Inverse Theory

Inversion

Forward problem

- Symbolically: F[m] = d
 - F[m] : forward modelling operator
 - m : physical property
 - d : simulated data
- Two cases for mapping:
 - Linear: $F[c_1m + c_2m] = c_1F[m] + c_2F[m]$
 - Nonlinear: equality does not hold

Linear problem

$$d_j = \int_v g_j(x)m(x)dx$$

– d_j : j-th datum

- g_j : kernel function for j-th datum
- -m: model

Evaluate product: $d_j = \mathbf{g} \cdot \mathbf{m} = 4.89$

The linear problem can be in higher dimensions

• Or magnetics

•

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \nabla \nabla \frac{1}{|\mathbf{r} - \mathbf{r}_o|} \cdot \kappa \mathbf{H}_0 dv, \qquad \kappa(x, y, z) \text{ is 3D susceptibility}$$

Solving the forward problem: linear

$$d_j = \int_v g_j(x)m(x)dx$$

• Discretize the earth

• Evaluate: $\mathbf{d} = \mathbf{G}\mathbf{m}$

Nonlinear problem

$$F[m] = d$$

- $F[\cdot]$: Maxwell's operator
 - DC
 - Time domain
 - Frequency domain
 - 1D, 2D, 3D
- Examples

- DC:
$$\nabla \cdot \sigma \nabla V = I_0 \delta(\mathbf{r} - \mathbf{r}_s)$$

- or EM:
$$\nabla \times \mu^{-1} \times \mathbf{e} + \sigma \frac{\partial \mathbf{e}}{\partial t} = -\frac{\partial \mathbf{s}}{\partial t}$$

7

Nonlinear problem

• Examples

- or EM:

- DC:
$$\nabla \cdot \sigma \nabla V = I_0 \delta(\mathbf{r} - \mathbf{r}_s)$$

- Solve
 - Discretize Maxwell's equations onto a mesh

 $\nabla \times \mu^{-1} \times \mathbf{e} + \sigma \frac{\partial \mathbf{e}}{\partial t} = -\frac{\partial \mathbf{s}}{\partial t}$

- Solve system to find fields (e.g. V, e)
- Evaluate Datum: d = f[V] or $d = f[\mathbf{e}]$
- Lot of details
 - size of cells
 - size of mesh

Linear inversion app (demo)

- It will help us
 - Develop a model
 - Consider kernels
 - Generate data
- Model: m(x)
- Kernels (physics): $g_j(x) = e^{jpx} cos(2\pi jqx)$
- Data:

$$d_j = \int_v g_j(x)m(x)dx$$

•••• ELinearInversion	×			.
$\leftarrow \rightarrow \mathbf{C} \ \mathbf{\hat{C}}$ $\mathbf{\hat{O}}$ localhost:88	38/notebooks/LinearInve	ersion.ipynb	ಸ	¥ 🕛 🖻 🗊 🗄
C Jupyter LinearInversion (unsaved changes)				
File Edit View Inse	t Cell Kernel	Widgets Help	Trusted	Python 3 O
E + % 4 € ↑		Markdown 🛊 🖃		
<pre>In [37]: Q2 = app.interact_plot_model()</pre>				
m_backgro		0.00		
m1		1.00		
m2	O	2.00		
m1_center	O	0.20		
dm1		0.20		
m2_center		0.75		
sigma_2	O	0.07		
option	model	data	kernel	
	add_noise			
percentage	0.1			
floor	0.1			
Rows of matrix G $ \begin{array}{c} 1.0 \\ 0.5 \\ 0.0 $				

Models with the app (demo)

- Start with 1D model
 - Conductivity changes with depth
- In the app this is here:

Analogy with 1D frequency domain EM

- FDEM system (Resolve)
- Signals: sinusoids at 5 frequencies
- Penetration depth depends upon frequency
- Measurements are fields from buried conductors

$$\delta = 503 \sqrt{rac{
ho}{f}}$$

Resolve system (2008)

HCP frequencies: 382, 1822, 7970, 35920 and 130100 Hz

Kernels with the app (demo)

