Outline

Setup

- Basic experiment
- Transmitters, Receivers

Time Domain EM

- Vertical Magnetic Dipole
- Propagation with Time
- Case History- Groundwater, Hydrocarbons, Minerals

Frequency Domain EM

- Vertical Magnetic Dipole
- Effects of Frequency
- Case History Groundwater, Hydrocarbons, Minerals

EM with Inductive Sources

- Induction principles are the same for
 - TDEM: Time domain EM
 - FDEM: Frequency domain EM

Vertical Magnetic Dipole over a halfspace (FDEM)

Current Density

Plan view 1e-8 100 1.84 Frequency = 10 kHz• 1.64 1.44 1.24 ۲ (m) 1.04 Currents in the earth flow in 0.84 • 0.64 planes parallel to the Tx -50 0.44 0.24 -100 0.04 -50 50 -100 0 100 X (m) Geometry J_v amplitude 4.6e-08 $\rho_{air} = \infty \ \Omega m$ 50 50 Current density (A/m²) VMD Depth (m) Depth (m) 2.3e-08 0 $\rho_{half} = 100 \ \Omega m$ -50 -50 0.0e+00 -500 50 -50 50 0 Distance (m) Distance (m)

Secondary Magnetic Flux Density

• Frequency = 10 kHz

Effects of Frequency

- Frequency at 100 kHz
- Skin depth = 16 m
- Currents are concentrated at surface

$$\delta = 503 \sqrt{\frac{\rho}{f}}$$

Effects of Frequency

- Frequency at 10 kHz
- Skin depth = 50 m
- Currents diffusing downward and outward

$$\delta = 503 \sqrt{\frac{\rho}{f}}$$

 $\delta = 503 \sqrt{\frac{\rho}{f}}$ Summary: Effects of Frequency

Layered earth

- 3 layers + air,
- ρ_2 varies

- Four different cases:
 - Halfspace

 $\rho_2 = 100 \ \Omega m$

- Resistive

 $\rho_2 = 1000 \ \Omega m$

- Conductive

 $\rho_2=10\;\Omega m$

- Very conductive $ho_2 = 1 \ \Omega m$
- Fields
 - J_y imag
 - Secondary B imag

Current density (J_y imag)

 $\rho_2=100\;\Omega m$

Current density (J_y imag) $\rho_2 = 100 \ \Omega m$ $\rho_2 = 1000 \ \Omega m$ 4.6e-08 4.6e-08 Halfspace Resistive 50 50 Current density (A/m²) Depth (m) 0.0e+00 0.0e+00 0 0 -50 -50 -4.6e-08 -4.6e-08

 $\rho_2 = 10 \ \Omega m$

 $\rho_2 = 10 \ \Omega m$

 $\rho_2=1~\Omega m$

B_z sounding curves

Dipole Sources: connection to logging

- Same physical principles as induction well logging
 - Induction logs: often in frequency domain
 - Source is in the earth rather than above

Back to the "shielding" problem

Resistivity models (thin resistive layer)

Currents and measured data at MN

Resistivity models (thin **resistive** layer)

Shielding: DC with conductive layer

Resistivity models (thin conductive layer)

Currents and measured data at MN

Shielding: EM with conductive layer

Shielding: EM with conductive layer

Shielding: EM with conductive layer

Outline

Setup

- Basic experiment
- Transmitters, Receivers

Time Domain EM

- Vertical Magnetic Dipole
- Propagation with Time
- Case History

Frequency Domain EM

- Vertical Magnetic Dipole
- Effects of Frequency
- Case History Groundwater, Minerals

Questions

Case History: Bookpurnong

Viezzoli et al., 2009

Setup

Bookpurnong Irrigation Area

5

Murray River Floodplain

1 km

Five

PRE-IMPLEMENTATION

POST-IMPLEMENTATION

salt interception wells (commissioned 2006)

55

50

35

30

25

20

15

10

8

Elevation

Source of image: Murray-Darling Basin Commission

Statestick

- pumping freshened
 shallow water near
 the river
- impractical to drill and sample the entire floodplain
- use airborne EM to quickly survey large areas

groundwater salinity measurement section

55

50

10

20

Properties

Location map for salinity measurements

Unit	Conductivity
Saline water	High, 3 - 5 S/m
Fresh water	Low, 0.01 S/m

Conductivity from salinity measurements

Survey

Resolve system (2008)

Flight lines

Horizontal Co-planar (HCP) frequencies:

