DC Resistivity

DC Resistivity Survey

Motivation

Minerals

Water inflow in mine

Oil and Gas

Geotechnical

Gaining Stream

1 – Water table 2 – Unsaturated zone 3 – Saturated zone 4 – Flow direction

Electrical conductivity

- DC resistivity is sensitive to:
 - σ: Conductivity [S/m]
 - ρ: Resistivity [Ωm]
 - $-\sigma = 1/\rho$
- Varies over many orders of magnitude
- Depends on many factors:
 - Rock type
 - Porosity
 - Connectivity of pores
 - Nature of the fluid
 - Metallic content of the solid matrix

Outline

- Basic experiment
- Currents, charges, potentials and apparent resistivities
- Soundings, profiles and arrays
- Data, pseudosections and inversion
- Sensitivity
- Survey Design
- Case History Mt Isa
- Case History Reservoir monitoring for oil sands
- Steel casing + DC
- Working with the apps
- Effects of background resistivity

Target: ٠

- Ore body. Mineralized regions less resistive than host

Rock Type	Ohm-m
Overburden	12
Host rocks	200
Gossan	420
Mineralization (pyritic)	0.6
Mineralization (pyrrhotite)	0.6

• Target:

- Ore body. Mineralized regions less resistive than host
- Setup:
 - Tx: Current electrodes
 - Rx: Potential electrodes

Elura Orebody Electrical resistivities			
	Rock Type	Ohm-m	
	Overburden	12	
	Host rocks	200	
	Gossan	420	
	Mineralization (pyritic)	0.6	
	Mineralization (pyrrhotite)	0.6	

Target: ٠

- Ore body. Mineralized regions less resistive than host
- Setup: ۲
 - Tx: Current electrodes
 - Rx: Potential electrodes
- Currents: •
 - Preferentially flow through conductors

Elura Orebody Electrical resistivities			
	Rock Type	Ohm-m	
	Overburden	12	
	Host rocks	200	
	Gossan	420	
	Mineralization (pyritic)	0.6	
	Mineralization (pyrrhotite)	0.6	

Target: ٠

- Ore body. Mineralized regions less _ resistive than host
- Setup: ۲
 - Tx: Current electrodes
 - Rx: Potential electrodes
- Currents: •
 - Preferentially flow through conductors
- Charges: ٠
 - Build up at interfaces

Elura Orebody Electrical resistivities			
	Rock Type	Ohm-m	
	Overburden	12	
	Host rocks	200	
	Gossan	420	
	Mineralization (pyritic)	0.6	
	Mineralization (pyrrhotite)	0.6	

• Target:

- Ore body. Mineralized regions less resistive than host
- Setup:
 - Tx: Current electrodes
 - Rx: Potential electrodes
- Currents:
 - Preferentially flow through conductors
- Charges:
 - Build up at interfaces
- Potentials:
 - Associated with the charges are measured at the surface

Elura Orebody Electrical resistivities			
	Rock Type	Ohm-m	
	Overburden	12	
	Host rocks	200	
	Gossan	420	
	Mineralization (pyritic)	0.6	
	Mineralization (pyrrhotite)	0.6	

How do we obtain resistivity?

Steady State Maxwell equations

	Full	Steady State	
Faraday	$\nabla\times\vec{e}=-\frac{\partial\vec{b}}{\partial t}$	$\nabla \times \vec{e} = 0 \qquad \vec{e} = -\nabla V$	
Ampere	$\nabla \times \vec{h} = \vec{j} + \frac{\partial \vec{d}}{\partial t} + \vec{j}_s$	$ abla \cdot ec j = - abla \cdot ec j_s$	
Ohm's Law	$\vec{j} = \sigma \vec{e}$		
Put it together $\nabla \cdot \sigma \nabla V = I \delta(r)$			
Potential in a homogeneous halfspace $V = \frac{I}{2\pi\sigma}\frac{1}{r}$ $V = \frac{\rho I}{2\pi r}$			

Currents and potentials: halfspace

Currents and potentials: 4-electrode array

Halfspace (500 Ωm)

x (m)

14

Currents and Apparent Resistivity

DC Layer App

Why interactive apps?

