
Inverse Theory
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Inversion

Inversion
processing

Model Inversion estimates Earth models 
based upon data and prior knowledge.

?

Data

Measurements over 
the Earth are data.
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Forward problem

• Symbolically:

– : forward modelling operator

– : physical property

– : simulated data

• Two cases for mapping:

– Linear:

– Nonlinear: equality does not hold
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m di

d = F [m]

F [m] = d

d = F [m]

m

d

F [c1m+ c2m] = c1F [m] + c2F [m]



Linear problem

– : j-th datum

– : kernel function for j-th datum

– : model
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dj =

Z

v
gj(x)m(x)dx

dj
gj

m

dj = g ·m = 4.89

Evaluate product:



The linear problem can be in higher dimensions
• Cross well tomography

• Or magnetics

5

Surface

Source

Receiver

�j

B(r) =
µ0

4⇡

Z

V

rr 1

|r� ro|
· H0dv,

x

z

tj =

Z

�j

s(x, z)dlTravel time:

s(x, z) : slowness

dl

(x, y, z) is 3D susceptibility



Solving the forward problem: linear

• Discretize the earth

• Evaluate:
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dj =

Z

v
gj(x)m(x)dx

d = Gm



Nonlinear problem

• : Maxwell’s operator

– DC

– Time domain

– Frequency domain

– 1D, 2D, 3D

• Examples

– DC:

– or EM:
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F [m] = d
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�

VMD VMDTx Rx



Nonlinear problem

• Examples

– DC:

– or EM:

• Solve

– Discretize Maxwell’s equations onto a mesh

– Solve system to find fields (e.g.           )

– Evaluate Datum: 

• Lot of details

– size of cells

– size of mesh

– …
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Linear inversion app (demo)

• It will help us 

– Develop a model

– Consider kernels

– Generate data

• Model: 

• Kernels (physics):

• Data:
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m(x)

dj =

Z

v
gj(x)m(x)dx

http://em.geosci.xyz/apps.html

http://em.geosci.xyz/apps.html


Models with the app (demo)

• Start with 1D model

– Conductivity changes with depth

• In the app this is here:
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Analogy with 1D frequency domain EM
• FDEM system (Resolve)

• Signals: sinusoids at 5 frequencies

• Penetration depth depends upon 
frequency

• Measurements are fields from buried 
conductors
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Low 
frequency

High 
frequency

Resolve system (2008)

HCP frequencies:
382, 1822, 7970, 35920 and 130100 Hz



Kernels with the app (demo)
• Kernels for FEM are decaying sinusoids

• How many kernels for FEM?

– MAXMIN: 8 or 10 frequencies, in-phase & quadrature

– Resolve:  In-phase & quad,  5 frequencies
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Discretize the app’s data and kernels

• Datum is defined as:

• For discretized model:

• In matrix form:
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0
X1

X2

XM

m2

m1

mM

…
 

Discretized model

100 layers in the app

XM-1

m = (m1,m2, ...,mM )

di =

Z 1

0
gi(x)m(x)dx

di =

Z X1

0
gi(x)m1dx+

Z X2

X1

gi(x)m2dx+ ...

=
MX

j=1

⇣Z
gi(x)dx

⌘
mj

d = Gm G: (N ⇥M) matrix
d: (N ⇥ 1) vector
m: (M ⇥ 1) vector



Real observation includes noise

• Data in the app:
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d = Gm

dobs = d+ noise



Real observation includes noise

• Data in the app:
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d = Gm

dobs = d+ noise

shows noise level



Inversion
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Model

?

Data
Inversion
processing



Inverse problem

• Observed data: 

• Uncertainty:

• Ability to simulate data:

• Find the model which fits the observation

• For linear problem:
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m di

F�1[d]

dobsi , j = 1, 2, ..., N

✏j
F [m] = d

Gm = d
m 2 RM

d 2 RN

G 2 RN⇥M

M > N

more unknowns than data 
(underdetermined system)



Inversion using Misfit criterion
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Forward modelling

Data

Noise

Gm = d

dobs = d+ ✏
dobs = d+ ✏

• Gaussian errors with standard deviation, 

• Misfit measure:

• Expected value of       is

• Data are fit when

✏j

�⇤
d: target misfit

E[�d] = N�d

�⇤
d = N

�d =
NX

j=1

⇣dj � dobsj

✏j

⌘2

�d ' �⇤
d



Inversion with misfit only
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Compare

Accept model Modify try again

YES NO

dobs Inversion m

Adjust 
parameters

�d < �⇤
d

F [m] = d

d

?

�d =
NX

j=1

⇣dj � dobsj

✏j

⌘2



Inversion app (demo)
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• Use accurate data and show 
the effects of reducing the 
data misfit (set αs=2e-12)

• Add a bit of noise and repeat 
the process. 



