EM: Grounded Sources

Outline

- Basic experiment
- TDEM: Electric dipole in a whole space
- FDEM: Electric dipole in a whole space
- Currents in grounded systems
- Conductive Targets
- Resistive Targets
- Case History: Deccan Traps
- Marine CSEM: Overview
- Case History: Offshore Hydrocarbon De-risking
- Case History: Methane hydrates
- DC/EM Inversion

Motivational examples

Oil and Gas (EOR) Methane hydrates

Galvanic source TEM

- LoTEM (ground)
- HeliSAM (Rx in the air)
- GREATEM (Rx in the air)

Minerals

Volcanoes

4

- Electric dipole in a whole space
	- DC, 0.01 S/m

DC current density

$$
-20\begin{array}{c|c}\n & \text{profile} \\
-20 & 20 \\
 & \text{for } \\
 &
$$

Ix hole

Rx hole

40 20 $\frac{1}{2}$ (m)

$$
\mathbf{E}_{DC}(\mathbf{r}) = \frac{1}{4\pi\sigma|\mathbf{r}|^3} \left(\frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{|\mathbf{r}|^2} - \mathbf{m} \right)
$$

$$
\mathbf{J}_{DC}(\mathbf{r}) = \frac{1}{4\pi |\mathbf{r}|^3} \left(\frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{|\mathbf{r}|^2} - \mathbf{m} \right)
$$

- Geometric decay: $1/r³$
- Current path is geometric for homogeneous earth
- Electric field is dependent upon σ

TDEM vs. FDEM

- Waveform: Shut off
- No primary
- Measure in "Off-time"

- Waveform: harmonic
- Primary always on
- Data partitioned into
	- Real (In-phase)
	- Imag (Quadrature)

t=10⁻⁴ ms, d = 4 m f=10⁴ kHz, δ = 2 m $\sqrt{2t}$ $\sqrt{2}$ $d =$ $\delta=$ $\mu\sigma$ Re (J) – Re (J^{DC}) j $10^{-0.4}$ 40 40 $10^{-2.0}$ 20 20 $Z(m)$ $10^{-3.6}$ 0 Ω -20 -20 $10^{-5.2}$ -40 -40 $10^{-6.8}$ 20 40 60 80 -20 20 40 60 -20 0 $X(m)$ $1 d$ 1 δ

 $\frac{\textcolor{red}{\mathbf{I}}}{\omega\mu\sigma}$.

 $10^{0.4}$

 $10^{-1.4} \begin{array}{c} \widehat{ } \\[-1.2mm] \widehat{ } \\[-1.2mm] 10^{-3.2} \end{array} \begin{array}{c} \widehat{ } \\[-1.2mm] \widehat{ } \\[-1.2mm] \widehat{ } \\[-1.2mm] 10^{-3.2} \end{array}$

 $10^{-6.8}$

80

t=10⁻³ ms, d = 13 m kHz, δ = 5 m $\sqrt{2t}$ $d =$ $\mu\sigma$ j Re (J) – Re(J^{DC}) $10^{-4.4}$ 40 40 $10^{-5.0}$ 20 20 $Z(m)$ $10^{-5.6}$ $\pmb{0}$ Ω -20 -20 $10^{-6.2}$ -40 -40 $10^{-6.8}$ -20 $\pmb{0}$ 20 40 60 80 -20 $1 d$ 1 δ

t=10⁻² ms, d = 40m f=10² kHz, δ = 16 m $\sqrt{2t}$ $\sqrt{2}$ $d =$ $\delta=$ $\frac{\textcolor{red}{\mathbf{I}}}{\omega\mu\sigma}$. $\mu\sigma$ j Re (J) – Re(J^{DC}) $10^{-5.6}$ 40 40 $10^{-6.2}$ 20 20 $Z(m)$ $10^{-6.9}$ $\,0\,$ 0 -20 -20 $10^{-7.5}$ -40 -40 $10^{-8.1}$ -20 $\pmb{0}$ 20 60 80 -20 $\mathbf 0$ 20 40 60 $X\left(\mathsf{m}\right)$ $1 d$ 1 δ

 $10^{-4.1}$

 $10^{-4.7}$ \approx $10^{-5.4}$
 $10^{-5.4}$ $10^{-6.1}$ $10^{-6.1}$

 $10^{-6.8}$

80

 $\sqrt{2t}$ $d =$ $\mu\sigma$ $10^{-7.2}$ 40 $10^{-7.3}$ 20 $Z(m)$ $10^{-7.3}$ 0 -20 $10^{-7.4}$ -40 $10^{-7.5}$ -20 $\boldsymbol{0}$ 20 40 60 80 $X(m)$