- Visualization aids understanding
- Learn through interaction
 - ask questions and investigate
- Open source:
 - Free to use
 - Welcome contributions!

DC Layered earth (Demo)

- DC_LayeredEarth.ipynb
- Parameters:
 - Layer resistivities
 - Layer thickness
 - Electrode locations
- View:
 - Model
 - Electric potential
 - Electric field
 - Current density

Soundings and Arrays

Geometry

Wenner

4 electrode Array

Sounding

Schlumberger

Soundings

Soundings

Soundings

Summary: soundings

Apparent resistivity (ohm-m)

Inversion

DCR for a confined body

• Useful to formally bring in the concept of charges

Normal component of current density is continuous

$$J_{1n} = J_{2n}$$

$$\sigma_1 E_{1n} = \sigma_2 E_{2n}$$

Conductivity contrast

$$\sigma_1 \neq \sigma_2$$

- Electric field discontinuous
- Charge build-up

$$\mathbf{E} = \frac{Q}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}'|^2} \mathbf{\hat{r}}$$

Charges at conductivity contrasts

• Useful to formally bring in the concept of charges

Normal component of current density is continuous

$$J_{1n} = J_{2n}$$
$$\sigma_1 E_{1n} = \sigma_2 E_{2n}$$

Conductivity contrast $\sigma_1
eq \sigma_2$

• Electric field discontinuous

$$\tau_f = \varepsilon_0 \left(\frac{\sigma_1}{\sigma_2} - 1\right)$$

Currents, charges, and potentials

Measurements of DC data: gradient array

-1e-12

-40

-30

-20

-10

Secondary currents: J_s

10

0

x (m)

20

30

-40

-30

-20

-10

Secondary charges: Q_s

10

0

x (m)

20

30

40

40

9e-07

Measurements of DC data: gradient array

Secondary charges: Q_s

Secondary currents: J_s

Measurements of DC data: gradient array

DC cylinder

- DC_Cylinder_2D
- Parameters:
 - Resistivity of background cylinder
 - Geometry of cylinder
 - Location of electrodes
- View:
 - Model
 - Electric potential
 - Electric field
 - Charges
 - Current density

http://em.geosci.xyz/apps.html

DCR: cylinder (Demo)

- How does the charge vary with location of the current electrode?
- How does the apparent resistivity vary with source electrode location?
- Up next...
 - Profiling, sounding, and ability to see the cylinder at various depths.

Profiling

Fixed geometry: Move laterally

Depth of investigation depends upon offset or array length

Summary: Soundings and Profiles

Basic Survey Setups

Well-logging

• Same physical principles, different geometry

Fig. 7-2-Lateral device-basic arrangement.

Fig. 7-1-Normal device-basic arrangement.

From Chapter 7 of the Schlumberger Log Interpretation Principles/Applications Textbook

DC resistivity data

Each data point is an apparent resistivity:

Example pseudosections

• Pole-dipole; n=1,8; a=10m; N=316

Example pseudosections

Example pseudosections

3) The "UBC-GIF model"

Pole-Dipole

Pseudo-section app

- DC_Building_Pseudosections
- Parameters:
 - Resistivity of background, layer, sphere
 - Geometry of sphere, layer
 - Location of electrodes
- View:
 - Model
 - Pseudosection

Using the apps

https://em.geosci.xyz/apps.html

Jupyter Notebooks

DC_LayeredEarth	×	1
\leftarrow \rightarrow C () localhost:8892/note	oooks/notebooks/DC_LayeredEarth.ipynb	Q ☆ :
Çjupyter dc_laye	redEarth (autosaved) ✓	þ
File Edit View Insert	Cell Kernel Widgets Help Python [default]	0
E + ≫ 2 E ↑ ↓ In [1]: from em_examp %matplotlib i	Run Cells CellToolbar Image: CellToolbar Run Cells and Select Below Image: CellToolbar Image: CellToolbar Run All Image: CellToolbar Image: CellToolbar Run All Above Image: CellToolbar Image: CellToolbar Run All Below Image: CellToolbar Image: CellToolbar	
Purpose	Cell Type	
Investigati Using the widgets resistivity including	Current Outputs All Output will explore the physical principals governing DC the behavior of currents, electric field, electric potentials in a two layer earth.	