- 382, 1822, 7970, 35920 and 130100 Hz

Vertical Co-axial (VCA) frequencies: - 3258 Hz Horizontal Co-planar

Horizontal Co-planar (HCP) data

Processing: 1D inversion

Data fit

37

Conductivity model (stitched) RESOLVE (depth = 8.6 m) $imes 10^{6}$ 6.2 0.5 -Osing Stream 6.199 Conductivity (log(S/m)) 0 (m) 6.198 Mouthing 6.197 -0.5 Gaining Stream -1 6.196 -1.5 6.195 -2 4.6 4.61 4.62 4.58 4.59 4.63 Easting (m) $imes 10^5$

Losing Stream

Gaining Stream

1 – Water table 2 – Unsaturated zone

3 – Saturated zone 4 – Flow direction

Synthesis

Hydrological model

Conductivity model (stitched)

Case History: Crosswell EM Monitoring a water flood in Dom João, Brazil

Michael Wilt and Ping Zhang Schlumberger EMI Technology Center Paulo Netto, Jorge L. S. Queiroz, Jaciara B. Santos and Valterlene Oliveira, Petrobras

2012

Setup: Dom João Oil Field

- Recôncavo is Brazil's largest on-shore oil basin
- Sedimentary Basin with multiple fields
 - Most production shallow <1km
- Dom João is the largest field
 - Sand/shale geology
 - More than 1 BBIs produced from 1947 from natural water drive
- Recovery factor disappointing
 - suspected to be due to incomplete sweep of the reservoir layers + reservoir complexity

Strategy-Pilot test and monitor pattern water injection

Setup: Dom João Oil Field

- Enhanced recovery program
 - Pilot Pattern Water flood established in 2008
 - 5 injectors 2 producers (vertical/sub vertical)
 - Perforation at reservoir unit A
 - Water injection starts at 2009
 - Injector casings are EM "friendly" (fiberglass)

Properties

- Injection water is recycled formation water
 - R_w=0.18 Ωm
- Baseline Unit A saturations:
 - $S_w = 30-60\%$
- Time lapse expected: $S_w = 65-90\%$
 - R from 15 to 7 Ωm (S_w = 65%)
 - R from 15 to 3 Ωm (S_w = 90%)

Archies' law:

- Assume m=n=2
- Rw=0.18 ohm-m
- Porosity=0.20

Survey: Time Lapse Crosswell EM

- Inductive source (VMD)
 - Used for fiberglass or uncased wells up to ~1km
 - If one well steel-cased, up to ~500m
- Interwell imaging is accomplished tomographically
 - 5 well pairs collected
 - Well spacing: 300-550m
 - Depth interval: 200-550m
 - 150 500 Hz
- Timeline
 - 2008: Baseline measurements
 - 2009: Injection starts
 - 2011: Time lapse measurements
- Ζ Usually 4 Rx

• Also: Time lapse induction logging

R

Data

- Expected crosswell EM responses
 - 10-12% for $S_w = 65\%$
 - 20-25% for S_w = 90%
- Data quality for both baseline and time lapse surveys were excellent
 - Time-lapse profiles repeat to 0.3%!

Magnetic field in 2011 survey

Data

- Expected crosswell EM ٠ responses
 - 10-12% for S_w= 65%
 - 20-25% for S_w= 90%
- Time lapse data show ٠ a consistent 2-5% data difference for profiles in the reservoir zone
- Good news: Clear ۲ anomaly on all 5 profiles
- Bad news: Anomaly ۲ much smaller than anticipated

Rx Position

Profile difference

5.00

4.00

2.00

0.00

-2.00

Data: Induction Logs

- Observe change from 10-15Ωm to 6-8 Ωm instead of 3 Ωm
 - Suggests that sweep is less than anticipated
 - Using Archie law and 7 Ωm suggests maximum Sw ~ 0.65
- Little difference in time lapse resistivity logs in Zone 2 → not swept?