 $\sqrt{2t}$

Summary: Dipole in a whole space

Currents diffuse into the earth

 $10^{-4.4}$ 40 $\sqrt{2t}$ $10^{-5.0}$ $10^{-5.0}$ $10^{-5.6}$ $10^{-6.2}$ UH and the density (A/m 2) $d =$ 20 $\mu\sigma$ $Z(m)$ Ω -20 -40 $10^{-6.8}$ 20 40 60 80 -20 $\mathbf 0$ $X(m)$ $\sqrt{2}$ $\delta = 1$ $10^{-7.2}$ $\frac{\textcolor{red}{\mathbf{I}}}{\omega\mu\sigma}$ 40 10^{-7.3}

10^{-7.3}

10^{-7.3}

10^{-7.4}

10^{-7.4} 20 -20 -40 $10^{-7.5}$ -20 $\mathbf 0$ 20 40 60 80

 $X(m)$

Early time High frequency

Bipole Sources

- Extended line sources
	- Grounded term (galvanic) + wire path (inductive)
	- Straight line

B A

Grounded Sources: On the surface

- Ability to detect target depends on
	- Geometry, conductivity of target & host
	- Geometry of TX
	- Frequency or time
	- Fields and components measured
		- e, b, db/dt
	- Location of Tx and Rx with respect to the target
- Lots of variables...
	- Use an example to highlight important concepts

- $\rightarrow \bullet$ t = 0⁻ Steady state
	- \bullet t = 0 Shut off current
	- $t = 0^+$ Off-time

What happens when we shut the system off?

#1 Wire path

- Immediately after shut off: image current at the surface
- Successive time: currents diffuse downwards and outwards

#2 Ground currents

- Immediately after shut off: ground currents are still there
- Successive time: currents diffuse downwards and outwards

Grounded Source: Halfspace Currents

- Parameters:
	- halfspace (0.01 S/m)
	- t=0⁻, steady state

Grounded Source: Halfspace currents

• Cross section of currents, $t = 0.04$ to 10 ms

Grounded sources: with a target

- Block in a halfspace
	- DC
		- Good coupling if $h < r_{AB}$

- Vortex currents
	- Good coupling (magnetic fields)
	- Good signal for conductor
	- Resistor more difficult
- Galvanic currents
	- Good coupling (electric fields)
	- Good signal for conductor and resistor

- Grounded wire
	- A conductor (1S/m) in a halfspace (0.01 S/m)
	- t=0⁻, steady state

- Grounded wire
	- A conductor (1S/m) in a halfspace (0.01 S/m)
	- $-$ 0.04 ms, d = 80 m

- Grounded wire
	- A conductor (1S/m) in a halfspace (0.01 S/m)
	- $-$ 0.1 ms, d = 126 m

- Grounded wire
	- A conductor (1S/m) in a halfspace (0.01 S/m)
	- -1 ms, d = 400 m

- Grounded wire
	- A conductor (1S/m) in a halfspace (0.01 S/m)
	- -10 ms, d = 1270 m

50 100 150

 $-3.1e-11$

 $-150 - 100 - 50$

 $-3.3e-10$

 $\overline{0}$

 $X(m)$

 $-150 - 100 - 50$ 0 50 100 150

 $X(m)$

34

50 100 150

 $-150 - 100 - 50$

 $\overline{0}$

 $X(m)$

 $-1.2e-12$

Resistor: currents

- Grounded wire
	- $-$ A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
	- t=0⁻, steady state

- Grounded wire
	- $-$ A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
	- $-$ 0.04 ms, d = 80 m

- Grounded wire
	- $-$ A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
	- $-$ 0.1 ms, d = 126 m

- Grounded wire
	- $-$ A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
	- -1 ms, d = 400 m

- Grounded wire
	- $-$ A resistor (10⁻⁴ S/m) in a halfspace (0.01 S/m)
	- -10 ms, d = 1270 m

EM induction (galvanic current)

EM induction (galvanic current)

Galvanic current $t = 0$

Galvanic current

 $t = 10$ ms

 -300

 -350

 $-150 - 100 - 50$

50 100 150

 \circ

 $X(m)$

 $0.0e-0.8$

Data: e_x field

Data: b_y field

Data: b_z field

Data summary

45

Geometric Complexities

• Coupling: Back to finding thin plates...