The measured data in a DC experiment are potential differences, we will demonstrate how these provide information about subsurface physical properties.

Background: Computing Apparent Resistivity

In practice we cannot measure the potentials everywhere, we are limited to those locations where we place electrodes. For each source (current electrode pair) many potential differences are measured between M and N electrode pairs to characterize the overall distribution of potentials. The widget below allows you to visualize the potentials, electric fields, and current densities from a dipole source in a simple model with 2 layers. For different electrode configurations you can measure the potential differences and see the calculated apparent resistivities.

In a uniform halfspace the potential differences can be computed by summing up the potentials at each measurement point from the different current sources based on the following equations:

$$V_M = \frac{\rho I}{2\pi} \left[\frac{1}{AM} - \frac{1}{MB} \right]$$
$$V_N = \frac{\rho I}{2\pi} \left[\frac{1}{AN} - \frac{1}{NB} \right]$$

jupyter

Running the Apps

launch binder

1. Load the repository (be patient...)

2. Select notebook from contents

🔍 🔍 🗞 Binder (beta) 🛛 🗙 🗮 👼	e e e e e e e e e e e e e e e e e e e
← → C â Secure https://mybinder.org/v2/gh/geoscixyz/em_apps/master ☆:	\leftrightarrow \Rightarrow \mathbf{C} \triangleq Secure https://hub.mybinder.org/user/geoscixyz-em_apps-zt2pxo9e/notebooks/index.ipynb Q \bigstar :
	💭 JUPYTEY index (unsaved changes)
	File Edit View Insert Cell Kernel Widgets Help Trusted Python 3 O
Øbinder	
	EM GeoSci Apps
	The purpose of these notebooks is to provide tools for you to investigate fundamental concepts in electromagnetic geophysics. They support an geosci.yz, an open source "textbook"
	resource for electromagnetic geophysics.
	These notebooks are powered by <u>SimPEG</u> , an open source framework for Simulation and Parameter Estimation in Geophysics.
	If you have feedback, we would like to hear from you!
Loading repository: geoscixyz/em_apps/master	Contact us Bonort issues
Eduling repository. geoscixyzy eni_uppsy indster	Join the development
Build logs show	DC EM Fundamentais Inductive Sources Grounded Sources Natural Sources IP Inversion
	Contents
Here's a non-interactive preview on nbviewer while we start a server for you. Your binder will open automatically when it is ready.	DC Resistivity
	DC LayeredEarth.ipynb DO Ovieder 2D Involv
- jupyter	DC_Cylinder_20_ipynb DC_Building_Pseudosections.ipynb
nbviewer	DC_Inversions.jpynb DC_Lawr_Culoter_2D_uwpb
	DC Layer Cylinder 2 5D Jayab
em_apps master	DC Plate 20.inynb DC Plate 20.inynb
	DO Fate Advance Dicit 2D. Overhurden Pseudosections.jpynb

http://em.geosci.xyz/apps.html

Questions

DC_LayeredEarth

- Start with a top layer that is conductive (50 Ωm).
 - What is the minimum A-B separation we need to see the second layer in our data?
 - What happens if the layer is more conductive / resistive?
 - What happens if the layer is thicker?

DC_Cylinder_2D

- You have been charged with finding 2 tunnels: (1) Filled with salty water, (2) filled with air
 - How are the charges distributed for both tunnels if you use a pole source?
 - How does the apparent resistivity vary with changing the parameters of the tunnel (resistivity, radius, depth)?

- DC_Cylinder_2D cont...
 - For a conductive cylinder (10 Ω m) in a resistive background (500 Ω m), can you generate a pole-pole example where the apparent resistivity is > 500 Ω m? How do you explain this (hint: look at the charges)
- DC_Building_Pseudosections
 - For which survey setup's are the "pantlegs" symmetric over the target? Which aren't?
 - Can you demonstrate an example of nonuniqueness? E.g. If the sphere has a radius of 2m and a resistivity of 50 Ωm, is there a model that produces similar data?

