EM: Natural Sources

Outline

- Background on natural source EM methods
- Magnetotellurics
- Case history: Minerals
- Z-axis tipper electromagnetics
- Case histories (ZTEM): Geologic Mapping, Minerals

Motivation

East

Little

Arkansas River

Geothermal

Tectonic settings of top few km

Mineral targets

Groundwater

Common challenge: getting enough energy into the ground

What is required to see deeper?

- Penetration depth depends upon system power
- Controlled source:
 - Using a small loop
 - Magnetic moment

$$m = IA$$

Total geometric decay

- Infinitely large loop source
 - Sheet currents generate plane waves

 $\sim rac{1}{r^3}$

Total geometric decay

Natural EM sources

Sun and magnetosphere, solar storms

Lightning

Auroral electrojet; aurora

Aurora movie

Earth as a waveguide

- EM waves bounce between earth and highly conductive ionosphere
- Travel as plane waves

 Dead band: difficult to collect frequencies in notch (~1 Hz)

Refraction of waves

• Snell's law

 $k_i \sin \theta_i = k_t \sin \theta_t$

- k is complex wave number $k^2 = \omega^2 \mu \varepsilon i \omega \mu \sigma$
- Quasi-static: $\frac{\omega \varepsilon_0}{\sigma} \ll 1$

$$\sin\theta_t = \sqrt{\frac{2\omega\varepsilon_0}{\sigma}}\sin\theta_i$$

- Angle of refraction is $\theta_t=0^\circ$ in almost every instance

Example for 10,000 Hz $\sigma = 10^{-3} \text{ S/m}$ $\theta_i = 89^{\circ}$ Then $\theta_t = 1.35^{\circ}$

Plane waves and skin depth

• Skin depth (meters)

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = 503\sqrt{\frac{1}{\sigma f}}$$

- Low frequency waves propagate further
- Depth of propagation
 - A few skin depths
 - Only a portion of a wavelength

Control source vs Natural source

- Controlled source
 - Well-defined location, geometry, and amplitude

- Natural sources
 - Sources are random in space and time

MT Station

- Maxwell's equations:
 - Linear in J_s
 - E and H affected in the same way
- Effects of unknown source removed by taking ratio
- Transfer function

 $\nabla \times \mathbf{E} + i\omega\mu\mathbf{H} = 0$ $\nabla \times \mathbf{H} - \sigma\mathbf{E} = \mathbf{J}_{\mathbf{s}}$

Impedance and resistivity

- Plane wave in homogenous media:
 - E and H fields are perpendicular

Homogeneous half space

ImpedanceResistivityPhase $Z_{xy} = \frac{E_x}{H_y}$ $\rho = \frac{1}{\omega\mu} |Z_{xy}|^2$ $\Phi = \tan^{-1} \left(\frac{Im(Z_{xy})}{Re(Z_{xy})} \right) = \frac{\pi}{4}$

MT soundings in 1D

In general: • $Z = \begin{pmatrix} Z_{XX} & Z_{XY} \\ Z_{YX} & Z_{YY} \end{pmatrix}$ $\rho = 100 \ \Omega m$ $\rho = 10 \ \Omega m$ Apparent resistivity: $\rho = 500 \ \Omega m$ $\rho_a = \frac{1}{\omega\mu_0} \left| Z_{xy} \right|^2$ Apparent resistivity Phase: Apparent Resistivity (Ohm-m) ٠ $\Phi = \tan^{-1} \left(\frac{Im(Z_{xy})}{Re(Z_{xy})} \right)$ Impedance 10² Z_{R} In 1D: ۲ 10¹ 10¹ Z_{I} 10⁴ 10³ 10² 10^{1} $Z = \begin{pmatrix} 0 & Z_{xy} \\ Z_{yx} & 0 \end{pmatrix}$ $10^{0} \frac{\text{(}^{ddb}\text{Z})}{10^{-1}}$ $\mathsf{Real}(Z_{app})$ 10 Phase 90 10-1 80 70 10⁻² 10-2 $Z_{xy} = \frac{E_x}{H_y}$ $Z_{xy} = -Z_{yx}$ 10⁻³ 105 10⁴ 10^{3} 10² 10^{1} Frequency (Hz) 20 10 0 L... 10⁵ 10^{4} 10^{3} 10² 10^{1}