• Kernels for FEM are decaying sinusoids

$$g_j(x) = e^{jpx} \cos(2\pi jqx)$$

- How many kernels for FEM?
 - MAXMIN: 8 or 10 frequencies, in-phase & quadrature
 - Resolve: In-phase & quad, 5 frequencies

Discretize the app's data and kernels

- Datum is defined as: $d_i = \int_0^1 g_i(x)m(x)dx$
- For discretized model:

 $\mathbf{m} = (m_1, m_2, \dots, m_M)$

$$d_{i} = \int_{0}^{X_{1}} g_{i}(x)m_{1}dx + \int_{X_{1}}^{X_{2}} g_{i}(x)m_{2}dx + \dots$$
$$= \sum_{j=1}^{M} \left(\int g_{i}(x)dx\right)m_{j}$$

• In matrix form: $\mathbf{d} = \mathbf{Gm}$

G: $(N \times M)$ matrix **d**: $(N \times 1)$ vector **m**: $(M \times 1)$ vector

Real observation includes noise

• Data in the app: $\mathbf{d} = \mathbf{G}\mathbf{m}$

Real observation includes noise

• Data in the app: $\mathbf{d} = \mathbf{G}\mathbf{m}$

Inversion

Inverse problem

- Observed data: $d_i^{obs}, j = 1, 2, ..., N$
- Uncertainty: ϵ_j
- Ability to simulate data: F[m] = d
- Find the model which fits the observation

• For linear problem:

 $\mathbf{Gm} = \mathbf{d}$

$$\mathbf{m} \in \mathcal{R}^{M} \\ \mathbf{d} \in \mathcal{R}^{N} \\ \mathbf{G} \in \mathcal{R}^{N \times M}$$

M > N

more unknowns than data (underdetermined system)

Inversion using Misfit criterion

Forward modelling	$\mathbf{Gm} = \mathbf{d}$
Data	$\mathbf{d}^{obs} = \mathbf{d} + \boldsymbol{\epsilon}$
Noise	ϵ

- Gaussian errors with standard deviation, ϵ_j
- Misfit measure: $\phi_d = \sum_{j=1}^N \left(\frac{d_j d_j^{obs}}{\epsilon_j}\right)^2$
- Expected value of ϕ_d is $E[\phi_d] = N$
- Data are fit when $\phi_d \simeq \phi_d^*$ ϕ_d^* : target misfit $\phi_d^* = N$

Inversion with misfit only

$$\phi_d = \sum_{j=1}^N \left(\frac{d_j - d_j^{obs}}{\epsilon_j}\right)^2$$

Inversion app (demo)

- Use accurate data and show the effects of reducing the data misfit (set α_s =2e-12)
- Add a bit of noise and repeat the process.

Acceptable models and non-uniqueness

- There are infinitely many models that could generate the data
- Why?
 - # of model parameters (M) > # of data (N)
 - Physics based non-uniqueness
 - Conductance (magnetotelluric)
 - Resistivity-thickness product (DC)
 - Equivalent layer (magnetics)
 - ...

Example non-uniqueness: DC resistivity

• Oldenburg and Li (1999)

Example non-uniqueness: DC resistivity

• Oldenburg and Li (1999)

*All models fit the data well!

The basic problem of non-uniqueness

- Each datum is a *volumetric* response
- Data are

$$d_i = \sum_{j=1}^M G_{ij} m_j$$

7

 $\mathbf{d} = \mathbf{Gm} \qquad \qquad \mathbf{G} : (N \times M)$

- In the app
 - M=100
 - N=20
 - So, M>N (underdetermined problem) \rightarrow infinitely many solutions

Questions to consider

- Consider the simple problem that involves two unknowns: *x* and *y*
 - We have one datum: x + y = 2
- What is the value of *x* and *y*?
 - (1,1)
 - (2,0)

. . . .

satisfies x+y=2 5 4 3 \geq 2 1 0 $^{-1}$ -2 2 0 Х

Any point here

How to pick one of infinitely many solutions?