Processing

- Make 3D Geological model from logs and other geophysical data
- Invert baseline data using geological model as a start
- Invert time lapse data using model from baseline inversion to start
- Analyze resistivity difference (final model – start model)

Processing: 2D inversions

200

225

2008 log 2011 log

200 × 300

3 500

600

- Resistivity "fence diagram"
- Shows percentage resistivity difference for all 5 sections over 2.5 years period
 - Consistently shows 5-30% decrease in reservoir zone
 - Larger changes in upper parts of the reservoir
 - Smaller decreases in other zones mainly along wells
- Swept zone extends roughly 50m from injectors

Maximum sweep radius per well:

- Total injection volume per well: ~80,000 m³
- Swept volume (S_v) : Injected volume / (porosity x Sw)
 - Porosity=0.2, S_w=0.65
 - $S_v \sim 600,000 \text{ m}^3$
- Assuming cylindrical sweep:
 - $S_v = p x r^2 x h$
 - where h=15m
- Expected swept radius: ~120m

3D image of swept volume

Synthesis

- Excellent data quality
 - The data repeat within 0.5%.
 - Baseline and TL data reveal 3-5% anomaly by direct differencing.
- Impact of the water injections: modest
 - Imaged swept area (~50m) smaller than anticipated, mostly in upper layer
 - Magnitude of the resistivity change is consistent with a $\rm S_w{=}0.65$ model
- Much of the injected water likely bypassing oil bearing layers → flood is progressing slowly

Case History: VTEM survey over the West Plains orogenic gold region

McMillan et al, 2014

Setup

- Ultramafic komatiite units
 - steeply dipping
 - gold mineralization
- Area covered by thin layer of glacial material (outcrops scarce)
- Geology map from regional mag. survey
 - Low resolution; No dip information about the komatiite units

How do we image thin, dipping conductors in 3D?

Properties

Units	Conductivity	Susceptibility
Komatiite	High	Moderate
Sediments	Moderate	Low
Granodiorite	Low	Low-Moderate
Tonalite	Low	Low-Moderate

Survey: VTEM

Current waveform

• VTEM (2003) system

Survey lines

- Line spacing: 120 m; except several lines in the North part (60 m)
- Line direction: 310 degree
- Transmitter diameter: 18.5 m
- Measured component: dBz/dt (26 time channels from 110-6340 µs)

Survey: RESOLVE

System

• RESOLVE (2005) system

Survey lines

- Line spacing: 60 m
- Line direction: 310 degree
- Co-planar: 385-115,000 Hz (5 frequencies)

Data: VTEM

- At 150 µs: strong conductivity anomalies
- Noise level: 5x10⁻¹² V/Am² (values below blanked-out)

Data: RESOLVE

- 115,000 Hz data contains near-surface information
- 385 Hz data similar to the VTEM data at 150 μ s

Processing: VTEM

- Voxel inversion
 - Starting model: 1000 Ω m
- Image conductors
- Smooth regularization blurs conductors at depth

How do we image thin, dipping conductors in 3D?

Processing: VTEM

- Parametric inversion
 - Parameterize dipping conductors as Gaussian ellipsoids
 - Invert for:
 - Resistivity: background and ellipsoid
 - Shape and location of ellipsoid

Processing: VTEM

Parametric inversion too simple to explain heterogeneous earth

Processing: Hybrid Inversion

• Voxel inversion using parametric inversion result as initial and reference model

Recovered conductivity (190m depth)

Interpretation: VTEM

- Voxel inversion: blurs conductors at depth
- Hybrid inversion
 - Dips recovered
 - Tighter boundary of the komatiite
 - Good agreement with gold grade

Hybrid inversion: vertical sections

Processing: RESOLVE

- Voxel inversion
 - Starting model: 1000 Ω m
- Image conductors
- Smooth regularization blurs thin conductors

Processing: RESOLVE

- Parametric inversion
 - Parameterize dipping conductors as Gaussian ellipsoids
 - Invert for:
 - Resistivity: background and ellipsoid
 - Shape and location of ellipsoid

Processing: RESOLVE

Parametric inversion too simple to explain heterogeneous earth

Processing: Hybrid Inversion

• Voxel inversion using parametric inversion result as initial and reference model

Interpretation: RESOLVE

- Voxel inversion: blurs thin conductors
 - Hybrid inversion
 - Dips recovered
 - Tighter boundary of the komatiite
 - Good agreement with gold grade

Synthesis

- TDEM and FDEM survey sensitive to conductors
- Hybrid inversion beneficial for imaging thin, dipping conductors

An example from DISC Tokyo

DISC Tokyo...

EM Geophysics using Drone Technology: AIST

Setup:

- Develop FDEM system for a drone
- Application: near surface geophysics problems
- Example: find automobiles buried in a landslide

Exploration image of buried vehicles at the site of sediment-related disasters by developed system

Survey equipment

Drone EM system

- System must be removed from the noise of the drone
- Sensor located 5 meters below drone

Data acquisition

System must be close to the ground (primary field $1/r^3$)

Fig. 4 Arrangement of the burial vehicle experiment site of the construction laboratory site Two buried mini vehicles are buried in the ground of 1.5 m depth and 3.0 m depth, respectively.