- DCR: good coupling
- EM: good coupling

- DCR: poor coupling
- EM: poor coupling
- Arbitrary target requires multiple excitation directions
- Forward simulations necessary

Grounded Sources: Summary

- Basic experiment
- TDEM: Electric dipole in a whole space
- FDEM: Electric dipole in a whole space
- Currents in grounded systems
- Conductive Targets
- Resistive Targets
- Case History: Deccan Traps
- Case History: Offshore Hydrocarbon De-risking
- Marine CSEM: Overview
- Case History: Methane hydrates
- DC/EM Inversion

Grounded sources: two examples

- Land EM
	- Large offset time domain system
	- Looking for sediments below basalts

- Marine EM (towed Tx, Rx array)
	- Multiple transmitters, frequencies
	- Looking for a resistive target

Case History: Mesozoic sediments beneath Deccan traps, India

Strack and Pandey, 2007

Setup

Previous DCR survey (ONGC)

Resistivity section

• Sediments exist but unclear where and how thick. Interpretation weak

Survey

Map **Map Long offset time domain EM (LOTEM)**

- Rx component: Ex, Ey, and Hz
- # of Tx: 10
- Tx current: 400 A (full-duty cycle)

Survey design: basalt thickness

• Apparent resistivity changes with varying thickness of Deccan Traps: 1.5, 2 and 3 km

Survey design: sediment resistivity

• Apparent resistivity changes with varying resistivity of Silurian **Sediments**

Data

- Stacked data
- Time range: 1ms-10s
- High S/N ratio until 1s
- Similar to synthetic data

Processing

1D inversions (stitched) Location map

The sediment thickness:

- Largest at L
- Smallest at K

Interpretation: sediment conductance and drill target

Synthesis

-3400

Controlled-Source Marine EM (CSEM)

Application areas

- Oil and gas
- Submarine massive sulfide (SMS)
- Methane hydrates
- Tectonic studies
- Offshore UXO
- Offshore groundwater

Application with physical properties

Resistive target: hydrocarbons

Resistivity (Ωm)

- Finding resistor: grounded source
- Deep target
	- Long offset between Tx and Rx
	- Depth of investigation ~1/3 Tx Rx offset

Conductive Target: Massive sulfide

Resistivity (Ωm)

- Galvanic source
	- Towed E-field receivers
- Inductive source
	- Towed on ROV
	- db/dt sensors (coil)

Transmitters

Geometric Decay
$$
\frac{1}{r^3}
$$
 EM Attenuation $\delta = 500\sqrt{\frac{\rho}{f}}$

Receivers

Data

- Ex, Ey, (Recently: Ez)
- Bx, By, Bz

Common Systems

- Scripps: Vulcan and Porpoise
- PGS
- **EMGS**

Ocean Bottom Nodes (Scripps, EMGS)

Inductive Loop (Waseda Univ)

Marine CSEM: Hydrocarbons

- Towed electric dipole streamer
	- Long offset range (500m-10 km)
	- Frequency: 0.5 Hz

 10^{-1}

 $10⁰$

 10^{1}

Resistivity $\rho_h(\Omega m)$

 $10²$

Marine CSEM: Hydrocarbons

- Towed electric dipole streamer
	- Long offset range (500-10 km)
	- Frequency: 0.5 Hz

Hydrocarbon reservoir: significant signal How do we understand the response?

Setup

Sediment

Hydrocarbon

Resistivity

(1) Airwave

(4) Reservoir (HC)

(3)

Which fields to examine?

Fields from a dipole

Focus on:

- Inline electric field
- Inline poynting vector Z (energy propagation)

$$
\mathbf{\bar{S}} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}
$$

Electric field

Poynting vector

On XZ plane (HED source in x-direction)

Fields at time: 0.016s

Poynting vector **Poynting** vector **Peak velocity**

$$
v = \sqrt{\frac{\rho}{2\mu t}}
$$
Fields at time: 0.03s

Poynting vector

Peak velocity

$$
v = \sqrt{\frac{\rho}{2\mu t}}
$$

Fields at time: 0.08s

Poynting vector **Poynting** vector **Peak velocity**

$$
v = \sqrt{\frac{\rho}{2\mu t}}
$$

Fields at time: 0.10s

 v $\sqrt{\rho}$ $\overline{2\mu t}$

Fields at time: 0.32s

Poynting vector **Poynting** vector **Peak velocity**

$$
v = \sqrt{\frac{\rho}{2\mu t}}
$$

Amplitude vs offset

- Time snapshots tell us about
	- where energy is travelling
	- something about propagation speed