Use prior knowledge

- Geophysical:
 - Values are positive, and/or within bounds
 - Physical Properties: Estimates for host rock properties
 - Point-location values from drill hole information
- Logical:
 - Find a "simple" result (as featureless as possible)
- Geologic:
 - Character of the model (smooth, sparse, blocky)
 - Some idea of scale length (or size) of the bodies
 - Structural constraints

Using prior information to choose optimal models

- Recall we are building an automated decision-making scheme
- Encode prior knowledge in a form that can be optimized
- *i.e.* build a mathematical ruler to test sizes of possible models, then choose the "smallest"
- The people-in-the-room analogy

Feasible model norms

- What "measures on the model" can be implemented?
 - "Size of the model"
 - "Flatness of the model"
- Consider the 4-parameter problem:
 - 4 unknowns: (m₁, m₂, m₃, m₄)
 - 2 data: (6, 2)

$$m_1 + 2m_2 - m_3 + m_4 = 6$$
$$-m_1 + m_2 + 2m_3 - m_4 = 2$$

- It is underdetermined problem, so there is no unique solution
- For possibilities work as well as more...

$$\mathbf{m}^{A} = (2.000, 2.000, 2.000, 2.000)$$
$$\mathbf{m}^{B} = (0.444, 2.622, 0.133, 0.444)$$
$$\mathbf{m}^{C} = (-2.408, 2.630, 0.109, 3.256)$$
$$\mathbf{m}^{D} = (2.002, 2.846, -0.537, -2.239)$$

Choosing from many solutions

- Define a ruler to measure the model, and call it ϕ_m
- Values of the model can be plotted
- What norms or rulers are sensible?
- Norm #1:
 - Smallness: sum of squares

$$\phi_m = \|\mathbf{m}\|^2 = \sum_{j=1}^4 m_j^2$$

Choosing from many solutions

- Define a ruler to measure the model, and call it ϕ_m
- Values of the model can be plotted
- What norms or rulers are sensible?
- Norm #1:
 - Smallness: sum of squares

$$\phi_m = \|\mathbf{m}\|^2 = \sum_{j=1}^4 m_j^2$$

- Norm #2:
 - Smoothness: differences between adjacent model values

$$\phi_m = \|\frac{d\mathbf{m}}{d\mathbf{x}}\|^2 = \sum_{j=1}^3 (m_{j+1} - m_j^2)$$

Model element

Numerical examples

Use smallest model norm

$$\phi_m = \|\mathbf{m}\|^2 = \sum_{j=1}^4 m_j^2$$

 $\mathbf{m}^{A} = (2.000, 2.000, 2.000, 2.000) \quad \phi_{m}^{A} = 16.00$ $\rightarrow \mathbf{m}^{B} = (0.444, 2.622, 0.133, 0.444) \quad \phi_{m}^{B} = 7.29$ $\mathbf{m}^{C} = (-2.408, 2.630, 0.109, 3.256) \quad \phi_{m}^{C} = 23.33$ $\mathbf{m}^{D} = (2.002, 2.846, -0.537, -2.239) \quad \phi_{m}^{D} = 17.41$

Numerical examples

Use smallest model norm

$$\phi_m = \|\mathbf{m}\|^2 = \sum_{j=1}^4 m_j^2$$

 $\mathbf{m}^{A} = (2.000, 2.000, 2.000, 2.000) \quad \phi_{m}^{A} = 16.00$ $\rightarrow \mathbf{m}^{B} = (0.444, 2.622, 0.133, 0.444) \quad \phi_{m}^{B} = 7.29$ $\mathbf{m}^{C} = (-2.408, 2.630, 0.109, 3.256) \quad \phi_{m}^{C} = 23.33$ $\mathbf{m}^{D} = (2.002, 2.846, -0.537, -2.239) \quad \phi_{m}^{D} = 17.41$

Use smoothest model norm

$$\phi_m = \|\frac{d\mathbf{m}}{d\mathbf{x}}\|^2 = \sum_{j=1}^3 (m_{j+1} - m_j^2)$$

 $\mathbf{m}^{A} = (2.000, 2.000, 2.000, 2.000) \quad \phi_{m}^{A} = 0.00$ $\mathbf{m}^{B} = (0.444, 2.622, 0.133, 0.444) \quad \phi_{m}^{B} = 11.04$ $\mathbf{m}^{C} = (-2.408, 2.630, 0.109, 3.256) \quad \phi_{m}^{C} = 41.64$ $\mathbf{m}^{D} = (2.002, 2.846, -0.537, -2.239) \quad \phi_{m}^{D} = 15.05$

