EM Fundamentals

Motivation: applications difficult for DC

Outline

- Basic Survey
- Ampere's and Faraday's Laws (2-coil App)
- Circuit model for EM induction
- Frequency and time domain data
- Sphere in homogeneous earth
- Cyl code
- Energy losses in the ground

• Setup:

 transmitter and receiver are in a towed bird

• Setup:

- transmitter and receiver are in a towed bird
- Primary:
 - Transmitter produces a primary magnetic field

• Setup:

- transmitter and receiver are in a towed bird
- Primary:
 - Transmitter produces a primary magnetic field
- Induced Currents:
 - Time varying magnetic fields generate electric fields everywhere and currents in conductors

- Setup:
 - transmitter and receiver are in a towed bird
- Primary:
 - Transmitter produces a primary magnetic field
- Induced Currents:
 - Time varying magnetic fields generate electric fields everywhere and currents in conductors
- Secondary Fields:
 - The induced currents produce a secondary magnetic field.

Basic Equations: Quasi-static

	Time	Frequency
Faraday's Law	$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$	$ abla imes {f E} = -i\omega {f B}$
Ampere's Law	$ abla imes \mathbf{h} = \mathbf{j} + rac{\partial \mathbf{d}}{\partial t}$	$ abla imes \mathbf{H} = \mathbf{J} + i\omega \mathbf{D}$
No Magnetic Monopoles	$\nabla \cdot \mathbf{b} = 0$	$\nabla \cdot \mathbf{B} = 0$
Constitutive Relationships (non-dispersive)	$\mathbf{j} = \sigma \mathbf{e}$ $\mathbf{b} = \mu \mathbf{h}$ $\mathbf{d} = \varepsilon \mathbf{e}$	$egin{array}{llllllllllllllllllllllllllllllllllll$

* Solve with sources and boundary conditions

Ampere's Law $\nabla \times \mathbf{H} = \mathbf{J}$

Faraday's Law

Faraday's Law

Magnetic Flux

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \mathbf{\hat{n}} \, da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} = \mathbf{0}$$

ϕ_b : constant

App for Faraday's Law

2 Apps:

- Harmonic
- Transient

http://em.geosci.xyz/apps.html

Two Coil Example: Transient

TDEM

Response Function: Transient

Transient and Harmonic Signals

We have seen a transient pulse...

What happens when he have a harmonic?

2 Coil Transient app (demo)

- InductionRLcurcuit_Transient
- Parameters:
 - Current
 - Radius, position of Tx, target loop
 - Resistivity, inductance of target loop
- View:
 - Model
 - Magnetic flux
 - Response through time

Two Coil Example: Harmonic

Induced Currents

Two Coil Example: Harmonic

Induced Currents

Response Function

- Quantifies how a target responds to a time varying magnetic field
- Partitions real and imaginary parts

2 Coil Harmonic app (demo)

- InductionRLcurcuit_Harmonic
- Parameters:
 - Current, frequency
 - Radius, position of Tx, target loop
 - Resistivity, inductance of target loop
- View:
 - Model
 - Magnetic flux
 - Response curve
 - Partition of signal into real and imaginary components

Response Functions: Summary

Secondary magnetic fields

Induced currents generate magnetic fields

Receiver and Data

Coupling

- Transmitter: Primary $I_p(t) = I_p \cos(\omega t)$ $\mathbf{B}_p(t) \sim I_p \cos(\omega t)$
- Target: Secondary

$$EMF = -\frac{\partial \phi_{\mathbf{B}}}{\partial t}$$
$$= -\frac{\partial}{\partial t} \left(\mathbf{B}_{p} \cdot \hat{\mathbf{n}} \right)$$

Coupling coefficient

Depends on geometry

$$M_{12} = \frac{\mu_0}{4\pi} \oint \oint \frac{dl_1 \cdot dl_2}{|\mathbf{r} - \mathbf{r}'|^2}.$$