Acceptable models and non-uniqueness

• There are infinitely many models that could generate the 
data

• Why?

– # of model parameters (M) > # of data (N)

– Physics based non-uniqueness

• Conductance (magnetotelluric)

• Resistivity-thickness product (DC)

• Equivalent layer (magnetics)

• …
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Same conductance (σt)



Example non-uniqueness: DC resistivity
• Oldenburg and Li (1999)
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Resistivity

Synthetic data

Recovered resistivity



Example non-uniqueness: DC resistivity
• Oldenburg and Li (1999)
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Resistivity

Synthetic data

Recovered resistivities

*All models fit the data well!



The basic problem of non-uniqueness

• Each datum is a volumetric response

• Data are

• In the app

– M=100

– N=20

– So, M>N (underdetermined problem) à infinitely many solutions
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di =
MX

j=1

Gijmj

d = Gm G : (N ⇥M)



Questions to consider

• Consider the simple problem that involves two unknowns: x and y

– We have one datum: x + y = 2

• What is the value of x and y?

– (1,1)

– (2,0)

– ….
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Any point here 
satisfies x+y=2



How to pick one of infinitely many solutions?

Use prior knowledge

• Geophysical:
– Values are positive, and/or within bounds 

– Physical Properties:  Estimates for host rock properties

– Point-location values from drill hole information

• Logical:
– Find a “simple” result (as featureless as possible)

• Geologic:
– Character of the model (smooth, sparse, blocky) 

– Some idea of scale length (or size) of the bodies

– Structural constraints
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Using prior information to choose optimal models

• Recall we are building an automated decision-making scheme

• Encode prior knowledge in a form that can be optimized

• i.e. build a mathematical ruler to test sizes of possible models, 
then choose the “smallest”

• The people-in-the-room analogy
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Angela

Lindsey

You?

Seogi Doug



Feasible model norms

• What “measures on the model” can be implemented?

– “Size of the model”

– “Flatness of the model”

• Consider the 4-parameter problem:

– 4 unknowns: (m1, m2, m3, m4)

– 2 data: (6, 2)

• It is underdetermined problem, so there is no unique solution

• For possibilities work as well as more…
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m1 + 2m2 �m3 +m4 = 6

�m1 +m2 + 2m3 �m4 = 2

mA = ( 2.000, 2.000, 2.000, 2.000)

mB = ( 0.444, 2.622, 0.133, 0.444)

mC = (�2.408, 2.630, 0.109, 3.256)

mD = ( 2.002, 2.846,�0.537,�2.239)



Choosing from many solutions
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�m

datum

va
lu

e

Model element

va
lu

e
�m = kdm

dx
k2 =

3X

j=1

(mj+1 �m2
j )

• Define a ruler to measure the model, and call it

• Values of the model can be plotted

• What norms or rulers are sensible?

• Norm #1:

– Smallness: sum of squares

�m = kmk2 =
4X

j=1

m2
j



Model element

va
lu

e

Choosing from many solutions

• Define a ruler to measure the model, and call it

• Values of the model can be plotted

• What norms or rulers are sensible?

• Norm #1:

– Smallness: sum of squares

• Norm #2:

– Smoothness: differences between adjacent model values
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�m

�m = kdm
dx

k2 =
3X

j=1

(mj+1 �m2
j )

�m = kmk2 =
4X

j=1

m2
j



Numerical examples

• Use smallest model norm

• Use flattest model norm
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mB = ( 0.444, 2.622, 0.133, 0.444)

mC = (�2.408, 2.630, 0.109, 3.256)

mD = ( 2.002, 2.846,�0.537,�2.239)

�m = kmk2 =
4X

j=1

m2
j

�A
m = 16.00

�B
m = 7.29

�C
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�D
m = 17.41
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�D
m = 15.05



Numerical examples

• Use smallest model norm

• Use smoothest model norm
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Model norms
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Smallest model:

Smallest with reference:

Smoothest model:

Combination:

Discretize:

�m =

Z
m2dx

�m =

Z ⇣dm
dx

⌘2
dx

�m =

Z
(m�mref )

2dx

�m = ↵s

Z
(m�mref )

2dx+ ↵x

Z ⇣dm
dx

⌘2
dx

�m = ↵skWs(m�mref )k22 + ↵xkWx(m)k22



Combining misfit and model norm
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• A statement of the inverse problem is: 

Find the model m that 

– produces an acceptable misfit (               )

– minimizes the model norm, 

• Re-cast as an optimization:

• : trade-off (Tikhonov) parameter

minimize �d + ��m

where 0 < � < 1
minimize �d + ��m

where 0 < � < 1

�m

�d < �⇤
d

�



The role of

Analogy: an optimization problem with two requirements

• Travelling from A to B

– minimize time taken

– minimize fuel consumption

•
– both time and fuel consumption are functions of speed

• : minimize time (regardless of fuel)

• : minimize fuel (but still get there)
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�

� = time + � · fuel

Vancouver

Calgary

� = 0

large �

� ! 0

� ! 1



• A typical problem might be:

– Minimize fuel consumption

– Subject to getting there in 16 hours
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The role of �

� ! 0

� ! 1

T=16 hours

Vancouver

Calgary

� = time + � · fuel

�d

�m

�d �m

�⇤
d



Tikhonov curve

The role of     : managing misfit

• Our inverse problem
– Find the model (m)

– Which beta to use?