Model norms

Smallest model:

$$\phi_m = \int m^2 dx$$

Smallest with reference:

$$\phi_m = \int (m - m_{ref})^2 dx$$
$$\phi_m = \int \left(\frac{dm}{dt}\right)^2 dx$$

Smoothest model:

$$\phi_m = \int \left(\frac{dm}{dx}\right)^2 dx$$

 $\phi_m = \alpha_s \int (m - m_{ref})^2 dx + \alpha_x \int \left(\frac{dm}{dx}\right)^2 dx$ Combination:

 $\phi_m = \alpha_s \|\mathbf{W}_s(\mathbf{m} - \mathbf{m}_{ref})\|_2^2 + \alpha_x \|\mathbf{W}_x(\mathbf{m})\|_2^2$ Discretize:

Combining misfit and model norm

- A statement of the inverse problem is:
 Find the model *m* that
 - produces an acceptable misfit ($\phi_d < \phi_d^*$)
 - minimizes the model norm, ϕ_m
- Re-cast as an optimization:

minimize $\phi_d + \beta \phi_m$ where $0 < \beta < \infty$

• β : trade-off (Tikhonov) parameter

The role of β

Analogy: an optimization problem with two requirements

- Travelling from A to B
 - minimize **time** taken
 - minimize fuel consumption
- $\phi = \operatorname{time} + \beta \cdot \operatorname{fuel}$
 - both time and fuel consumption are functions of speed
- $\beta = 0$: minimize time (regardless of fuel)
- large β : minimize fuel (but still get there)

The role of β

- A typical problem might be:
 - Minimize fuel consumption
 - Subject to getting there in 16 hours

The role of β : managing misfit

- Our inverse problem
 - Find the model (m)

minimize
$$\phi_d + \beta \phi_m$$

- Which beta to use?
- If standard deviations of data are known,

$$E[\phi_d] = N$$

- Desired misfit is $\phi_d^* \simeq N$

– Choose
$$\beta$$
 so that $\phi_d(m) = \phi_d^*$

Inversion App (demo)

$\beta\,$ is the trade-off parameter

- Solve: minimize $\phi_d + \beta \phi_m$
- β too large \rightarrow underfitting
 - Structural information lost

$\beta\,$ is the trade-off parameter

- Solve: minimize $\phi_d + \beta \phi_m$
- β too large \rightarrow underfitting
 - Structural information lost
- β too small \rightarrow overfitting
 - Structure created to fit noise

$\beta\,$ is the trade-off parameter

- Solve: minimize $\phi_d + \beta \phi_m$
- β too large \rightarrow underfitting
 - Structural information lost
- *β* too small → overfitting

 Structure created to fit noise
- β just right ($\phi_d(m) \simeq N$) \rightarrow optimal fit

Flow chart for inverse problem

• Model and discretization

$$\mathbf{m} = (m_1, m_2, ..., m_M)$$

Physical property (e.g. conductivity)

- Model and discretization
- Data and kernels

$$d_i = \int_v g_i(x)m(x)dx$$

$$d_i = \sum_{j=1}^M G_{ij} m_j$$
 $i = 1, 2, ..., N$

- Model and discretization
- Data and kernels
- Non-uniqueness and model norms

- Model and discretization
- Data and kernels
- Non-uniqueness and model norms
- Misfit

- Model and discretization
- Data and kernels
- Non-uniqueness and model norms
- Misfit
- Inversion as an optimization
- Choice of emphasis: misfit vs. model norm

minimize $\phi_d + \beta \phi_m$ where $0 < \beta < \infty$

- Model and discretization
- Data and kernels
- Non-uniqueness and model norms
- Misfit
- Inversion as an optimization
- Choice of emphasis: misfit vs. model norm

- Model and discretization
- Data and kernels
- Non-uniqueness and model norms
- Misfit
- Inversion as an optimization
- Choice of emphasis: misfit vs. model norm

- Model and discretization
- Data and kernels
- Non-uniqueness and model norms
- Misfit
- Inversion as an optimization
- Choice of emphasis: misfit vs. model norm

- Model and discretization
- Data and kernels
- Non-uniqueness and model norms
- Misfit
- Inversion as an optimization
- Choice of emphasis: misfit vs. model norm
- Most geophysical problems are non-linear
 - DC resistivity
 - EM
 - MT
 - ...