Inversion

Example 1: buried prism

• Pole-dipole; n=1,8; a=10m; N=316; (α_s , α_x , α_z)=(.001, 1.0, 1.0)

Example 2: prism with geologic noise

• Pole-dipole; n=1,8; a=10m; N=316; (α_s , α_x , α_z)=(.001, 1.0, 1.0)

Example 3: UBC-GIF model

• Pole-dipole; n=1,8; a=10m

The world is 3D

- Target
 - Size, shape, depth
- Background
 - Variable resistivity
- Questions
 - Where to put currents? 2D acquisition? 3D?
 - Where to make measurements?
 - Which measurements?
 - Effects of topography?
- These are survey design questions
- Crucial element is the sensitivity

Host

Ore body

Water underground

Sensitivity

Sensitivity Function

Is the measured potential *sensitive* to the target?

Quantified by the sensitivity

 $G = \frac{\Delta d}{\Delta p} = \frac{\text{change in data}}{\text{change in model}}$

- Collect the data that are sensitive to the target
 - Need to excite the target
 - Need to have sensor close to the target

Exciting the target

Measurements

Resistivity model $500 \Omega m$ E -20 -20 -20 -30 -20 -30 -20 -30 -20 -30 -20-20

54

Coupling

Total currents: J

Conductive vs. Resistive Target

Conductive Target

Resistive Target

Total currents: J

Total currents: J

Secondary charges: Q_s

Secondary charges: Q_s

DC 2D Plate app

- DC_Plate_2D
- Parameters:
 - Resistivity of background, plate
 - Geometry and location of plate
 - Location of electrodes
- View:
 - Model
 - Electric potential
 - Electric field
 - Charges
 - Current density

Summary: Sensitivity

- "Excite" the target
 - Drive currents to target
 - Need good coupling with target
- Measuring a datum
 - Proximity to target
 - Electrode orientation and separation
- Background resistivity is
 important

Total currents: J

Survey Design: Questions

- What is objective?
 - Layered earth (1D)
 - \rightarrow do a sounding
 - Target body (2D)
 → profile, sounding perpendicular to geology
 - Target body (3D)
 → need 3D coverage
- What is the background resistivity?
- What are the noise sources? fences, power lines, ...

Survey Design: in general

- Numerical simulation can we see the target?
- Steps:
 - Define a geologic model
 - Assign physical properties
 - Select a survey
 - Simulate with (V) and without (V_p) target
- Best practice
 - Assign uncertainties to simulated data
 - Invert with code you will use for the field data

Outline

- Basic experiment
- Currents, charges, potentials and apparent resistivities
- Soundings, profiles and arrays
- Data, pseudosections and inversion
- Sensitivity
- Survey Design
- Case History Mt Isa
- Case History Reservoir monitoring for oil sands
- Steel casing + DC
- Working with the apps
- Effects of background resistivity

Geophysical Surveys using EM.GeoSci

- Geophysical Surveys
 - Fundamentals
 - Seven Step Framework for case histories
 - Survey Design
 Considerations
 - Forward Modelling

🛡 🔍 🌍 🌝 Seven Steps — El	ectromagneti ×
\leftarrow $ ightarrow$ \mathbf{C} \odot https://em.geo	sci.xyz/content/geophysical_surveys/fundamentals/seven_ste 🍳 🛧
🛠 em Search docs	Docs » Geophysical Surveys » Fundamentals » Seven Steps
Apps Contributors Introduction Physical Properties Maxwell I: Fundamentals	Seven Steps Geophysics can play an important role in helping solve resource exploration, environmental, or geotechnical problems. The application of geophysics is most effectively carried out by following a seven-step framework. Careful thought and due dilligence at each step is important to achieve
Maxwell I: Fundamentals Maxwell II: Static Maxwell III: FDEM Maxwell IV: TDEM	a final outcome.
Geophysical Surveys	
Seven Steps Summary for the seven-step framework Survey Design Forward Modelling Inversion Direct Current Resistivity	 A set of the project. A s
Induced Polarization Airborne FDEM Airborne TDEM Magnetotellurics	 Setup: What is the Problem? Establish the geoscience objectives, consider conventional practice, and identify how geophysics might contribute. This could include:
ZTEM Ground Penetrating Radar Marine CSEM Unexploded Ordnance	 Mapping geology Locating buried objects Obtaining 3D images of the subsurface Assemble prior information that might be relevant. Details for using the seven-step procedure will depend upon what information is being sought and what is available.
Inversion Case Histories Equation Bank	2. Properties: Understand how geologic and man-made materials of relevance to the problem can be characterized by physical properties. The key is to find a physical property of the sought object/geology that is different from that of the surrounding material. This is a crucial component needed to link geophysics with the geoscience problem being investigated. Important physical properties are:

DC Surveys using EM.GeoSci

- Geophysical Surveys: Direct Current Resistivity
- Contents:
 - Physics
 - Survey
 - Data
 - Interpretation
 - Practical Considerations

📸 em	Direct Current Resistivity	
ch docs	O Purpose	
ributors	To illustrate the fundamentals of a DC resistivity survey, provide a vision for how it is applied in the field, and demonstrate potential uses.	
ical Properties well I: Fundamentals well II: Static well III: FDEM well IV: TDEM	Variations in conductivity can be diagnostic, for example, when aiming to characterize a mineral deposit (e.g. Mt. Isa), where the conductivity of the mineralized zone is often higher than the host rock. In a Direct Current Resistivity (DCR) experiment, a generator is used to inject current into the earth. The current path depends upon the variation of conductivity or	
physical Surveys	equivalently, its reciprocal, the electrical resistivity. Currents are channeled into good conductors	5
damentals	and flow around resistors. Electrical charges are built up on interfaces that separate units of	
ct Current Resistivity	different conductivity and these charges generate an electric potential.	
htysics urvey Data hterpretation tractical Considerations uced Polarization orne FDEM orne TDEM gnetotellurics M und Penetrating Radar ine CSEM xploded Ordnance	Data are acquired at the surface or in boreholes by measuring the potential difference between two electrodes. The measured voltage depends upon the positions of the current and potential electrodes with respect to the target as well as the earth's conductivity. Obtaining information about the spatial distribution of conductivity requires many measurements at different locations and electrode configurations. A Schlumberger survey involving two current and two potential electrodes is shown in Fig. 149. Artistic representation of the current density and charge build-ups are illustrated for (a) conductive and (b) resistive spheres in a uniform half-space.	
sion Histories don Bank ences	 Physics Survey Data Interpretation Practical Considerations 	

https://em.geosci.xyz/content/geophysical_surveys/dcr/index.html

Case History using EM.GeoSci

 All case histories follow 7-step framework

7. Synthesis

- Integration of geophysics with all other knowledge about the project.
- Do results correlate with prior and alternative information?
- Is the outcome adequate for the project? - Iteration back to previous steps is expected before finalizing the work.

Secure https://em.geosci.xyz/content/case_histories/mt_isa/index.html

Mt. Isa

• Authors: Dom Fournier, Dr. Kris Davis

• Editor: Douglas Oldenburg

Prelude

This case history follows the inversion of DC/IP data to delineate ore-bearing rock units at Mt. Isa, Queensland, Australia.

Special Thanks

Thanks to CSIRO publishing for permission to reproduce figures and adapt text from the source material. This Case History is based upon the paper: 2-D and 3-D IP/resistivity for the interpretation of Isa-style targets by Rutley, Oldenburg and Shekhtman [ROS01].

Abstract

Here, we show one of the first examples of inverting DC/IP field data to recover 3D distributions of resistivity and chargeability. Prior to this, the inversion of field data was primarily carried out in 2D. We use this case history to provide an example for inverting DCR and IP data and to link different parts of the survey and processing to the fundamentals of EM as presented in EM.geosci. We have re-inverted the data but have kept as many details as possible to be the same as in the original paper. This enables us to show how current technology has increased the ability to recover details about the subsurface.

- Setup
- Properties

Survey

- Data
- Processing
- Interpretation
- Synthesis
- Lessons worth highlighting

https://em.geosci.xyz/content/case_histories/mt_isa/index.html

1

Q 🕁

Mt. Isa

Mt. Isa (Cluny prospect)

Seven Steps

Setup

Geologic model

Mt. Isa (Cluny prospect)

DH TD122-ED1 Native Bee Siltstone Breakaway Shale Moondarra Siltstone and Mt Novit Horizon

Question

• Can conductive units, which would be potential targets within the siltstones, be identified with DC data?