Data and interpretation

- In-phase and quadrature phase data recorded at multiple frequencies.
- Metallic objects have high induction number
- Signal is mostly in the In-phase part
- Plot amplitude: both cars imaged

Fig. 6 Exploration data by precision drone navigation measurement (measurement frequency 60

Logging While Drilling

A New Ultra-deep Azimuthal Electromagnetic LWD Sensor for Reservoir Insight

Hsu-Hsiang (Mark) Wu, Christopher Golla, Timothy Parker, and Nigel Clegg, Halliburton; Luc Monteilhet, ConocoPhillips

Outline

- Background and motive
- Principles of the ultra-deep electromagnetic resistivity tool
 - Tool design and concept
 - Improved one-dimensional (1D) inversion algorithm
- Geosteering service
- Field trials: depth of investigation(DOI) >200 ft
- Conclusions

Background: Electromagnetic Resistivity Measurements

Background: Induction Resistivity

Receiver

VRX

- 1. Current in the transmitter coil induces eddy currents in the formation
- 2. Induced current in the formation generates a magnetic field in receiver coils
 - Main coil
 - Bucking coil

Background: Propagation Resistivity

 Uses phase shift and attenuation because of skin depth to determine formation resistivity

Background: Ultra-deep Resistivity

- Combination of induction and propagation resistivity concepts
- 2) Multi-antenna subs with various separations
- 3) Multiple antenna orientations

Motive: Proactive Geosteering to Maximize Production

Principles: Tool Design and Concept

- T_{tilt} and $R1_{tilt} \sim R6_{tilt}$
 - High signal-to-noise ratio (SNR) and sensitive signals used in 1D distance to bed boundary (DTBB) inversion
- $T_{coaxial}$ and $R1_{tilt} \sim R6_{tilt}$
 - Pure raw signals to three-dimensional (3D) formations
 - 360° Imaging of ultra-deep azimuthal geosignal and resistivity

Principles: Tool Design and Concept—Azimuthal Signals

- Azimuthal phase and attenuation geosignal
 - Tx and Rx1 or Tx and Rx2
 - Ratio signal among 360° raw complex voltages

- Azimuthal phase and attenuation resistivity
 - Tx, Rx1 and Rx2

Principles: Improved 1D Inversion Algorithm

Geosteering Service

Field Trials: Trajectory of Two Wells

Field Trials: DOI > 200 ft

Field Trials: DOI > 200 ft

1D DTBB inversion of Well 1

Field Trials: DOI > 200 ft

Conclusions

- A new ultra-deep electromagnetic LWD tool is introduced
- It provides an improved 1D DTBB inversion algorithm
- Field trials to demonstrate DOI > 200 ft
 - Set a new performance benchmark
- More than 50 successful field runs have been performed in various locations

Acknowledgements

- PL018 partnership
 - ConocoPhillips Skandinavia AS
 - Total E&P Norge AS
 - ENI Norge AS
 - Equinor Energy AS
 - Petoro AS
- Colleagues at ConocoPhillips
- Halliburton
 - Ultra-deep resistivity team
 - Colleagues

Summary

waveform

Basic experiment

Footprint of an Airborne EM

VMD over a layered earth

AEM data over a target

97

Summary

waveform

Shielding

Case History: Kasted

Case Histories: Lalore, Wadi Sahba

Horizontal Magnetic Dipole

Summary

Distance (m)

Case Histories: Bookpurnong, Dom João,

Logging While Drilling

End of Inductive Sources

Additional Material

- Tutorial on UXO
- Case Histories:
 - Pole Mountain (UXO)
 - Austria (Landslides)

Unexploded Ordnance (UXO)

Unexploded Ordnance (UXO)

Definition: a munition that was armed, fired and remains unexploded

Sources:

- Regions of military conflict
- Munitions/bombing ranges •
- Avalanche control ٠

Countries Significantly Impacted by UXOs

Various Types of UXO

- Landmines
- Bombs
- Bombies (from cluster bombs)
- Rocket-propelled grenades (RPG)
- Hand-held grenades
- Mortars

How do we find UXO?