DC resistivity

DC resistivity: non-uniqueness

• Oldenburg and Li (1999)

*All models fit the data well!

Nonlinear problem

• Examples

- or EM:

- DC:
$$\nabla \cdot \sigma \nabla V = I_0 \delta(\mathbf{r} - \mathbf{r}_s)$$

- Solve
 - Discretize Maxwell's equations onto a mesh

 $\nabla \times \mu^{-1} \times \mathbf{e} + \sigma \frac{\partial \mathbf{e}}{\partial t} = -\frac{\partial \mathbf{s}}{\partial t}$

- Solve system to find fields (e.g. V, e)
- Evaluate Datum: d = f[V] or $d = f[\mathbf{e}]$
- Lot of details
 - size of cells
 - size of mesh

Airborne EM: Tli Kwi Cho (TKC) kimerlites

DIGHEM (1992)

Configuration	HCP
Frequency	900Hz-56kHz
Data unit	ppm
Line spacing	200 m
Line km	52 km
# of sounding	6274

VTEM (2003)

Configuration	Colocated-loop
Off time channel	90-6340 (µs)
Data unit	pV/A-m ⁴
Line spacing	75 m
Line km	39 km
# of sounding	26342

Basic Equations

	Time	Frequency FDEM
Faraday's Law	$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$	$ abla imes {f E} = -i\omega {f B}$
Ampere's Law	$ abla imes \mathbf{h} = \mathbf{j} + \frac{\partial \mathbf{d}}{\partial t}$	$ abla imes \mathbf{H} = \mathbf{J} + i\omega \mathbf{D}$
No Magnetic Monopoles	$\nabla \cdot \mathbf{b} = 0$	$\nabla \cdot \mathbf{B} = 0$
Constitutivo	$\mathbf{j} = \sigma \mathbf{e}$	$\mathbf{J}=\sigma\mathbf{E}$
Relationships (non-dispersive)	$\mathbf{b}=\mu\mathbf{h}$	$\mathbf{B}=\mu\mathbf{H}$
	$\mathbf{d} = \varepsilon \mathbf{e}$	$\mathbf{D} = \varepsilon \mathbf{E}$

* Solve with sources and boundary conditions

Why difficult: Forward Problem

- Discretize in frequency or time
- Discretize in space: (1D vs 3D)
- Solve system of equations
- Many transmitters

Time	
$ abla imes {f e} = - rac{\partial {f b}}{\partial t}$	$ abla imes {f E} = -i\omega {f B}$
$ abla imes \mathbf{h} = \mathbf{j} + rac{\partial \mathbf{d}}{\partial t}$	$ abla imes {f H} = {f J} + i\omega {f D}$
$\nabla \cdot \mathbf{b} = 0$	$ abla \cdot \mathbf{B} = 0$
$\mathbf{j} = \sigma \mathbf{e}$	$\mathbf{J} = \sigma \mathbf{E}$
$\mathbf{b}=\mu\mathbf{h}$	${f B}=\mu {f H}$
$\mathbf{d} = \varepsilon \mathbf{e}$	$\mathbf{D} = arepsilon \mathbf{E}$

Time Domain: Mathematical Setup

 $\partial \mathbf{G}$

Maxwell's equations
$$\nabla \times \mathbf{e} + \frac{\partial \mathbf{b}}{\partial t} = 0$$

 $\nabla \times \mu^{-1} \mathbf{b} - \sigma \mathbf{e} = \mathbf{s}(t)$ $\mathbf{\Omega}$
time: $[0, t_f]$ Boundary conditions $\mathbf{n} \times \mathbf{b} = 0$ time: $[0, t_f]$ Initial conditions $\mathbf{e}(x, y, z, t = 0) = \mathbf{e}_0$
 $\mathbf{b}(x, y, z, t = 0) = \mathbf{b}_0$