Properties

Rock Unit	Conductivity
Native Bee Siltstone	Moderate
Moondarra Siltstone	Moderate
Breakaway Shale	Very High
Mt Novit Horizon	High
Surprise Creek Formation	Low
Eastern Creek Volcanics	Low

Surface topography

Survey and Data

V

- Eight survey lines
- Two survey configurations.

Data set #1:

Apparent resistivity, pole - dipole.

Survey and Data

V

- Eight survey lines
- Two survey configurations.

Data set #2:

Apparent resistivity, dipole - pole

Surface topography

Processing and interpretation

3D resistivity model

Animation

Synthesis

- Identified a major conductor \rightarrow black shale unit
- Some indication of a moderate conductor

Mt. Isa in em.geosci.xyz

🔍 🔍 🌏 🔗 Mt. Isa — Ele	ctromagnetic Geo ×	10	
\leftarrow \rightarrow C \triangleq Secure h	ttps://em.geosci.xyz/content/case_histories/mt_isa/index.html 🔍 🛠		
Physical Properties Maxwell I: Fundamentals	Mt. Isa		
Maxwell II: Static	 Authors: Dom Fournier, Dr. Kris Davis Editor: Douglas Oldenburg 		
Maxwell IV: TDEM	Prelude		
Geophysical Surveys Inversion	This case history follows the inversion of DC/IP data to delineate ore-bearing rock units at Mt. Isa, Queensland, Australia.		
∃ Case Histories			
Albany	Special Thanks		
Wadi Sabha	Thanks to CSIRO publishing for permission to reproduce figures and adapt text from the source		
Bookpurnong	material. This Case History is based upon the paper: 2-D and 3-D IP/resistivity for the		
Aspen	interpretation of Isa-style targets by Rutley, Oldenburg and Shekhtman [ROS01].		
Lalor			
Elevenmile Canyon	Abstract		
DO-27/DO-18 (TKC)	Here, we show one of the first examples of inverting DC/IP field data to recover 3D		
West Plains	distributions of resistivity and chargeability. Prior to this, the inversion of field data was primarily		
Furggwanghorn	carried out in 2D. We use this case history to provide an example for inverting DCR and IP data		
SAGD	and to link different parts of the survey and processing to the fundamentals of EM as presented in EM geosci. We have re-inverted the data but have kept as many details as possible to be the		
🖻 Mt. Isa	same as in the original paper. This enables us to show how current technology has increased the		
Setup	ability to recover details about the subsurface.		
Properties			
Survey	Setup Proportion		
Data	Survey		
Processing	• Data		
Interpretation	Processing		
Synthesis	Interpretation		
Lessons worth highlighting	Synthesis Lessons worth highlighting		
Norsminde			
Red Sea			
Barents Sea			
Saurashtra			

Outline

- Basic experiment
- Currents, charges, potentials and apparent resistivities
- Soundings, profiles and arrays
- Data, pseudosections and inversion
- Sensitivity
- Survey Design
- Case History Mt Isa
- Case History Reservoir monitoring for oil sands
- Steel casing + DC
- Working with the apps
- Effects of background resistivity
Case History: Crosswell ERT monitoring

Tondel et al. 2014

Setup

- Athabasca Oil Sands
 - The largest oil sand region in North America
- Facility for steam-assisted gravity drainage (SAGD)
- Statoil purchased North American Oil sand Corporation (2007)
- Developing Leismer Demonstration Area
 - Research initiatives
 - E.g. "Which crosswell surveys should be used to map SAGD?"

Steam assisted gravity accelerated drainage (SAGD)

- In-situ recovery process used to extract bitumen from the Athabasca oil sands
- Uses two horizontal wells drilled at the bottom of the reservoir
- Top well (injection): produces a steam chamber
- Bottom well (production)
- Bottleneck: inhomogeneity in the reservoir

Want to know extent of the steam

Properties

- Temperature can exceed 250°C
- Resistivity decrease indicates
 - Temperature increase
 - Replacement of produced oil by brine
- Resistivity increase indicates
 - Condensed steam \rightarrow dilutes brine

- 1: Englemark (2007)
- 2: Mansure (2003)
- 3: Martinez (2012)
- 4: Ramirez (1993)
- 5: Ranganyaki (1992)

Which crosswell surveys to monitor steam?