– If standard deviations of data are known, 

– Desired misfit is

– Choose      so that 
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�

minimize �d + ��m

where 0 < � < 1

E[�d] = N E[�d] : expected value of �d

� �d(m) = �⇤
d

�⇤
d ' N



Inversion App (demo)
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is the trade-off parameter

• Solve:

• too large à underfitting

– Structural information lost

• too small à overfitting the data

– Noise becomes imaged as structure

• just right (                   ) à optimal fit

– Best estimate of a model which adequately re-creates the 
observations
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�
minimize �d + ��m

where 0 < � < 1
�

�

� �d(m) ' N

Tikhonov curve



is the trade-off parameter

• Solve:

• too large à underfitting

– Structural information lost

• too small à overfitting

– Structure created to fit noise

• just right (                   ) à optimal fit

– Best estimate of a model which adequately re-creates the 
observations
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�
minimize �d + ��m

where 0 < � < 1
�

�

� �d(m) ' N

Tikhonov curve



is the trade-off parameter

• Solve:

• too large à underfitting

– Structural information lost

• too small à overfitting

– Structure created to fit noise

• just right (                   ) à optimal fit
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�
minimize �d + ��m

where 0 < � < 1
�

�

� �d(m) ' N

Tikhonov curve



Flow chart for inverse problem
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Given:

- Field observations

- Error estimates

- Ability to forward model

- Prior knowledge

Choose a suitable 

misfit criterion

Design model

objective function

Discretize the Earth

Perform inversion

Evaluate results Iterate

Interpret preferred model(s)



Summary

• Model and discretization
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Physical property
(e.g. conductivity)

m = (m1,m2, ...,mM )



Summary

• Model and discretization

• Data and kernels
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di =
MX

j=1

Gijmj

d = Gm G : (N ⇥M)

di =

Z

v
gi(x)m(x)dx

i = 1, 2, ..., N



Summary

• Model and discretization

• Data and kernels

• Non-uniqueness and model norms
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Model element

va
lu

e

datum

va
lu

e

Model element

va
lu

e

�m = ↵s

Z
(m�mref )

2dx+ ↵x

Z ⇣dm
dx

⌘2
dx

smallest smoothest



Summary

• Model and discretization

• Data and kernels

• Non-uniqueness and model norms

• Misfit
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�d =
NX

j=1

⇣dj � dobsj

✏j

⌘2

�⇤
d = N



Summary

• Model and discretization

• Data and kernels

• Non-uniqueness and model norms

• Misfit

• Inversion as an optimization

• Choice of emphasis: misfit vs. model norm
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� ! 0

� ! 1
minimize �d + ��m

where 0 < � < 1
minimize �d + ��m

where 0 < � < 1



Summary

• Model and discretization

• Data and kernels

• Non-uniqueness and model norms

• Misfit

• Inversion as an optimization

• Choice of emphasis: misfit vs. model norm
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� ! 1
Tikhonov curve

Underfit



Summary
• Model and discretization

• Data and kernels

• Non-uniqueness and model norms

• Misfit

• Inversion as an optimization

• Choice of emphasis: misfit vs. model norm
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� ! 0

� ! 1
Tikhonov curve

Overfit



Summary
• Model and discretization

• Data and kernels

• Non-uniqueness and model norms

• Misfit

• Inversion as an optimization

• Choice of emphasis: misfit vs. model norm
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� ! 0

� ! 1
Tikhonov curve

Optimal fit



Summary

• Model and discretization

• Data and kernels

• Non-uniqueness and model norms

• Misfit

• Inversion as an optimization

• Choice of emphasis: misfit vs. model norm

• Most geophysical problems are non-linear

– DC resistivity

– EM

– MT

– …
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DC resistivity
• Oldenburg and Li (1999)
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Resistivity

Synthetic data

Recovered resistivity



DC resistivity: non-uniqueness
• Oldenburg and Li (1999)
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Resistivity

Synthetic data

Recovered resistivities

*All models fit the data well!



