EM Fundamentals

Motivation: applications difficult for DC

Outline

- Basic Survey
- Ampere's and Faraday's Laws (2-coil App)
- Circuit model for EM induction
- Frequency and time domain data
- Sphere in homogeneous earth
- Cyl code
- Energy losses in the ground

• Setup:

– transmitter and receiver are in a towed bird

• Setup:

- transmitter and receiver are in a towed bird
- Primary:
	- Transmitter produces a primary magnetic field

• Setup:

- transmitter and receiver are in a towed bird
- Primary:
	- Transmitter produces a primary magnetic field
- Induced Currents:
	- Time varying magnetic fields generate electric fields everywhere and currents in conductors

• Setup:

- transmitter and receiver are in a towed bird
- Primary:
	- Transmitter produces a primary magnetic field
- Induced Currents:
	- Time varying magnetic fields generate electric fields everywhere and currents in conductors

• Secondary Fields:

– The induced currents produce a secondary magnetic field.

Basic Equations: Quasi-static

* Solve with sources and boundary conditions

Ampere's Law $\nabla \times \mathbf{H} = \mathbf{J}$

Faraday's Law

Faraday's Law

Magnetic Flux

$$
\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \, da
$$

Induced EMF

$$
V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} = \mathbf{0}
$$

 $\overline{ }$

ϕ_b : constant

App for Faraday's Law

2 Apps:

- Harmonic
- Transient

<http://em.geosci.xyz/apps.html>

Two Coil Example: Transient

TDEM

Response Function: Transient

Transient and Harmonic Signals

We have seen a transient pulse... What happens when he have a harmonic?

2 Coil Transient app (demo)

- InductionRLcurcuit_Transient
- Parameters:
	- Current
	- Radius, position of Tx, target loop
	- Resistivity, inductance of target loop
- View:
	- Model
	- Magnetic flux
	- Response through time

Two Coil Example: Harmonic

Induced Currents

Two Coil Example: Harmonic

Induced Currents

Response Function

- Quantifies how a target responds to a time varying magnetic field
- Partitions real and imaginary parts

2 Coil Harmonic app (demo)

- InductionRLcurcuit_Harmonic
- Parameters:
	- Current, frequency
	- Radius, position of Tx, target loop
	- Resistivity, inductance of target loop
- View:
	- Model
	- Magnetic flux
	- Response curve
	- Partition of signal into real and imaginary components

Response Functions: Summary

Secondary magnetic fields

Induced currents generate magnetic fields

Receiver and Data

Coupling

- Transmitter: Primary $I_p(t) = I_p \cos(\omega t)$ $\mathbf{B}_p(t) \sim I_p cos(\omega t)$
- Target: Secondary

$$
EMF = -\frac{\partial \phi_{\mathbf{B}}}{\partial t}
$$

$$
= -\frac{\partial}{\partial t} (\mathbf{B}_p \cdot \hat{\mathbf{n}})
$$

Coupling coefficient

• Depends on geometry

$$
M_{12} = \frac{\mu_0}{4\pi} \oint \oint \frac{dl_1 \cdot dl_2}{|\mathbf{r} - \mathbf{r}'|^2}.
$$

Magnetic field at the receiver

$$
\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_{Q}
$$

Induction Number

Depends on properties $\alpha =$ $\frac{\omega L}{R}$ of target

33

Conductor in a resistive earth: Frequency • Induction number Profile over the loop $\alpha = \frac{\omega L}{R}$ (a) (b) (c) When $\alpha < 1$ – Real < Imag

Conductor in a resistive earth: Frequency

Conductor in a resistive earth: Transient

- Time constant $\tau = L/R$
- Step-off current in Tx

Response function depends on time, τ

$$
q(t) = e^{-t/\tau}
$$

App: Three Loop Model

- FDEM_ThreeLoopModel
- Parameters:
	- Location, separation of transmitter and receiver
	- Number of sounding locations
	- Orientation of target loop
	- Resistance, inductance of target loop
- View:
	- Response function
	- Real and imaginary components (plan view and a profile line)

<http://em.geosci.xyz/apps.html> 39

Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model provides representative results
	- Applicable to geologic targets?

