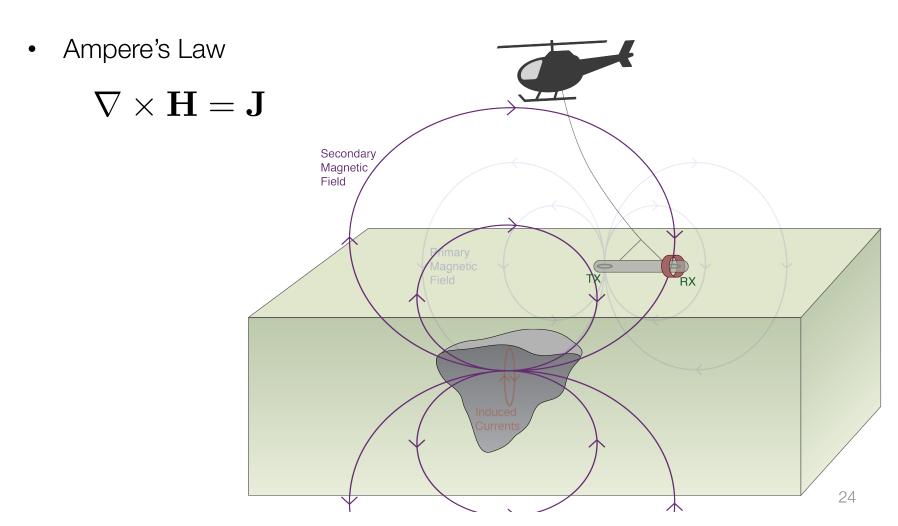
$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

Generate secondary magnetic fields

$$\nabla \times \mathbf{h} = \mathbf{j}$$

## Secondary magnetic fields

Induced currents generate magnetic fields

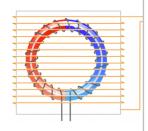


#### Receiver and Data

#### Magnetometer

- Measures:
  - Magnetic fields
  - 3 components
- eg. 3-component fluxgate

## $\mathbf{b}(t)$



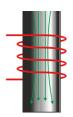
Fluxgate

#### Coil

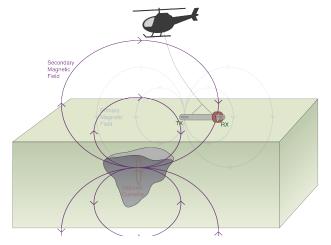
- Measures:
  - Voltage
  - Single component that depends on coil orientation
    - Coupling matters
- eg. airborne frequency domain
  - ratio of Hs/Hp is the same as Vs/Vp







Coil



## Coupling

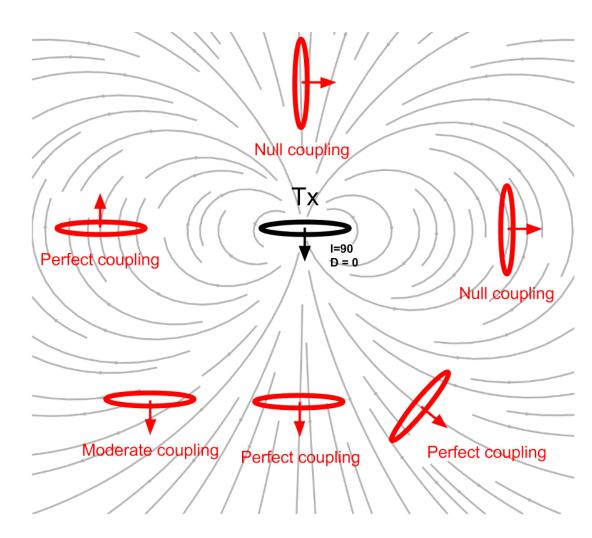
Transmitter: Primary

$$I_p(t) = I_p \cos(\omega t)$$

$$\mathbf{B}_p(t) \sim I_p cos(\omega t)$$

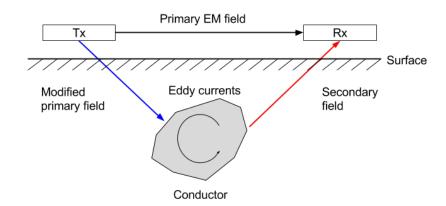
Target: Secondary

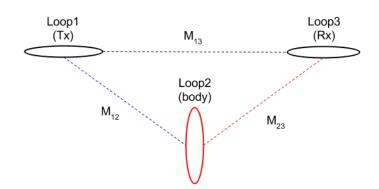
$$\begin{split} EMF &= -\frac{\partial \phi_{\mathbf{B}}}{\partial t} \\ &= -\frac{\partial}{\partial t} \left( \mathbf{B}_p \cdot \hat{\mathbf{n}} \right) A \end{split}$$



#### Circuit model of EM induction







#### Coupling coefficient

Depends on geometry

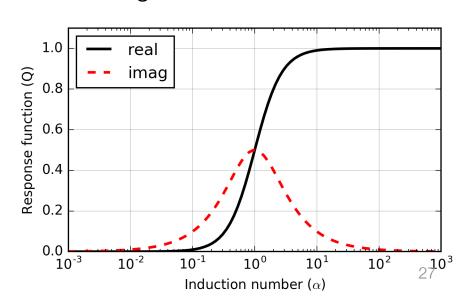
$$M_{12} = \frac{\mu_0}{4\pi} \oint \oint \frac{dl_1 \cdot dl_2}{|\mathbf{r} - \mathbf{r}'|^2}.$$