- What about amplitudes?
- Work in frequency domain

Amplitude: Electric dipole in a wholespace

Amplitude: Electric dipole in a wholespace

Amplitude vs Offset

General CSEM

- Fields are 3D: All three components exists
	- $-$ Ex, Ey, Ez
	- Bx, By, Bz
- Inline (Ex, Ez, By)
	- Electric field crosses the HC layer boundary
	- Galvanic dominates
- Broadside (Ex, By, Bz)
	- No vertical electric field (no charge build up)
	- Inductive dominates

Χ

82

Υ

Reservoir

Measured data: inline and broadside

Measured data: inline and broadside

Marine CSEM App

– 4 layers

– E, H Fields

http://em.geosci.xyz/apps.html

Equivalence: resistivity-thickness product

- Electric fields are sensitive to resistivity-thickness product
- Reduce non-uniqueness with better data coverage, more components, other information (e.g. seismic)

Equivalence: resistivity-thickness product

- Electric fields are sensitive to resistivity-thickness product
- Reduce non-uniqueness with better data coverage, more components, other information (e.g. seismic)

Anisotropy

- Sediment could have vertical anisotropy
- $\rho_v > \rho_h$: |Ex| larger at far offsets

Anisotropy

- Significant impact to signal from reservoir
	- need to account for this when interpreting marine CSEM data

Finding conductors

Resistivity (Ωm)

Source: towed

- Galvanic source
- Inductive source
- Receivers: (towed)
	- E-field
	- B-field

TDEM Horizontal Loop App

- TDEM
	- 4 layers
	- Fields, currents
	- Plot time decays

<http://em.geosci.xyz/apps.html>

Summary

- Generic CSEM survey
- Wave and energy propagation
- Transmitters: galvanic or inductive
- Receivers: E-field, B-field: fixed or moving
- Canonical hydrocarbon example
- Useful for finding conductors or resistors
	- Hydrocarbons
	- Gas hydrate
	- Sea floor massive sulfides
	- Sea floor UXO
	- Near surface geologic structure
	- Fresh water aquifers

Case Histories: Hydrocarbon De-risking Gas Hydrates

Case History: Barents Sea

Alvarez et al., 2016. Rock Solid Images

Setup

- Known hydrocarbon reservoirs within the Hoop Fault Complex, Barents Sea.
- Seismic can locate oil and gas reservoirs but cannot always determine hydrocarbon saturation (in particular fizz gas)
- Seismic, borehole and CSEM data used to characterize reservoir
	- fluid, porosity, clay content, and hydrocarbon saturation

- Highly hydrocarbon-saturated reservoir (< 30% water-wet) significant resistivity
- CSEM can differentiate high from low quality reservoirs

Survey

Towed CSEM and 2D seismic **Survey Lines** Survey lines

- 6 lines of 2D seismic and towed streamer CSEM data.
- 72 receivers collected CSEM data
	- offsets from 31m to 7.8 km
- CSEM frequencies: 0.2 Hz to 3 Hz.

CSEM Data

Survey lines

Towed-streamer EM

• Significant phase response over Central reservoir

Seismic data

Seismic section: Line 5001

Well-Log and Seismic Inversion

7324/8-1

(Central)

7324/7-2 7324/7-1S

(Hanssen) (Alternative)

Litho-fluid Facies

Clay Content

Shale 0.7500 [fraction] 0.5000 0.2500 sol 0.0000 0.2000 [fraction] 0.1500 0.1000 0.0500 0.0000 ∧ Hanssen **Central** Bjaaland **Alternative** Validation well Validation well Control, productive Control, dry

Total Porosity

Projection of 7324/8-2

(Bjaaland)

A

Clean oil or fizz gas sand

Clean wet sand or shaly oil sand or shalv wet sand

Revisiting physical properties

Processing: CSEM Inversion

• Inversion shows strong resistor at Central and a secondary resistor at Hanssen.