Nonlinear problem

• Examples

– DC:

– or EM:

• Solve

– Discretize Maxwell’s equations onto a mesh

– Solve system to find fields (e.g.           )

– Evaluate Datum: 

• Lot of details

– size of cells

– size of mesh

– …
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r⇥ µ�1 ⇥ e+ �
@e

@t
= �@s

@t

I V

r �

�

VMD VMDTx Rx

r · �rV = I0�(r� rs)

d = f [V ] or d = f [e]
V, e



Airborne EM: Tli Kwi Cho (TKC) kimerlites
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DIGHEM (Quadrature 56kHz)

VTEM (90 μs)

Location map at TKC

Configuration Colocated-loop
Off time channel 90-6340 (μs)
Data unit pV/A-m4

Line spacing 75 m
Line km 39 km
# of sounding 26342

Configuration HCP
Frequency 900Hz-56kHz
Data unit ppm
Line spacing 200 m
Line km 52 km
# of sounding 6274

VTEM (90 μs)

DIGHEM (1992) VTEM (2003)



Basic Equations

* Solve with sources and boundary conditions

Time Frequency

Faraday’s
Law

r⇥ e = � @b

@t
r⇥E = � i!B

Ampere’s
Law

Constitutive
Relationships
(non-dispersive)

r ·B = 0

J = �E

No Magnetic
Monopoles

j = �e

r · b = 0

b = µh

d = "e
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Why difficult: Forward Problem

• Discretize in frequency or time 

• Discretize in space:  (1D vs 3D)

• Solve system of equations

• Many transmitters
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Time Frequency

Faraday’s
Law

r⇥ e = � @b

@t
r⇥E = � i!B

Ampere’s
Law

Constitutive
Relationships
(non-dispersive)

r ·B = 0

J = �E

No Magnetic
Monopoles

j = �e

r · b = 0

b = µh

d = "e



Time Domain: Mathematical Setup

Maxwell’s equations
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Boundary conditions

W¶

W

Need to solve in space and time

Initial conditions



Semi-discretization in space
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Staggered Grid

• Physical properties: cell centers

• Fields: edges

• Fluxes: faces

Continuous second-order equations

Semi-discretized second order equations



Discretizing in time
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First order backwards difference (implicit) 

• depends upon 

• Time-step:

Solve system at each time step

✓
C>Mf

µ�1C+
1

�t
Me

�

◆
en+1 = �sn+1 � sn

�t
+

1

�t
Me

�e
n

Factor



Solving a TDEM Problem
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Solve with forward elimination

• Initial conditions provide

• To propagate forward, solve

Time to solve factored system Time to factor system

Some details of solving system

• Refactor only if  changes

• Divide modelling time into partitions 

• Total computation time:

An+1(�,4t)



That was challenging…

What about the inverse problem?
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Flow chart for inverse problem
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Given:

- Field observations

- Error estimates

- Ability to forward model

- Prior knowledge

Choose a suitable 

misfit criterion

Design model

objective function

Discretize the Earth

Perform inversion

Evaluate results Iterate

Interpret preferred model(s)



Inverse problem

• Minimize 
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Tikhonov curveData misfit

Regularization

subject to mlower < m < mupper



Gauss-Newton approach

• Inverse problem

• Gradient

• Taylor expand: Gauss Newton equation

• Use inexact PCG to solve for model update (NCG iterations)
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Number of forward modellings: 



Gauss-Newton approach
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Choose b0, mref
Evaluate f(mref), g(mref), matrices Wd, W...

for i in range([0, max_beta_iter]):
for k in range([0, max_inner_iterations]):
• IPCG to solve

• line search for step length a

• Update model

• Exit if or

Reduce b

mk+1 = mk + ↵�m



Tally up the computations
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• Total number of Maxwell solutions is 20,000,000 

• Suppose:  tfactor=1 sec

– 100 processors: 55 hours

– 1000  processors 5.5 hours

Number of transmitters 1000

Number of time steps 50

Solving a GN step 20

Number of GN iterations 20

Need:
• Fast forward modelling
• Multiple cpu



Mesh
• Trade off (accuracy vs. computation)
• Consider a 3D airborne EM simulation (1000 sources)
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Octree mesh

> 1,000,000 cells (this is big!)

How do we tackle this?



Mesh decomposition

• Separate forward modelling mesh for each transmitter
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Global mesh Local mesh



Mesh decomposition

• Separate forward modelling mesh for each transmitter
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Global mesh Local mesh



Mesh decomposition

• Separate forward modelling mesh for each transmitter
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Global mesh Local mesh



Advances
• Direct solvers (factor Maxwell operator)
• Semi-structured meshes (OcTree, reduce the # of variables)
• Separating forward and inverse meshes
• Handling the sensitivity matrix
• Access to multi-cores
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DIGHEM (Quadrature 56kHz)

VTEM (90 μs)



Example 3D inversion (TKC)
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Recovered 3D conductivity

Outline of two pipes

DIGHEM

VTEM



MT Tutorials

• Forward modelling

• Inversion
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End of Inverse Theory

Next up