10⁰

10⁰

1D MT app

http://em.geosci.xyz/apps.html

MT soundings in 2D

• In general:

$$Z = \begin{pmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{pmatrix}$$

• In 2D:

$$Z = \begin{pmatrix} 0 & Z_{xy} \\ Z_{yx} & 0 \end{pmatrix}$$

$$Z_{xy} \neq Z_{yx}$$

- TE mode
 - E-field parallel to structure

$$Z_{yx} = \frac{E_y}{H_x}$$

MT soundings in 2D

• In general:

$$Z = \begin{pmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{pmatrix}$$

• In 2D:

$$Z = \begin{pmatrix} 0 & Z_{xy} \\ Z_{yx} & 0 \end{pmatrix}$$

$$Z_{xy} \neq Z_{yx}$$

- TM mode
 - H-field parallel to structure
 - E_x discontinuous

$$Z_{xy} = \frac{E_x}{H_y}$$

MT soundings in 3D

• In general:

$$Z = \begin{pmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{pmatrix}$$

• In 3D:

$$Z = \begin{pmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{pmatrix}$$

 No symmetry or special conditions

Measuring MT data

• Basic acquisition

- At each station, measure: E_x , E_y , B_x , B_y , B_z
- At remote reference, measure:

 B_x , B_y

Processing MT data

 Divide time series into time windows

- Apply Fourier transform
 - For each station:

$$e_x(t) \rightarrow E_x(\omega)$$

 $h_y(t) \rightarrow H_y(\omega)$

For the remote reference:

$$h_y^R(t) \to H_y^R(\omega)$$

• Form the impedance tensor:

$$Z_{xy}(\omega) = \frac{\langle E_x(\omega) H_y^{R*}(\omega) \rangle}{\langle H_y(\omega) H_y^{R*}(\omega) \rangle}$$

(*) complex conjugate<> average over multiple samples

Inverting MT data

- Boundary conditions important for modelling
- Mesh size:
 - MT: extended grid
 - L: a few skin depths from data area
- Challenge: Unknown boundary conditions
 - Possible channeled currents
 - Data can be affected by distant structures
- Otherwise, inversion of MT is essentially same as CSEM data

Outline

- Background on natural source EM methods
- Magnetotellurics
- Case history: Minerals
- Z-axis tipper electromagnetics
- Case histories (ZTEM): Geologic Mapping, Minerals

Case History: Santa Cecilia Porphyry System, Chile

Bournas and Thomson, 2013

Thanks to Rob Hearst at Quantee

Setup

- Within the Maricunga Metallogenic Belt which hosts known goldcopper deposits
- Intense hydrothermal alteration (elevation between 3600 4600 m)
- Main mineralization: gold, silver, and copper

Setup

- Within the Maricunga Metallogenic Belt which hosts known goldcopper deposits
- Intense hydrothermal alteration (elevation between 3600 4600 m)
- Main mineralization: gold, silver, and copper

Can we image the porphyry system?

Setup: Ground Magnetics Inversion

Setup: Discovery

- Ground magnetic data
 - Delineate alteration zones
- Mobile Metal Ion (MMI)
 - Gold and copper anomalies
- CSAMT
 - To test MMI
 - Found large conductor
- Two discovery holes
- ORION 3D: DC/IP & MT

Properties

Units	Resistivity	Chargeability	Susceptibility
Host rock	High	None	Moderate
Stock	Moderate	Low	Moderate
Alteration zones	Low - Mod.	Mod High	Low

CSAMT

- Controlled Source Audio Magnetotellurics
- Plane wave assumption
 - Receivers need to be far away from source (several skin depths)
- Uses MT inversion algorithm

Survey: Discovery

- Controlled Source Audio Magnetotellurics
- Transmitter
 - 3.5 km dipole
 - Frequencies: 2-9000 Hz
- Receivers
 - 10 km from source

Processing: Discovery

2D resistivity sections

 Recovered horse-shoe shaped conductor

12 10

Interpretation and Synthesis: Discovery

3D cut-off volume from CSAMT

 Recovered conductor consistent with Au and Cu anomalies from MMI

Interpretation and Synthesis: Discovery

2D resistivity sections with drill holes

- Two holes are drilled and found mineralized zones (2011)
- Mineralization extends beyond CSAMT conductor
 - Lowest frequency in CSAMT (24 Hz, rho=10 ohm-m)

$$\delta = 500 \sqrt{rac{
ho}{f}}$$
 ~ ~ 325 m

Setup: Evaluation

- Ground magnetic data
 - Delineate alteration zones
- Mobile Metal Ion (MMI)
 - Gold and copper anomalies
- CSAMT
 - To test MMI
 - Found large conductor
- Two discovery holes
 - Need to see deeper...
- ORION 3D: DC/IP & MT