Magnetic Surveys: Locate Anomalies

- Analogue data
- Flag anomaly locations

Ferrex

- Digital data
- Look for magnetic dipoles

TM4

Magnetic Survey: Dig Anomalies

76 pagar

Digital UXO Location and Classification

Problem

- Most anomalies are not UXO
- Digging every anomaly is expensive

Goal

- Classify anomalies
- Dig only UXOs

Strategy

- Need more information than provided by magnetics
- UXO: composed of steel
 - conductive and magnetic
 - Use electromagnetics

Fundamental Physics: EM Survey

- Controlled source generates primary magnetic field
- Primary field induces eddy currents within UXO
- Eddy currents decay over time
- Eddy current produce a secondary field which decays over time

Fig. 260 Electromagnetic induction (EMI) survey for UXO location.

Fundamental Physics: EM Survey

- UXO responses modeled as magnetic dipoles
- Dipoles decay with time
- Rate of decay is indicative of the type of object
- UXOs have characteristic early, mid and late-time decay behaviours

Dipole Model and Polarization Tensor

• UXO response modeled as dipole:

$$\mathbf{b}_{\mathbf{s}}(t) = \frac{\mu_0}{4\pi} \left[\frac{3\mathbf{r} \big[\mathbf{r} \cdot \mathbf{m}(t) \big]}{r^5} - \frac{\mathbf{m}(t)}{r^3} \right]$$

- m(t) is dipole moment (decays with time)
- m(t) depends on:
 - 1. Orientation of the inducing field
 - 2. The polarization tensor

 $\mathbf{m}(t) = \mathbf{A^T} \mathbf{L} \mathbf{A} \mathbf{h_p}$

• The polarization tensor L:

$$\mathbf{L}(t) = \begin{bmatrix} L_1(t) & 0 & 0\\ 0 & L_2(t) & 0\\ 0 & 0 & L_3(t) \end{bmatrix}$$

Field and UXO coordinate systems \hat{z}

Time

111

Objects and Polarization Tensors

- Polarization tensor characterizes decay and provides information about dimensionality
- Sphere:
 - Polarization strength independent of primary field direction
 - L1 = L2 = L3
- UXO:
 - o Cylindrical in shape
 - Stronger polarization along primary axis
 - L1 > L2 = L3
- Non-UXO:
 - o Arbitrary shape
 - Polarization different along different orientations
 - $\circ \quad L1 \neq L2 \neq L3$

UXO Classification in Practice

- Survey area and pick targets
- Collect high-resolution data over a target
- Recover the elements of the polarization tensor
- Use the polarization tensor to infer information about the object's shape
- Match the recovered polarization tensor to those of object stored in a library to classify

To carry out inversion for polarization tensor need data:

- multiple transmitters (orientations)
- multiple components of data

Common Systems

Sensor	Geometry	Time channels
EM-61	0.4 § 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	$t_{min} = 0.2 ms$ $t_{max} = 1.5 ms$ N = 4
MetalMapper	1 5 0.5 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	$t_{min} = 0.1 ms$ $t_{max} = 10 ms$ $N = 42$
TEMTADS	1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 y(m) x(m)	$t_{min} = 0.1 ms$ $t_{max} = 20 ms$ N = 115
MPV	g 0.04 N -0.04 02 0.1 0 -0.1 y (m) -0.2 0.2 x (m)	$t_{min} = 0.1 ms$ $t_{max} = 20 ms$ N = 32
BUD	B 0 2 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0	$t_{min} = 0.1 \text{ ms}$ $t_{max} = 1.5 \text{ ms}$ N = 45

EM-61

MetalMapper

TEMTADS

MPV

BUD

114

Survey Design

Line and Station Spacing:

- Depends on dimensions and depth of targets and system being used.
- Insufficient sampling makes locating and classifying targets more challenging.

Excitation Orientation

- To recover polarization tensor, target must be polarized from as many angles as possible.
- May require multiple passes with single transmitter or use of multi-transmitter system.

Time Channels

• Sufficient time-channels required to characterize decay behaviour.