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_{Q}$$

#### Induction Number

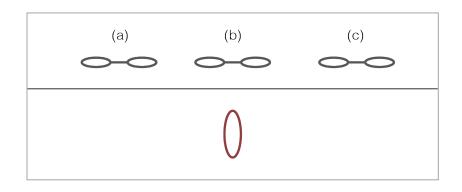
• Depends on properties  $\alpha = \frac{\omega L}{R}$  of target





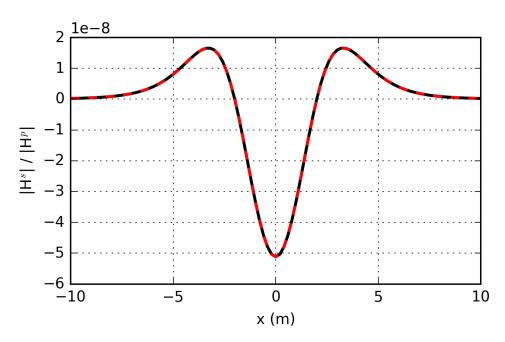
## Conductor in a resistive earth: Frequency

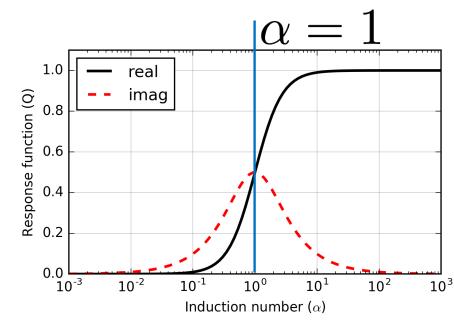
Profile over the loop



$$\alpha = \frac{\omega L}{R}$$

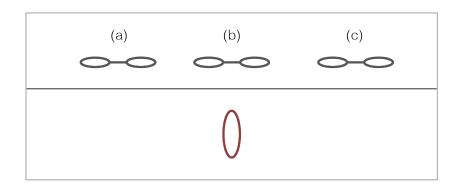
- When  $\alpha = 1$ 
  - Real = Imag





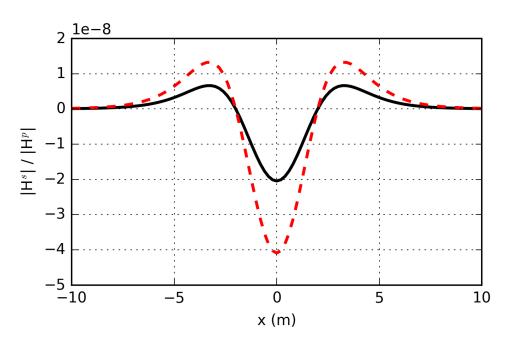
## Conductor in a resistive earth: Frequency

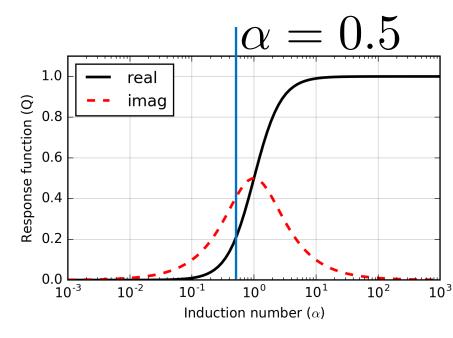
Profile over the loop



$$\alpha = \frac{\omega L}{R}$$

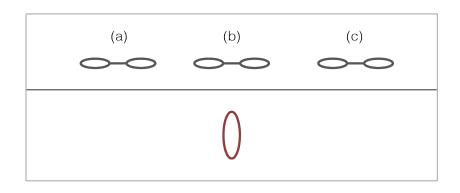
- When  $\alpha < 1$ 
  - Real < Imag





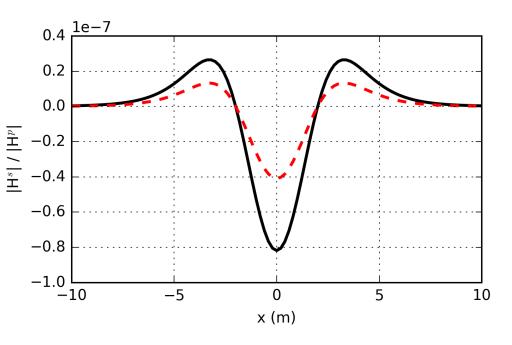
## Conductor in a resistive earth: Frequency