Survey: Evaluation

- DC-IP
 - 539 transmits
 - 200 receiver dipoles
 - Pole-dipole
 - 150 m dipole length

- MT
 - 150 m dipole length
 - Two orthogonal induction coils
 - 450 m spacing
 - Acquired over night
 - Frequency range: 250-0.001₄Hz

DC Data

Apparent resistivity

- 150,000 data points from
 - 540 sources
 - 300 dipole receivers
- Hard to visualize and interpret data
- Need to invert

Processing: DC inversion

Processing: DC inversion

Processing: DC inversion

Processing: DC inversion

(we also have IP data)

DC-IP Data

DC data

- 150,000 data points from
 - 540 sources
 - 300 dipole receivers
- Hard to visualize and interpret data
- Need to invert

3D DC IP inversion

- Use DC conductivity
- Invert IP data, recover a 3D chargeability
- UBC DCIP3D

Resistivity

Chargeability

Interpretation: Resistivity & Chargeability

700m below surface

Resistivity

Chargeability

Interpretation: Resistivity & Chargeability

900m below surface

Resistivity

Chargeability

MT Data

- 100 MT Sites
- 150 m dipole length
- Two orthogonal induction coils
- 450 m spacing
- Acquired over night
- Frequency range: 250-0.001 Hz

Processing: MT inversion

Synthesis

Tipper data (ZTEM)

Magnetic transfer function

 $H_z = \mathbf{TH}$ $H_z(r) = T_{zx}H_x(r_0) + T_{zy}H_y(r_0)$

• Frequencies 30Hz – 720 Hz

N N

Synthetic example

Conductor

ZTEM case histories

Noranda district, Canada

- Hosts many deposits:
 - 20 economic VMS
 - 19 orogenic gold
 - Several intrusion-hosted Cu-Mo
- Physical properties
 - Synthetic from geologic model
 - 38 geologic units

Data

- Forward model data at 6 frequencies
 - 30, 45, 90, 180, 360, and 720 Hz
- Need to invert data

True model at 275m depth

Observed (90 Hz)

Recovered Model

Model at 275m depth

- Geologic units are well mapped
- Some mineralized bodies are located

Synthesis

• Recovered model represents the regional geology

• Mineralized zones are recovered

ZTEM case histories

Case History: The Balboa ZTEM Cu-Mo-Au porphyry discovery at Cobre Panama

Legault et al., 2016

Setup

Resource map

- Balboa porphyry Cu-Mo-Au deposit
 - Located 1-2 km from known deposits: Colina, Medio, Botija, Valle Grande, Mole, Brazo, Botija Abajo
 - Most known deposits found with soil samples; followed by exploration programs

Setup

- Overburden: 20-30m of clay-rich saprolite
- Mineralization:
 - Mostly chlorite and chlorite-sericite alteration
 - Abundant disseminated chalcopyrite, pyrite and magnetite
- Previous helicopter TEM survey unsuccessful in detecting mineralized zones

Can ZTEM see mineralized zones below the conductive saprolite layer?

Properties

Geologic map

- Mineralized zone
 - High conductivity
 - Low magnetic susceptibility
- Highly conductive saprolite at surface (up to 30m thick)

Rock Unit	Resistivity ($\Omega \cdot m$)	Susceptibility (SI)
Saprolitic overburden	Low	Low
Host rock	High	Low
Granodiorite/porphyry (host rock; unmineralized)	Moderate	Moderate
Andesite/basalt (unmineralized)	Moderate	High
Mineralized/clay-altered	Low	Low

Survey

- System
 - 6 frequencies: 30-720 Hz
 - Hz: airborne receiver
 - Hx and Hy at base-station

Survey design

A) 2D Synthetic Model for Balboa Porphyry below Saprolite

B) ZTEM 2D Inversion Model for Balboa below Saprolite

- Typical AEM survey can't see through conductive saprolite
- ZTEM insensitive to 1D conductivity

ZTEM can see through conductive overburden.