Need to solve in space and time

Semi-discretization in space

Staggered Grid

- Physical properties: cell centers
- Fields: edges
- Fluxes: faces

Continuous second-order equations

$$\nabla \times \mu^{-1} \nabla \times \mathbf{e} + \sigma \frac{\partial \mathbf{e}}{\partial t} = -\frac{\partial \mathbf{s}}{\partial t}$$

Semi-discretized second order equations

$$\mathbf{C}^{\top}\mathbf{M}_{\mu^{-1}}^{f}\mathbf{C}\mathbf{e} + \mathbf{M}_{\sigma}^{e}\frac{\partial\mathbf{e}}{\partial t} = -\frac{\partial\mathbf{s}}{\partial t}$$

Discretizing in time

First order backwards difference (implicit)

• \mathbf{e}^{n+1} depends upon \mathbf{e}^n

$$\mathbf{C}^{\top}\mathbf{M}_{\mu^{-1}}^{f}\mathbf{C}\mathbf{e} + \mathbf{M}_{\sigma}^{e}\frac{\partial\mathbf{e}}{\partial t} = -\frac{\partial\mathbf{s}}{\partial t}$$

• Time-step: $\Delta t = t_{n+1} - t_n$ $\left(\mathbf{C}^{\top} \mathbf{M}_{\mu^{-1}}^f \mathbf{C} + \frac{1}{\Delta t} \mathbf{M}_{\sigma}^e \right) \mathbf{e}^{n+1} = -\frac{\mathbf{s}^{n+1} - \mathbf{s}^n}{\Delta t} + \frac{1}{\Delta t} \mathbf{M}_{\sigma}^e \mathbf{e}^n$

$$\mathbf{A}_{n+1}\mathbf{u}_{n+1} = -\mathbf{B}_n\mathbf{u}_n + \mathbf{q}_{n+1}$$

Solve system at each time step

Factor
$$\mathbf{A}_{n+1} = \mathbf{L}\mathbf{L}^{ op}$$

Solving a TDEM Problem

Solve with forward elimination

- Initial conditions provide \mathbf{u}_0 ullet
- To propagate forward, solve $\mathbf{A}_{n+1}\mathbf{u}_{n+1} = -\mathbf{B}_n\mathbf{u}_n + \mathbf{q}_{n+1}$

Some details of solving system

- Refactor only if $\mathbf{A}_{n+1}(\sigma, \Delta t)$ changes
- Divide modelling time into *P* partitions ullet

Total computation time:

$$T = P(N_{\Delta t}N_{TX}t_{\text{solve}} + t_{\text{factor}})$$
Time to factor system

lime to solve factored system

$$\begin{pmatrix} \mathbf{A}_0 & & & & \\ \mathbf{B}_1 & \mathbf{A}_1 & & & \\ & \mathbf{B}_2 & \mathbf{A}_2 & & & \\ & & \ddots & \ddots & & \\ & & & \mathbf{B}_{n-1} & \mathbf{A}_{n-1} \\ & & & & \mathbf{B}_n & \mathbf{A}_n \end{pmatrix} \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_{n-1} \\ \mathbf{u}_n \end{pmatrix} = \begin{pmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \\ \vdots \\ \mathbf{q}_{n-1} \\ \mathbf{q}_n \end{pmatrix}$$

That was challenging... What about the inverse problem?

Flow chart for inverse problem

Inverse problem

• Minimize

$$\phi(\mathbf{m}) = \phi_d(\mathbf{m}) + \beta \phi_m(\mathbf{m})$$

subject to $\mathbf{m}_{lower} < \mathbf{m} < \mathbf{m}_{upper}$

Data misfit

$$\phi_d(\mathbf{m}) = \frac{1}{2} ||\mathbf{W}_d(F[\mathbf{m}] - \mathbf{d}_{obs})||_2^2.$$
Regularization

$$\phi_m(\mathbf{m}) = \frac{1}{2} ||\mathbf{W}_m(\mathbf{m} - \mathbf{m}_{ref})||_2^2.$$
Tikhonov curve