Example: Metal Mapper Data

- Polarizations indicate a cylindrical object
- Predicted data using recovered polarization tensor fits the observed data
- Recovered polarizations match those of a 37 mm projectile

Summary

- UXO are compact conductive permeable objects
- EM is ideal survey
- Requires multiple transmitters
 and receivers
- Processing yields polarization curves
- Discrimination

Field Example: Pole Mountain

History

- Periods of military use 1897-1961
- Many types of munitions (explosive projectiles, mortars, small arms)
- Land reclamation currently not possible

Goals:

- Test classification algorithm on different
 objects
- Determine dig/no dig list for targets

Location of Pole Mt., Wyoming, US

Field Example: Pole Mountain

EM61-MK2:

- Efficient over rugged terrain
- Single Tx and Rx loops
- Located 2,368 anomalies

Metal Mapper:

- Multiple Tx and Rx loops
- Cued interrogation data over anomalies
- Data used for classification and prioritize dig list

EM61-MK2 (locate anomalies)

Metal Mapper (cued interrogation)

Field example: Pole Mountain

- All 2,368 TEM anomalies were dug to verify
- 1,829 correctly identified as clutter or assigned to no dig through classification
- Only 453 non-munition items dug before all 160 munition items dug.
- 99% of munition items located within first ~300 digs
- Correctly identified all types of munititons.

Case History: Airborne geophysical mapping for landslide investigation

Supper et al., 2013

Setup

- Gschliefgraben area: most prominent recent landslide of Austria
- Clay layers absorb water → become a plane of weakness and result in a landslide
- SafeLand Project: evaluate airborne geophysics

Properties

Deformed variegated marl, claystone, (target unit)	2 – 30 Ωm
Claystone, marl	50 – 100 Ωm
Intermediate Sandstone	> 150 Ωm

Survey

- Multiple airborne sensors
 - Airborne EM
 - Gamma Ray
 - Magnetics
 - Passive Microwave

Survey: Airborne EM

- Frequency domain system
 - Frequencies: 340 Hz, 3200 Hz, 7190 Hz and 28 850 Hz
- Sensor height needs to be < 90 m
- Rough topography → flown only uphill (2x flight time)

Data & Processing

• Data inverted in 1D

resistivity 0 – 2m below surface

3 - accumulations of inactive earthflows

4 - inactive (old) landslides

2.5 - 5	25.1 - 30	50.1 - 55	120.1 - 135	250.1 - 300
<u> </u>	<u>30.1 - 35</u>	55.1 - 60	<u> </u>	300.1 - 350
10.1 - 15	[] 35.1 - 40	60.1 - 75	<u> </u>	350.1 - 500
15.1 - 20	🔲 40.1 - 45	<u> </u>	<u> </u>	500.1 - 750
20.1 - 25	— 45.1 - 50	<u> </u>	[11] 200.1 - 250	750.1 - 1000

Data & Processing

• Data inverted in 1D

resistivity 20m below surface

/ity [Ohmm]:			
25.1 - 30	50.1 - 55	<u> </u>	250.1 - 300
0 📃 30.1 - 35	55.1 - 60	<u> </u>	300.1 - 350
15 📃 35.1 - 40	60.1 - 75	<u> </u>	350.1 - 500
20 📃 40.1 - 45	75.1 - 100	<u> </u>	500.1 - 750
25 📃 45.1 - 50	<u> </u>	200.1 - 250	750.1 - 1000
	vity [Ohmm]: 5 25.1 - 30 10 30.1 - 35 15 35.1 - 40 20 40.1 - 45 25 45.1 - 50	vity [Ohmm]: 5 25.1 - 30 50.1 - 55 10 30.1 - 35 55.1 - 60 15 35.1 - 40 60.1 - 75 20 40.1 - 45 75.1 - 100 25 45.1 - 50 100.1 - 120	vity [Ohmm]: 5 25.1 - 30 50.1 - 55 120.1 - 135 10 30.1 - 35 55.1 - 60 135.1 - 150 15 35.1 - 40 60.1 - 75 150.1 - 175 20 40.1 - 45 75.1 - 100 175.1 - 200 25 45.1 - 50 100.1 - 120 200.1 - 250

Landslide	inventory	:
-----------	-----------	---

- 1 active landslides
- 2 dormant landslides
- 3 accumulations of inactive earthflows
- 4 inactive (old) landslides

Interpretation

- 2 30 Ωm contour delineates the Buntmergelserie
 - landslide inventory map shows recent landslides are associated with Buntmergelserie
 - Low resistivities show this is most incompetent unit
- Buntmergelserie: highly tectonised
 - Anti-synclinal fold
 - Strongly west-east dipping axis

resistivity 20m below surface

Synthesis

- Airborne EM provided better understanding of the spatial and depth structure of geologic units
- Available model for landslides was significantly improved
 - helped to design proper location of sensors for early warning network for the Gschliefgraben area