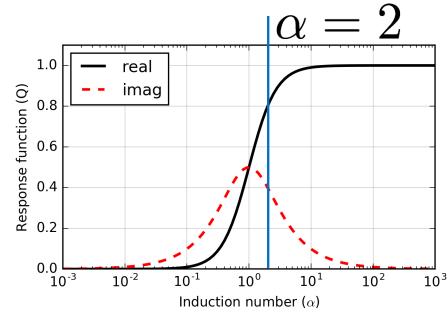
Profile over the loop



$$\alpha = \frac{\omega L}{R}$$

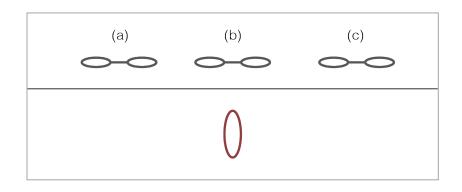
- When lpha>1
  - Real > Imag

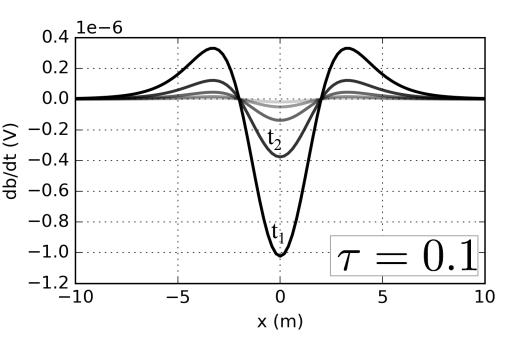




#### Conductor in a resistive earth: Transient

#### Profile over the loop

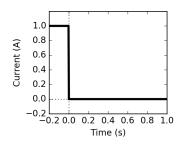




Time constant

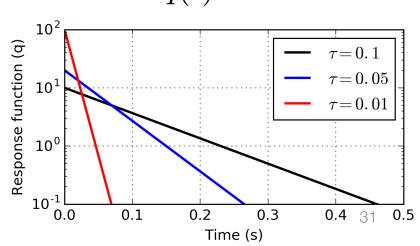
$$\tau = L/R$$

Step-off current in Tx



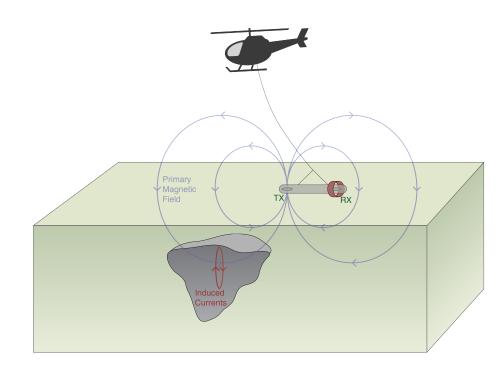
• Response function depends on time,  $\tau$ 

$$q(t) = e^{-t/\tau}$$



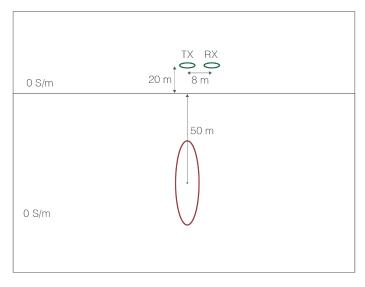
## Recap: what have we learned?

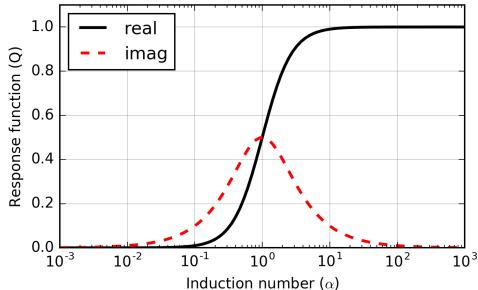
- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model provides representative results
  - Applicable to geologic targets?

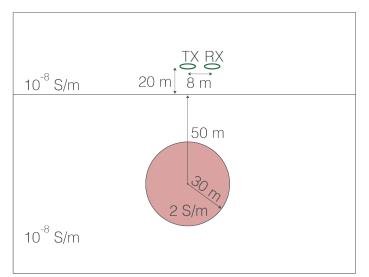


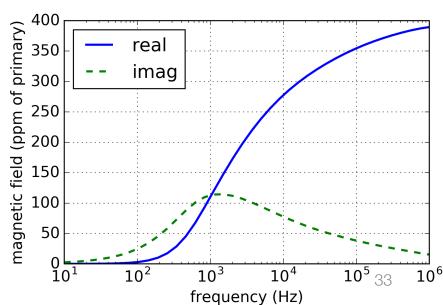
## Sphere in a resistive background

How representative is a circuit model?





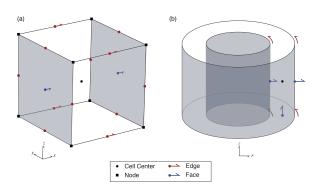




## Cyl Code



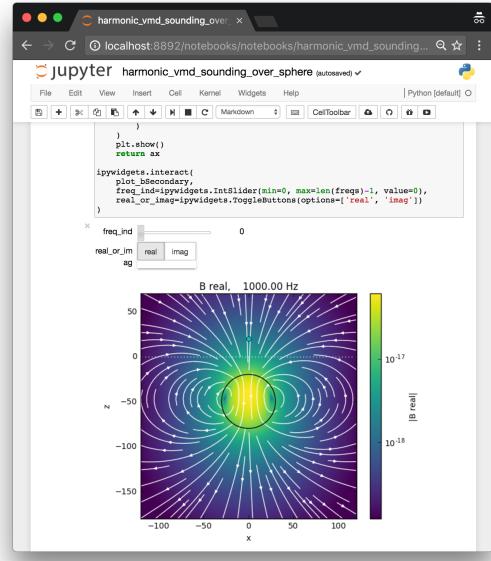
- Finite Volume EM
  - Frequency and Time



- Built on SimPEG
- Open source, available at: <a href="http://em.geosci.xyz/apps.html">http://em.geosci.xyz/apps.html</a>
- Papers

   Cockett et al, 2015

   Heagy et al, 2017



### Recap: what have we learned?

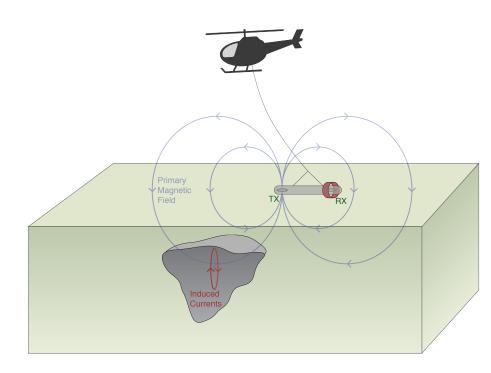
- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model is a good proxy

#### 2-Coil Apps

- Frequency domain
- Time domain

Major item not yet accounted for...