 ϕ_m

Gauss-Newton approach

• Inverse problem

$$\begin{split} \min_{\mathbf{m}} \phi(\mathbf{m}) &= \phi_d(\mathbf{m}) + \beta \phi_m(\mathbf{m}) \\ &= \frac{1}{2} \| \mathbf{W}_d(F[\mathbf{m}]) - \mathbf{d}^{obs} \|^2 + \frac{\beta}{2} \| \mathbf{W}_m(\mathbf{m} - \mathbf{m}_{ref}) \|^2 \end{split}$$

• Gradient

$$\mathbf{g}(\mathbf{m}) = \mathbf{J}^{\top} \mathbf{W}_{d}^{\top} \mathbf{W}_{d}(F[\mathbf{m}] - \mathbf{d}^{obs}) + \beta \mathbf{W}_{m}^{\top} \mathbf{W}_{m}(\mathbf{m} - \mathbf{m}_{ref})$$

- Taylor expand: Gauss Newton equation $(\mathbf{J}^{\top}\mathbf{W}_{d}^{\top}\mathbf{W}_{d}\mathbf{J} + \beta\mathbf{W}_{m}^{\top}\mathbf{W}_{m})\delta\mathbf{m} = -\mathbf{g}(\mathbf{m})$
- Use inexact PCG to solve for model update (N_{CG} iterations) $\mathbf{m}_{k+1} = \mathbf{m}_k + \delta \mathbf{m}$

Number of forward modellings: $2(N_{CG}+1) \sim 20$

Gauss-Newton approach

$$\begin{split} \min_{\mathbf{m}} \phi(\mathbf{m}) &= \phi_d(\mathbf{m}) + \beta \phi_m(\mathbf{m}) \\ &= \frac{1}{2} \| \mathbf{W}_d(F[\mathbf{m}]) - \mathbf{d}^{obs} \|^2 + \frac{\beta}{2} \| \mathbf{W}_m(\mathbf{m} - \mathbf{m}_{ref}) \|^2 \end{split}$$

Choose $\beta_{\text{0}}\text{,}\text{m}_{\text{ref}}$ Evaluate $\phi(\mathbf{m}_{ref})$, $g(\mathbf{m}_{ref})$, matrices W_d , W... for i in range([0, max beta iter]): for k in range([0, max inner iterations]): • IPCG to solve $(\mathbf{J}^{\top}\mathbf{W}_{d}^{\top}\mathbf{W}_{d}\mathbf{J} + \beta\mathbf{W}_{m}^{\top}\mathbf{W}_{m})\delta\mathbf{m} = -\mathbf{g}(\mathbf{m})$ • line search for step length α • Update model $\mathbf{m}_{k+1} = \mathbf{m}_k + lpha \delta \mathbf{m}$ • Exit if $\phi < \phi_d^*$ or $\frac{\|\mathbf{g}(\mathbf{m}_{k+1})\|}{\|\mathbf{g}(\mathbf{m}_k)\|} < \mathrm{tol}$ Reduce β

Tally up the computations

Number of transmitters	1000
Number of time steps	50
Solving a GN step	20
Number of GN iterations	20

- Total number of Maxwell solutions is 20,000,000
- Suppose: t_{factor}=1 sec
 - 100 processors: 55 hours
 - 1000 processors 5.5 hours

Need:

- Fast forward modelling
- Multiple cpu

Mesh

- Trade off (accuracy vs. computation)
- Consider a 3D airborne EM simulation (1000 sources)
 - Octree mesh

How do we tackle this?

> 1,000,000 cells (this is big!)

Mesh decomposition

• Separate forward modelling mesh for each transmitter

Global mesh

Local mesh

Mesh decomposition

• Separate forward modelling mesh for each transmitter

Global mesh

Local mesh

Mesh decomposition

• Separate forward modelling mesh for each transmitter

Global mesh

Local mesh

Advances

- Direct solvers (factor Maxwell operator)
- Semi-structured meshes (OcTree, reduce the # of variables)
- Separating forward and inverse meshes
- Handling the sensitivity matrix
- Access to multi-cores

Example 3D inversion (TKC)

ng (m

MT Tutorials

End of Inverse Theory