Sphere in a resistive background

How representative is a circuit model?

Cyl Code

- Finite Volume EM
	- Frequency and Time

- Built on SimPEG
- Open source, available at: <http://em.geosci.xyz/apps.html>
- Papers

Cockett [et al, 2015](http://www.sciencedirect.com/science/article/pii/S009830041530056X?via=ihub) [Heagy et al, 2017](http://www.sciencedirect.com/science/article/pii/S0098300416303946)

Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model is a good proxy
- 2-Coil Apps
- Frequency domain
- Time domain

Major item not yet accounted for…

- Propagation of energy from
	- Transmitter to target
	- Target to receiver

How do EM fields and fluxes behave in a conductive background?

Revisit Maxwell's equations

* Same equation holds⁴for E

Plane waves in a homogeneous media

Plane waves in a homogeneous media

Plane Wave apps

 \bullet

http://em.geosci.xyz/apps.html

Dipole sources

- Primary field has a geometric decay away from the transmitter
	- very different from a plane wave source
- Two principal sources (for $Z(m)$ small transmitters characteristic of airborne surveys):
	- VMD: vertical magnetic dipole
	- HMD: horizontal magnetic dipole

Magnetic field from a vertical magnetic dipole in a wholespace

Vertical Magnetic Dipole over a halfspace (TDEM)

Summary: propagation through time

52

Important points

- Currents flow in same plane as transmitter currents
- Currents diffuse outward downward
- Each transmitter has a "footprint"
- Max resolution controlled by earliest time
- Depth of investigation controlled by latest time

1.7e-08 50 Magnetic field (T) Depth (m) 8.6e-09 -50 $0.0e + 0.0$ -50 50 Distance (m) j y $4.4e-07$ me at 0.002 ms 50 Current density (A/m²) Depth (m) $0.0e + 00$ -50 534e-07 -50 0 50 Distance (m)

magnetic field (on-time)

Important points

- Currents flow in same plane as transmitter currents
- Currents diffuse outward downward
- Each transmitter has a "footprint"
- Max resolution controlled by earliest time
- Depth of investigation controlled by latest time

magnetic field (on-time) 1.7e-08 50 Magnetic field (T) Depth (m) 8.6e-09 -50 $0.0e + 0.0$ -50 50 Distance (m) j J $2.3e-09$ me at 0.035 ms 50 Current density (A/m²) Jepth (m) $0.0e + 00$ -50 54 -50 50 0 Distance (m)

- Buried, conductive sphere
- Vary background conductivity
- Time: 10^{-5} s

- Buried, conductive sphere
- Vary background conductivity
- Time: 10^{-5} s

57

- Buried, conductive sphere
- Vary background conductivity
- Time: 10^{-5} s

- Buried, conductive sphere
- Vary background conductivity
- Time: 10^{-5} s

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

 $10⁴$ Hz

Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model is a good proxy
- Need to account for energy losses
- Ready to look at some field examples

Case Histories

Canada: Monitoring

Kasted, Denmark: Mt. Isa, Australia: mapping paleochannels

HeliSAM at Lalore:

Mineral Exploration

Wadi Sahba, Saudi Arabia: static corrections for seismic

Bookpurnong, Australia: diagnosing river salinization

monitoring

Mineral exploration

Deccan Traps, India: mapping sediment beneath basalt

Case Histories

Barents Sea, Norway Hydrocarbon de-risking

Hydrate Ridge, USA: Marine CSEM

Iceland: characterizing geothermal systems

Santa Cecilia, Chile: Mineral Exploration

Red Sea: Mapping complex marine geology

Case Histories

Geologic Mapping

Balboa, Panama: Mineral Exploration

USA: Self-driving vehicles

Denmark: IP for landfills

Mt. Isa, Australia: Mineral Exploration

EM – IP Inversion (decoupling)

TKC, Canada: Mineral Exploration

End of EM Fundamentals