- Options to consider:
- → 3D vertical seismic profile (VSP)
- --- Crosswell seismic tomography
 - Crosswell EM
- → Crosswell DC (or ERT)
 - Challenges:
 - High temperature (up to 250°C)
 - Steel casing (often imperfectly insulated)
 - Repeatability

Crosswell DC survey

Crosswell DC survey for SAGD

- For each observation well
- 32 electrodes
 - denser at reservoir
- Distributed temperature sensing (DTS) system
- Need to endure high temperature

Reservoir

ERT (

DTS

Geophones Pressure

Autonomous setup for monitoring

- Fully autonomous system
 - Nobody in the field
- Measure 2 full DC data per day
- High quality data
 - ~2% error

Inversion: baseline (March 2011)

Initial model from well logs + geology

Recovered resistivity (March 2011)

0.0

-3.0

Inversion: time-lapse

Around electrodes: artefacts due to current leakages to steel casing(?) 83

Interpretation: resistivity difference

Interpretation: resistivity difference

Synthesis

Month (0 = May 2011)

- Can see changes in the reservoir
 - Nearly linear changes (-4% per month)
 - Maximum resistivity difference is -85%
- Crosswell DC can be an effective option for monitoring SAGD
 - Great repeatability + endurance for temperature + low cost

DC Resistivity with steel cased wells

Initial work: Logging through steel-cased wells

- Kaufman, 1990
 - Currents vertical within casing
 - Positive charges on outside surface of casing
 - Electric field radial outside casing

• Now we can solve numerically

- Fracturing, enhanced oil recovery, carbon capture and storage, Small targets, etc.
 - Deep
 - Steel cased wells
- Previous studies:
 - E.g. (Rucker, 2010):
 Detecting leaks from underground storage tanks
 - Use wells to get beneath conductive near surface & surface infrastructure

• Synthetic inversion example: conductive block

90

• Field study: imaged conductive waste beneath leaking tanks

Current density

- Fracturing, enhanced oil recovery, carbon capture and storage, ...
 - Small targets
 - Deep
 - Steel cased wells
- Use casing to deliver current to depth

Casing integrity

- Can we detect flaws in the casing from the surface?
 - e.g. corrosion

Casing integrity

- Can we detect flaws in the casing from the surface?
 - e.g. corrosion

Jupyter Notebooks

DC_LayeredEarth	×	1
\leftarrow \rightarrow C (i) localhost:8892/notel	books/notebooks/DC_LayeredEarth.ipynb	ର ☆ :
CJUPYter DC_Laye	redEarth (autosaved) 🗸	ę
File Edit View Insert	Cell Kernel Widgets Help Python [defaul	t] O
	Run Cells Coll Toolbar Coll Toolbar Run Cells and Select Below Run Cells and Insert Below	_
In [1]: from em_examp %matplotlib i	Run All Run All Above Run All Below	
Purpose	Cell Type	
Investigati Using the widgets - resistivity including	Current Outputs ata All Output will explore the physical principals governing DC the behavior of currents, electric field, electric potentials in a two layer earth.	

The measured data in a DC experiment are potential differences, we will demonstrate how these provide information about subsurface physical properties.

Background: Computing Apparent Resistivity

In practice we cannot measure the potentials everywhere, we are limited to those locations where we place electrodes. For each source (current electrode pair) many potential differences are measured between M and N electrode pairs to characterize the overall distribution of potentials. The widget below allows you to visualize the potentials, electric fields, and current densities from a dipole source in a simple model with 2 layers. For different electrode configurations you can measure the potential differences and see the calculated apparent resistivities.