- Propagation of energy from
  - Transmitter to target
  - Target to receiver



## How do EM fields and fluxes behave in a conductive background?

### Revisit Maxwell's equations

#### First order equations

$$abla imes \mathbf{e} = -rac{\partial \mathbf{b}}{\partial t}$$
 $\mathbf{j} = \sigma \mathbf{e}$ 
 $\mathbf{b} = \mu \mathbf{h}$ 
 $abla imes \mathbf{h} = \mathbf{j} + rac{\partial \mathbf{d}}{\partial t}$ 
 $\mathbf{d} = \varepsilon \mathbf{e}$ 

#### Second order equations

$$\nabla^2 \mathbf{h} - \underbrace{\mu \sigma \frac{\partial \mathbf{h}}{\partial t}}_{\text{diffusion}} - \underbrace{\mu \epsilon \frac{\partial^2 \mathbf{h}}{\partial t^2}}_{\text{wave propagation}} = 0$$

In frequency

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0$$
$$k^2 = \omega^2 \mu \varepsilon - i\omega \mu \sigma$$

## Plane waves in a homogeneous media

#### In frequency

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0$$

$$k^2 = \omega^2 \mu \varepsilon - i\omega \mu \sigma$$

#### Quasi-static

$$\frac{\omega\varepsilon}{\sigma}\ll 1$$

even if...

$$\sigma = 10^{-4} S/m$$

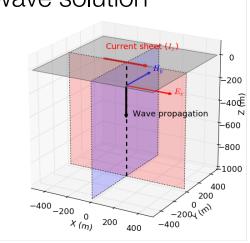
$$f = 10^4 Hz$$

then

$$\frac{\omega\varepsilon}{\sigma} \sim 0.005$$

$$k = \sqrt{-i\omega\mu\sigma} = (1-i)\sqrt{\frac{\omega\mu\sigma}{2}}$$
$$\equiv \alpha - i\beta$$

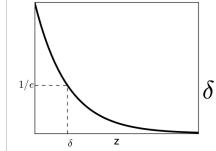
#### Plane wave solution



$$\mathbf{H} = \mathbf{H_0} e^{-\alpha z} e^{-i(\beta z - \omega t)}$$
attenuation phase

#### Skin depth

 $\delta$ : skin depth



$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = 503\sqrt{\frac{1}{\sigma f}}$$

38

### Plane waves in a homogeneous media

In time

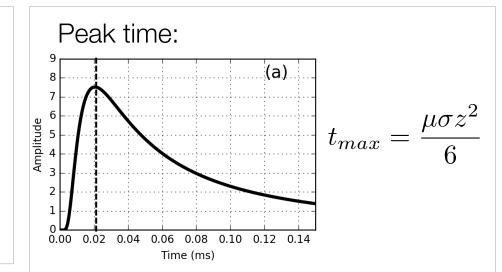
$$\nabla^2 \mathbf{h} - \mu \epsilon \frac{\partial^2 \mathbf{h}}{\partial t^2} - \mu \sigma \frac{\partial \mathbf{h}}{\partial t} = 0$$

$$\mathbf{h}(t=0) = \mathbf{h}_0 \delta(t)$$

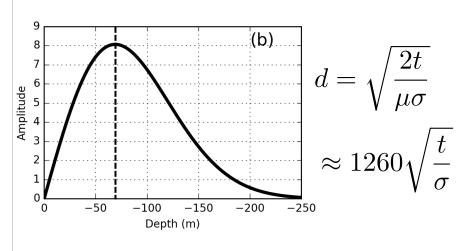
Solution for quasi-static

$$\mathbf{h}(t) = -\frac{(\mu\sigma)^{1/2}z}{2\pi^{1/2}t^{3/2}}e^{-\mu\sigma z^2/(4t)}$$

z: depth (m)