Data

• Tipper transfer function:

 $H_z(r) = T_{zx}(r, r_0)H_x(r_0) + T_{zy}(r, r_0)H_y(r_0)$

- Tzx and Tzy obtained using similar processing as MT
- Hx and Hy obtained from reference site (r_0)
- ZTEM survey also acquires magnetic data

B) Total Magnetic Intensity (TMI)

ZTEM data at 90 Hz

Imag

Processing: magnetic data

• Reduced to pole (RTP)

A) Total Magnetic Intensity (TMI)

B) Total Magnetic Intensity (Reduced to Pole)

- Known deposits correlate with magnetic lows (after RTP)
- Demagnetized areas are due to alteration
- Balboa not delineated (has both high and low anomalies)

Processing: ZTEM data

Total phase rotation (TPR) ۲

- At 360Hz, high values collocated with known deposits; some false positives
- At 30 Hz, regional resistive structure; deeper conductive structures collocated with some known deposits

Inversion and Interpretation

- Balboa deposit
 - Conductor imaged at depth
 - Magnetic low at depth

Synthesis

- Exploration and drilling motivated by soil sampling failed to identify Balboa
- Helicopter TDEM could not see
 through conductive saprolite
- Conductive anomaly collocated with Balboa deposit agrees with boundary of higher-grade zones from drilling

Summary

- Background on natural source EM methods
- Magnetotellurics
- Case history: Minerals
- Z-axis tipper electromagnetics
- Case histories (ZTEM): Geologic Mapping, Minerals

End of Natural Sources

Additional Material

- Case Histories:
 - Geothermal
 - Landfills

Hengill geothermal region: setup

- Iceland: geothermal hot spot
 - On the mid-Atlantic ridge
 - Hosts multiple high temperature geothermal systems
- Hengill geothermal area
 - Supplies majority of hot water in Reykjavik
 - Contributes ~450 Mwe to National power grid

Physical properties

• Relationships between alteration, resistivity, temperature, and conduction processes

1

2

D ³

4

6

7

8

9

е

р

h 5

Rel. unaltered

Pore fluid

Survey

- MT instrumentation
 - Phoenix MTU5's
- Survey
 - 133 stations used
 - Combination of 2E and 2E+3H setup
 - Frequencies: 300 0.001 Hz
- Remote reference
 - About 40 km away
- Raw data processing using Phoenix software

Data

3D inversion

- Conductive layer corresponds with formation temperature
- Two main production fields: Hengill and Nesjavellir
- Deep conductive heat source

Case History: Landslides, Sweden

Shan et al., 2014

Landslides in Sweden

Photo: C Fredén, 1977, Tuve

Setup

- Marine clay, deposited, uplifted then flushed with freshwater
 - Decreases salinity and reduces strength \rightarrow quick clays

Can we detect quick clays?

Properties

Soil material	Resistivity interval
Salt/intact marine clay	1–10 Ωm
Leached, possible quick clay	10–80 Ωm
Dry crust clay, slide deposits, coarser	$> 80 \ \Omega m$

- Clays
 - Conductive
 - Usually overlay sand / gravel
- Quick clays
 - Infiltration of water removes salt
 - More resistive than typical clays
- Coarse-grained layer
 - Resistive
 - Sand and gravel (porous)

Surveys

- DC (ERT)
 - Lines 2-5
 - ABEM system
 - Wenner array (5m spacing)

- Radio MT (RMT)
 - Same lines as DC
 - EnviroMT system
 - 21-28 radio transmitters
 - Frequencies: 18.3-183 kHz

RMT: sounding curves

Computed using determinant of impedance tensor at two stations along Line 2

Impedance tensor: $\begin{bmatrix} E_x \\ E_y \end{bmatrix} = \begin{bmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{bmatrix} \begin{bmatrix} H_x \\ H_y \end{bmatrix}$ Determinant: (complex-valued)

$$Z_{\rm det} = \sqrt{Z_{xx}Z_{yy} - Z_{xy}Z_{yx}}_{87}$$

Landslide

Processing and inversion

- ERT and RMT yield similar images
- Jointly invert ERT and RMT
- Correlates with seismic

Processing and inversion

 Inverted RMT, ERT+RMT interpreted with seismic

Processing and inversion

Soil material	Resistivity interval
Salt/intact marine clay	1–10 Ωm
Leached, possible quick clay	10–80 Ωm
Dry crust clay, slide deposits, coarser	$> 80 \Omega m$

Quick clay

- Top interface: conductor to resistor
- Thickness difficult to estimate

Synthesis

Resistivity log

- Resistivity is indicative of lithologic units → identify possible quick clays
 - Corresponds with seismic
 - Determining thickness is challenging