In a uniform halfspace the potential differences can be computed by summing up the potentials at each measurement point from the different current sources based on the following equations:

$$V_M = \frac{\rho I}{2\pi} \left[\frac{1}{AM} - \frac{1}{MB} \right]$$
$$V_N = \frac{\rho I}{2\pi} \left[\frac{1}{AN} - \frac{1}{NB} \right]$$

jupyter

Running the Apps

launch binder

1. Load the repository (be patient...)

2. Select notebook from contents

••• Reinder (beta) ×	Index ×
← → C â Secure https://mybinder.org/v2/gh/geoscixyz/em_apps/master ☆ :	$\leftrightarrow o {m C}$ 🕯 Secure https://hub.mybinder.org/user/geoscixyz-em_apps-zt2pxo9e/notebooks/index.ipynb Q 🛠 :
	C JUPYTEY index (unsaved changes)
	File Edit View Insert Cell Kernel Widgets Help Trusted Python 3 O
Oxbinder	
	EM GeoSci Apps
/	The purpose of these notebooks is to provide tools for you to investigate fundamental concepts in electromagnetic geophysics. They support <u>em.geosci.xyz</u> , an open source "textbook" resource for electromagnetic geophysics.
	These notebooks are powered by SimPEG, an open source framework for Simulation and
	Parameter Estimation in Geophysics.
	If you have readback, we would like to hear from you!
Loading repository: geoscixyz/em_apps/master	Contactus Report issues
	Join the development
Build logs show	DC EM Fundamentals Inductive Sources Grounded Sources Natural Sources IP Inversion
	Contents
Here's a non-interactive preview on noviewer while we start a server for you. Your binder will open automatically when it is ready.	DC Resistivity
	DC LayeredEarth.ipynb
- upvter	DC Cylinder 2D pynb DC Building Pseudosections.jpynb
	DC_Inversions.jpynb
Indiversel	UC Layer Cylinder 2. Di.pynb DC Layer Cylinder 2. SDi.pynb
em_apps master	DC Plate 2D igynb
	DCIP 2D Overburden Pseudosections.jpynb

http://em.geosci.xyz/apps.html

Questions

DC_LayeredEarth

- Start with a top layer that is conductive (50 Ω m).
 - What is the minimum A-B separation we need to see the second layer in our data?
 - What happens if it is more conductive / resistive?
 - What happens if the layer is thicker?

DC_Cylinder_2D

- You have been charged with finding 2 tunnels: (1) Filled with salty water, (2) filled with air
 - How are the charges distributed in each of these cases?
 - How are the charges distributed if you use a pole source?

- DC_Cylinder_2D cont...
 - For a conductive cylinder (10 Ω m) in a resistive background (500 Ω m), can you generate a pole-pole example where the apparent resistivity is > 500 Ω m? How do you explain this (hint: look at the charges)
- DC_Building_Pseudosections
 - For which survey setup's are the "pantlegs" symmetric over the target? Which aren't?
 - Can you demonstrate an example of nonuniqueness? E.g. If the sphere has a radius of 2m and a resistivity of 50 Ωm, is there a model that produces similar data?

Summary

Basic experiment and physics

Confined targets Secondary currents: J G_{d} G_{d}

Pseudosections

Summary

Sensitivity + survey design

Case History: Mt. Isa

DC with steel cased wells

Case History: Reservoir Monitoring

A в 500 Ωm -10 Resisitivity (ohm-m) 1 Ωm Ê -15 N -20 500 -25 -30 -40 -30 -20 -100 10 20 30 40 x (m)

Currents and measured data at MN

Resistivity models (thin resistive layer)

Resistivity models (thin resistive layer)

Currents and measured data at MN

A+ в A+ в в A+ 1e + 06500 Ωm -5 -5 -10 -10 -10Ωm Ê -15 N -20 -15 -15 -20 -20 $10^6 \Omega m$ -25 -25 -25 -30 -30 -30 -40 -20 20 30 40 -10 20 30 -20 -40 -30 40 x (m) x (m) x (m)

Resistivity models (thin resistive layer)

Currents and measured data at MN

Resistivity models (thin conductive layer)

Currents and measured data at MN

DC Layered earth + cylinder

- DC_Layer_Cylinder.ipynb
- Parameters:
 - Resistivity of background, layer, sphere
 - Geometry of cylinder, layer
 - Location of electrodes
- View:
 - Model
 - Electric potential
 - Electric field
 - Charges
 - Current density

http://em.geosci.xyz/apps.html

End of DCR