#### Diffusion distance



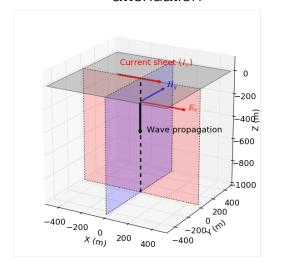
### Plane Wave apps

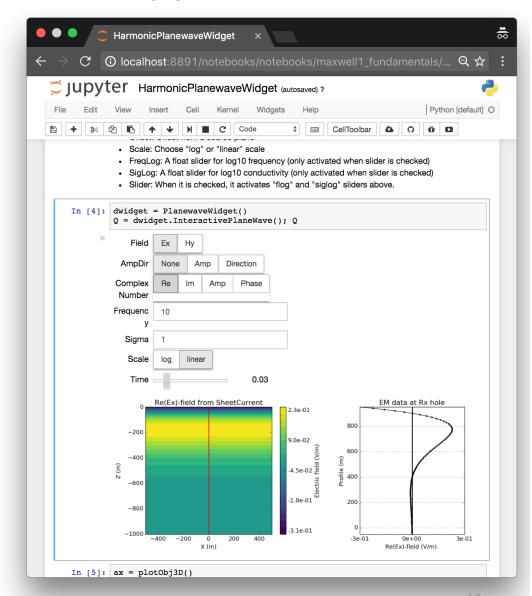
- 2 apps:
  - Transient

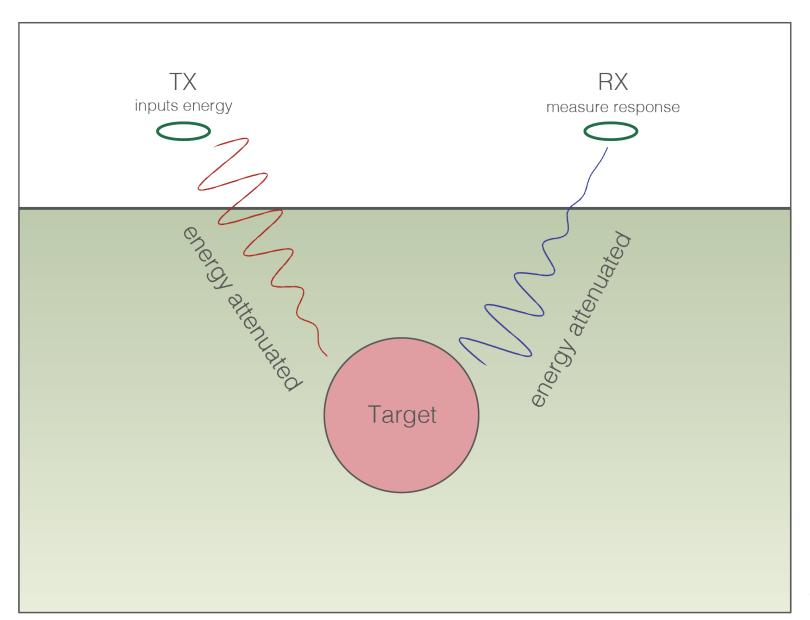
$$\mathbf{h}(t) = -\frac{(\mu\sigma)^{1/2}z}{2\pi^{1/2}t^{3/2}}e^{-\mu\sigma z^2/(4t)}$$

- Harmonic

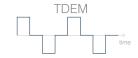
$$\mathbf{H} = \mathbf{H_0} e^{-\alpha z} e^{-i(\beta z - \omega t)}$$
attenuation phase

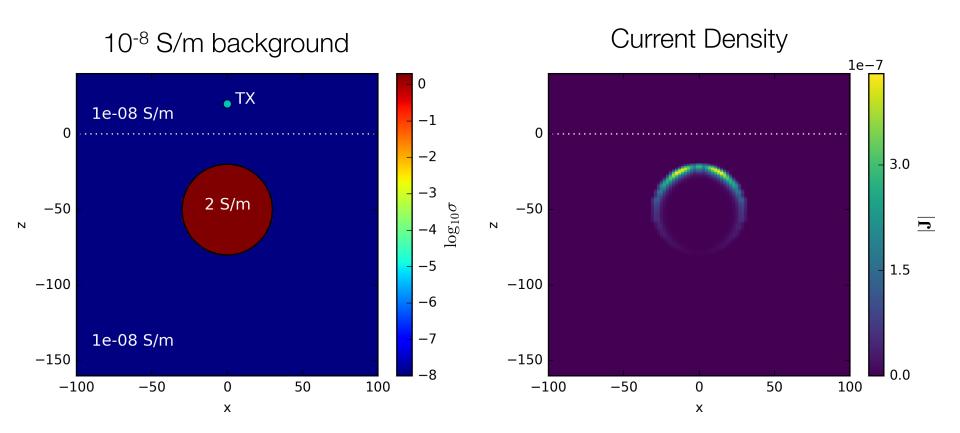




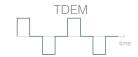


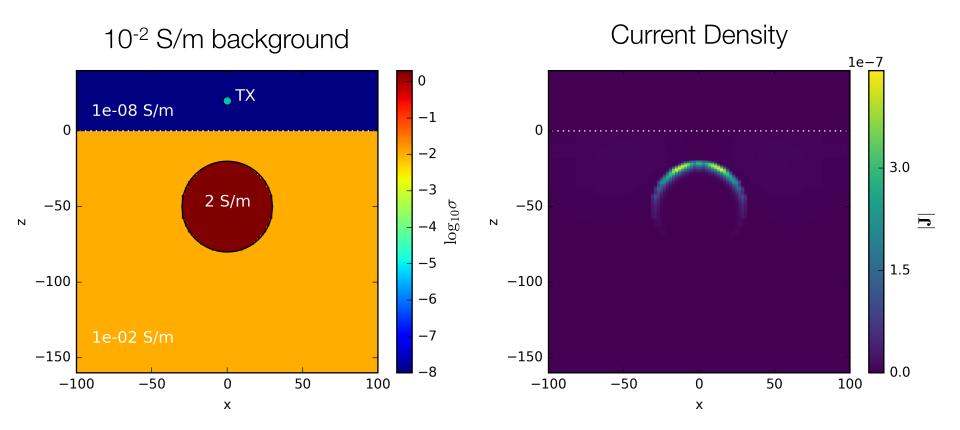
- Buried, conductive sphere
- Vary background conductivity



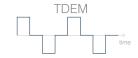


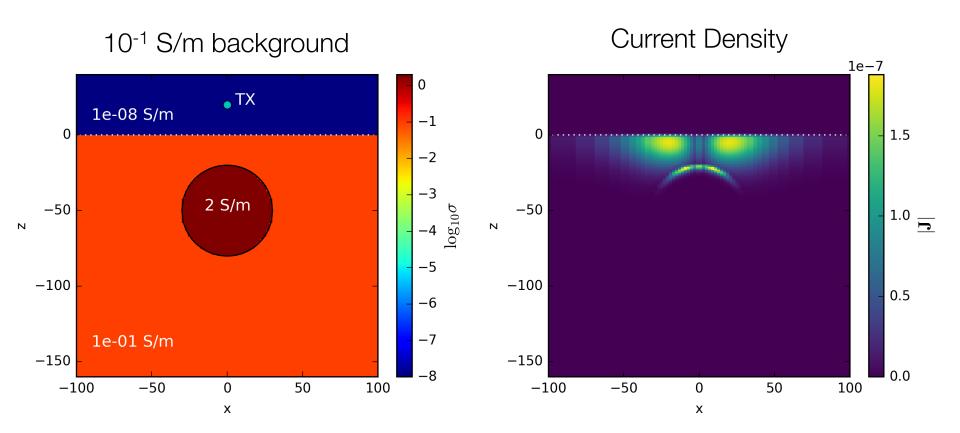
- Buried, conductive sphere
- Vary background conductivity