Processing: Multi-physics Approach

Litho-fluid Facies

Clay Content

Total Porosity

Resistivity

102

Interpretation & Synthesis

Seismic

Hydrocarbon saturation

103

Methane Hydrates

[Courtesy of Geomar](http://worldoceanreview.com/en/wor-3-overview/methane-hydrate/formation/)

Case History: Hydrate Ridge offshore Oregon, USA

Weitemeyer et al. 2011

Methane hydrate

Hydrate Ridge, offshore Oregon

- On the accretionary complex of the Cascadia subduction zone
- Bottom simulating reflector (BSR)
	- Obtained from seismic reflection data
	- Acoustic impedance contrast between hydrate and free gas

Questions

- Can existing marine CSEM techniques be adapted to map methane hydrates?
- Can resistive regions identified by CSEM be corroborated with other geophysical and geological data?

Properties

Types of hydrate

Disseminated. 1249C-2H 1, 108-140 cm

 $\frac{N}{124}$ 4C-10H 2, 70103 cm Е

Massive 1249 C-1H-CC)

Vein 1244C-8H-1, 47-52 m

Fig 8C p. 43, in the "Ste 1249 chapter)

Shipboard Scientific Party Chapter 2, Explanatory Notes Ocean Drilling Program (ODP) Leg 204 Figure F11, page 78

Resistivity vs. Hydrate saturation

Survey design

Marine CSEM survey **E-field anomaly** Normalized inline electric field 300
200 Magnetotelluric source fields $\overline{7}$ 100
70
50 Below noise floor Air (resistive) 5 $\frac{30}{20}$ Frequency (Hz) Frequency (Hz) $\begin{array}{c} 10 \\ 7 \\ 5 \end{array}$ 3 **CSEM** Transmitter Seawater (very conductive) $\frac{1}{2}$ \overline{c} $\frac{3}{2}$ Electric and magnetic field recorders GHSZ 1 0.76 $\begin{bmatrix} 0.3 \\ 0.2 \end{bmatrix}$ Seafloor (variable conductivity) 0.1 Weitemeyer et al., TLE 2006 500 1000 1500 2000 2500 3000 3500 4000 Weitemeyer et al., TLE 2006 Range (m) L • Tx frequency: 5 Hz HMS Kang• Range of offset: 0 - 3 km

• Noise level: 10^{-15} V/A-m²

Survey

from Weitemeyer 2008 PhD Thesis

- CSEM (5Hz)
	- Receivers deployed on ocean bottom (MT and Ez)
	- 2 tow lines
- \cdot CSMT (0.1 Hz)
	- Tow line further away from receivers

Processing: pseudo-section

- pseudo-section:
	- fixed ocean resistivity
	- find effective subsea resistivity

Processing: 2.5D inversion

- Variable ocean σ
	- assign conductivity from CTD data (conductivity, temperature, depth)
- Significant near surface resistivity structure on the west
- Seismic image overlaid on the resistivity

Interpretation: 2.5D inversion

- Resistors are imaged near BSR
- Hydrate stability
	- Above BSR: hydrate
	- Below BSR: free gas

Interpretation / Synthesis

DC/EM Inversion

DC/EM: Goals

- Standard DCR time domain waveform
- Compare:
	- Inversions from DC data
	- Inversions from EM data
- Illustrate the value of data which is often discarded
- Numerical example from a gradient arrary

Survey and Data

Transmitter Measured Voltage

Gradient array

- Model
	- A1: high conductivity
	- A2: moderate conductivity
	- A3: resistive
- Survey
	- 200m bi-pole (625 data)
	- times: 1-600ms

DC data

• TDEM data

Off-time data

 $1.9e-02\overline{\smash{\big)}\smash{\big)}\vphantom{\big|}}_{\substack{\text{D}}\text{O}}$

1.1e-02

 $10³$

1000

• E_x Decay curves at A1-A3

DC inversion

• Recovered 3D conductivity

Apparent conductivity

- Depth weighting
	- Compensate for high sensitivity near surface (similar to mag.)

EM inversion

• No depth weighting

Conductivity models

• True, DC, and TEM conductivities

2000

1500

1000

500

 \mathbf{C}

 -500 -1000

 -1500

 -200

 -600
 -800
 -1000

 -1200 -1400

 -200
 -400
 -600
 -800

 -1000
 -1200
 -1400

 -2000

 -2000

 $10^{-3.0}$

 -1000

 -1000

Depth (m) -400

Depth (m)

Northing (m)

 1.4 DC datum $\overline{}$ Observed (+) 1.2 -- Observed (-) Normalized potential (V/V) 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 EM data -0.4 1000 2000 3000 4000 Time (ms)

EM data contain signal

Summary

Summary

Marine CSEM

Marine CSEM for hydrocarbons

End of Grounded Sources