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_Q$$

Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$ of target

Conductor in a resistive earth: Transient

Profile over the loop

• Time constant

$$\tau = L/R$$

• Step-off current in Tx

• Response function depends on time, au

$$q(t) = e^{-t/\tau}$$

App: Three Loop Model

- FDEM_ThreeLoopModel
- Parameters:
 - Location, separation of transmitter and receiver
 - Number of sounding locations
 - Orientation of target loop
 - Resistance, inductance of target loop
- View:
 - Response function
 - Real and imaginary components (plan view and a profile line)

http://em.geosci.xyz/apps.html

Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time
 domain systems
- Circuit model provides
 representative results
 - Applicable to geologic targets?

Sphere in a resistive background

How representative is a circuit model?

Cyl Code

- Finite Volume EM
 - Frequency and Time

- Built on SimPEG
- Open source, available at: <u>http://em.geosci.xyz/apps.html</u>
- Papers

Cockett et al, 2015 Heagy et al, 2017

Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time domain systems
- Circuit model is a good proxy

2-Coil Apps

- Frequency domain
- Time domain

Major item not yet accounted for...

- Propagation of energy from
 - Transmitter to target
 - Target to receiver

How do EM fields and fluxes behave in a conductive background?

Revisit Maxwell's equations

Plane waves in a homogeneous media

Plane waves in a homogeneous media

Plane Wave apps

http://em.geosci.xyz/apps.html

Dipole sources

- Primary field has a geometric decay away from the transmitter
 - very different from a plane wave source
- Two principal sources (for small transmitters
 characteristic of airborne surveys):
 - VMD: vertical magnetic dipole
 - HMD: horizontal magnetic dipole

Magnetic field from a vertical magnetic dipole in a wholespace

Vertical Magnetic Dipole over a halfspace (TDEM)

Summary: propagation through time

52

Important points

- Currents flow in same plane as transmitter currents
- Currents diffuse outward downward
- Each transmitter has a "footprint"
- Max resolution controlled by earliest time
- Depth of investigation controlled by latest time

magnetic field (on-time) 1.7e-08 50 Magnetic field (T) Depth (m) 8.6e-09 -50 50 -50 Distance (m) 4.4e-07 me at 0.002 ms 50 Current density (A/m²) Depth (m) 0.0e+00 -50 4.4e-07 -500 50

Distance (m)

Important points

- Currents flow in same plane as • transmitter currents
- Currents diffuse outward downward •
- Each transmitter has a "footprint" •
- Max resolution controlled by earliest ۲ time
- Depth of investigation controlled by • latest time

magnetic field (on-time) 1.7e-08

- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

- Buried, conductive sphere
- Vary background conductivity
- Time: 10⁻⁵ s

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

- Buried, conductive sphere
- Vary background conductivity
- Frequency: 10⁴ Hz

10⁴ Hz

Recap: what have we learned?

- Basics of EM induction
- Response functions
- Mutual coupling
- Data for frequency or time
 domain systems
- Circuit model is a good proxy
- Need to account for energy losses
- Ready to look at some field examples

Case Histories

Athabasca Oil Sands, Canada: Monitoring

Kasted, Denmark: mapping paleochannels

HeliSAM at Lalore: Minerals

Wadi Sahba, Saudi Arabia: static corrections for seismic

Bookpurnong, Australia: diagnosing river salinization

T R Dom João, Brazil: water flood monitoring

Mineral exploration

Deccan Traps, India: mapping sediment beneath basalt

Case Histories

Barents Sea, Norway Hydrocarbon de-risking

Hydrate Ridge, USA: Marine CSEM

Iceland: characterizing geothermal systems

Santa Cecilia, Chile: Mineral Exploration

Red Sea: Mapping complex marine geology

Case Histories

Geologic Mapping

Balboa, Panama: Mineral Exploration

USA: Self-driving vehicles

Denmark: IP for landfills

Mt. Isa, Australia: Mineral Exploration

EM – IP Inversion (decoupling)

TKC, Canada: Mineral Exploration

End of EM Fundamentals