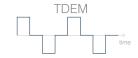


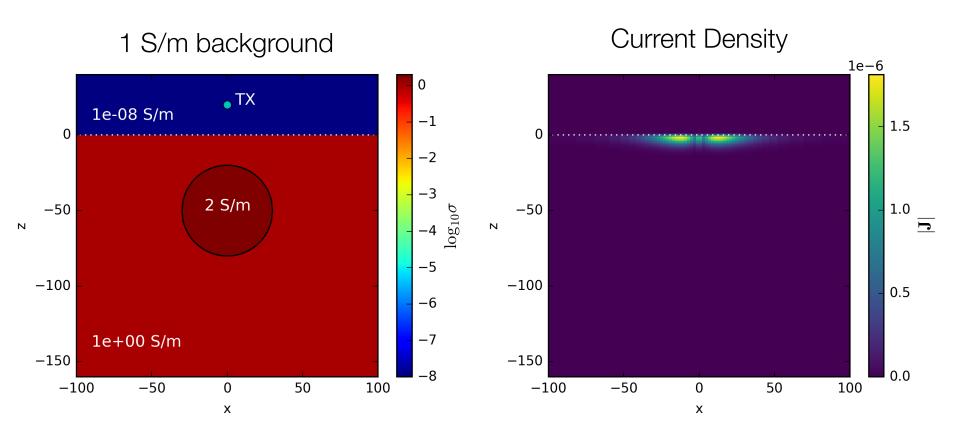
- Buried, conductive sphere
- Vary background conductivity

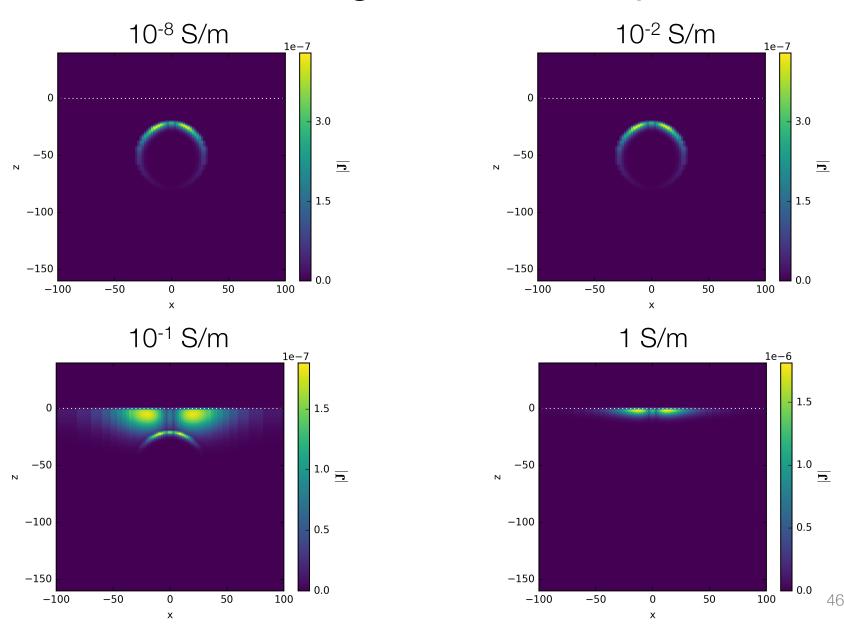


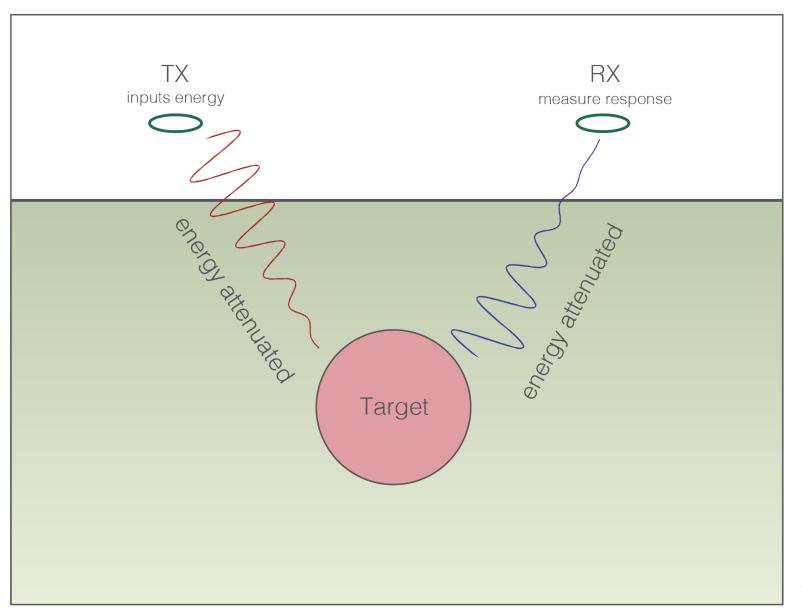


- Buried, conductive sphere
- Vary background conductivity



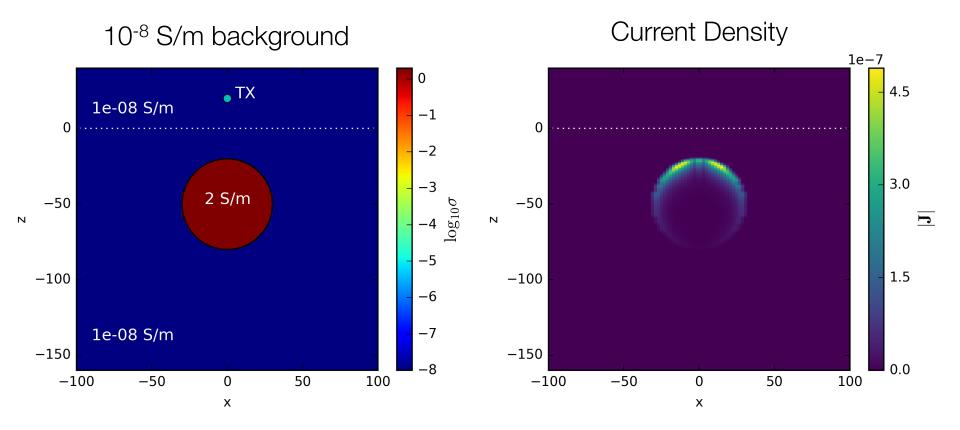






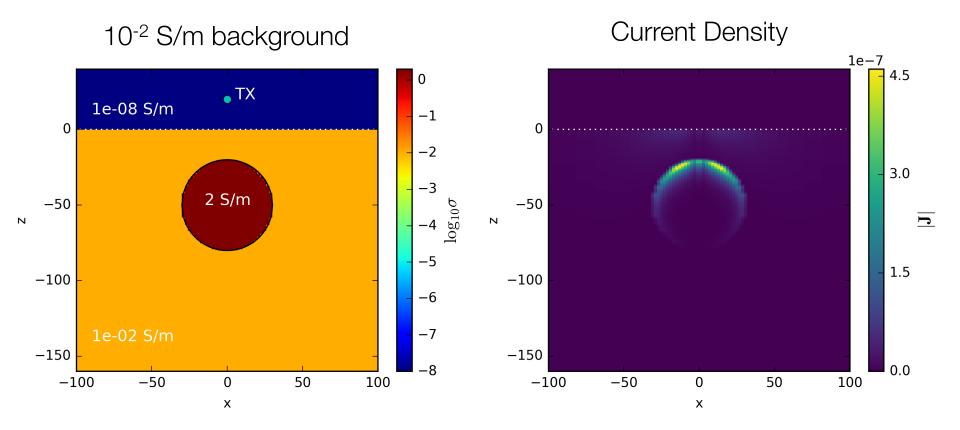
- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10<sup>4</sup> Hz





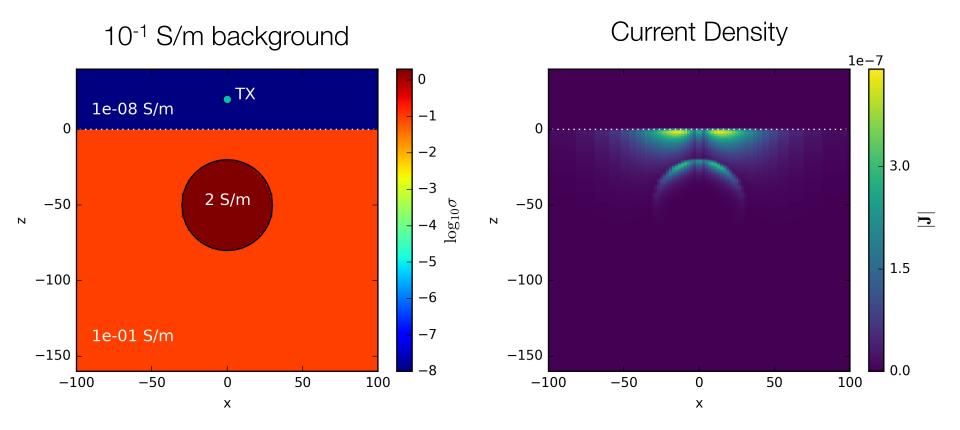
- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10<sup>4</sup> Hz





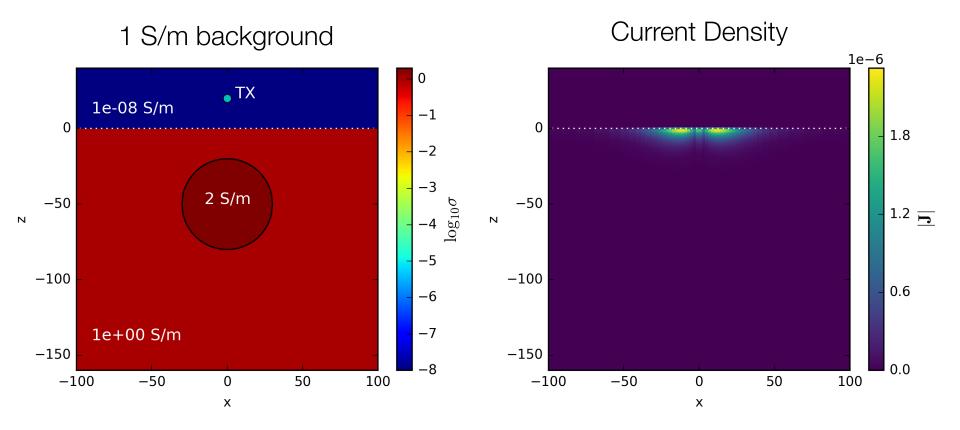
- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10<sup>4</sup> Hz

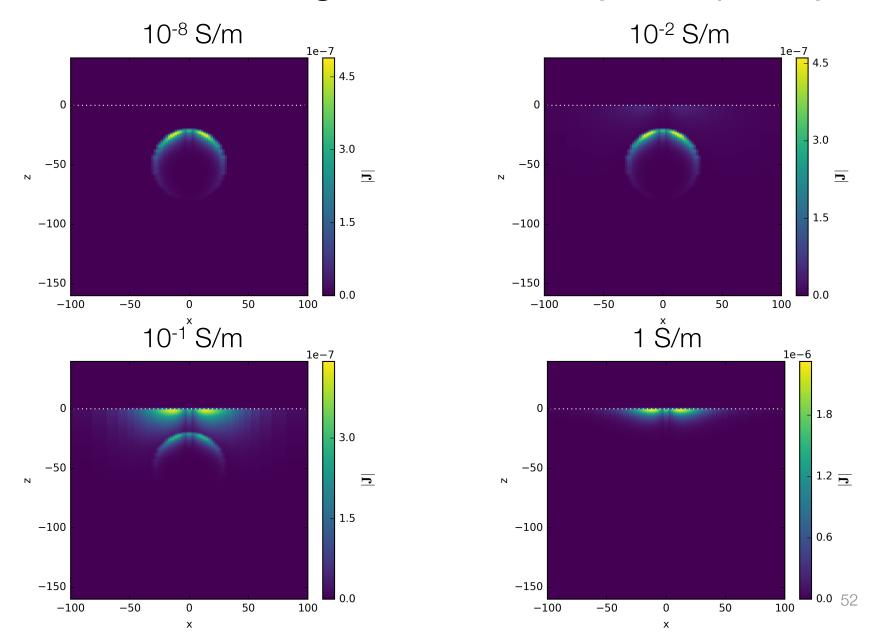




- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10<sup>4</sup> Hz

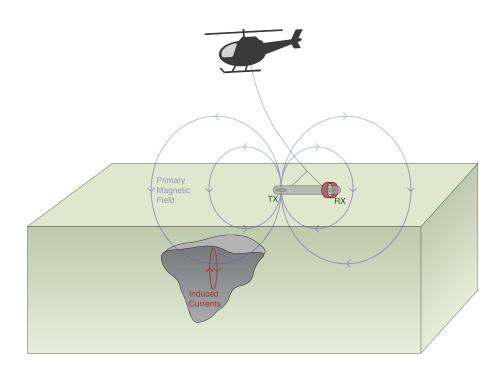




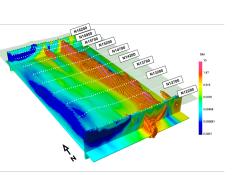


### Recap: what have we learned?

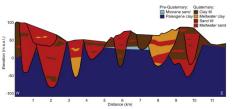
- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model is a good proxy
- Need to account for energy losses
- Ready to look at some field examples



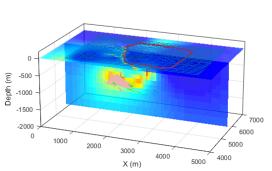
## Today's Case Histories



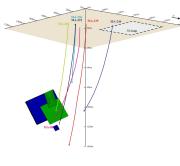
Mt. Isa, Australia: Mineral Exploration



Kasted, Denmark: mapping paleochannels



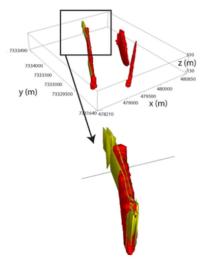
HeliSAM at Lalore: Minerals



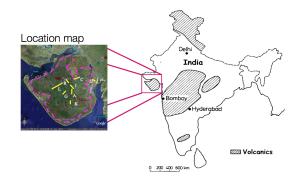
La Magdalena: Minerals



Bookpurnong, Australia: diagnosing river salinization

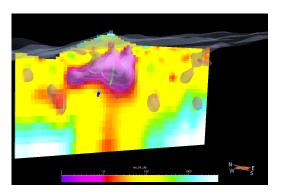


West Plains, Canada: Mineral exploration

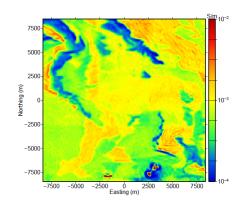


Deccan Traps, India: mapping sediment beneath basalt

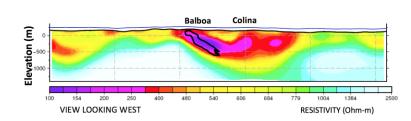
### Today's Case Histories



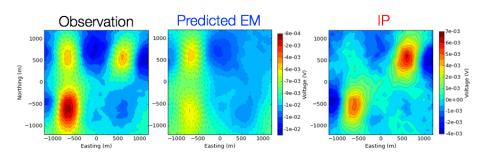
Santa Cecilia, Chile: Mineral Exploration



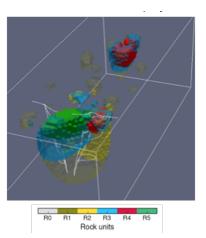
Noranda, Canada: Geologic Mapping



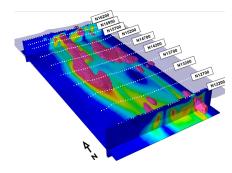
Balboa, Panama: Mineral Exploration



EM – IP Inversion (decoupling)



TKC, Canada: Mineral Exploration



Mt. Isa, Australia: Mineral Exploration

#### End of EM Fundamentals

