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Outline

• Sources of IP

• Conceptual model of IP

• Chargeability 

• IP data 

• Pseudosections

• Two stage DC-IP inversion

• Case history: Mt. Isa

• EM-IP Inversion (EM decoupling) 

• Case history: TKC
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• Injected currents cause materials to become polarized

• Microscopic causes à macroscopic effect

• Phenomenon is called induced polarization

Induced Polarization

I"source V"potential

Not$chargeable Chargeable

Source
(Amps)

Potential
(Volts)

4



Conceptual Model of IP

Electrode polarization

Membrane polarization
Initially - neutral

Apply electric field, build up charges

Charge polarization, Electric dipole
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Chargeability
pyrite

chalcocite
copper

graphite

chalcopyrite

bornite
galena

magnetite
malachite

hematite

13.44ms

13.34ms

12.34ms
11.24ms

9.44ms
6.34ms

3.74ms
2.24ms

0.24ms
0.04ms

Minerals4at41%4Concentration4in4Samples
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Chargeability

Initially - neutral

Apply electric field, build up charges

Charge polarization, Electric dipole

Input current

Measured voltage
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IP data

• Seigel (1959): 

– Introduced chargeability: 

– Effect reduces conductivity 

• Theoretical chargeability data 
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• Not directly measureable
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• IP decay

• IP datum 

IP data: time domain 

Dimensionless: 

Value at individual time channel:

Area under decay curve:

⌘ = �s/�⌘

M =
1

�⌘

Z t2

t1

�s(t)dt

�s(t)

Input current Measured voltage
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• Percent frequency effect:

• Phase

IP data: frequency domain

Source
current

Measured
potential

Phase (mrad)

 

 

low freq. f2high freq. f1

Source
current

Measured
potential

V1 V2

I IPFE = 100(
⇢a2 � ⇢a1

⇢a1
)

⇢a1: apparent resistivity at f1
⇢a2: apparent resistivity at f2
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• IP signals due to a perturbation (small change) in conductivity

• An IP datum can be written as 

• In matrix form 

IP data

sensitivities for the
DC resistivity problem

is an N´M matrix

�⌘ = �(1� ⌘)

dIPi =
MX

j=1

Jij⌘j

Jij =
@log�i

@log�j

dIP = J⌘

J

i = 1, . . . , N

⌘ 2 [0, 1)
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• Time domain:

– Theoretical chargeability 
(dimensionless)

– Integrated decay time (msec)

• Frequency domain:

– PFE  (dimensionless)

– Phase (mrad)

• For all data types: linear problem

Summary of IP data

Source
current

Measured
potential

Phase&(mrad)

 

is an N´M matrix

dIP = J⌘

J
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IP pseudosections

1) A chargeable block

• Pole-dipole;  n=1,8;  a=10m;  N=316
Pole-Dipole
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IP pseudosections

2) A chargeable block with geologic noise

• Pole-dipole;  n=1,8;  a=10m;  N=316
Pole-Dipole
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IP pseudosections

3) The “UBC-GIF model”

Pole-Dipole
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DC / IP data 
collected

Use s model for
sensitivity

IP
Data

Invert potentials
for conductivity, s

Potential (i.e. voltage) data

Conductivity model

Invert for 
chargeability

Chargeability model

IP Inversion
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Example 1: buried prism

• Pole-dipole;  n=1,8;  a=10m;  N=316;  (as, ax, az)=(.001, 1.0, 1.0)

Chargeability model

Data with 5% Gaussian noise

Recovered chargeability

Predicted data

Pole-Dipole
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Example 2: prism with geologic noise

• Pole-dipole;  n=1,8;  a=10m;  N=316;  (as, ax, az)=(.001, 1.0, 1.0)

Chargeability model

Data with 5% Gaussian noise

Recovered chargeability

Predicted data

Pole-Dipole
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Example 3: UBC-GIF model

• Pole-dipole;  n=1,8;  a=10m

Chargeability model Recovered chargeability

Data with 5% Gaussian noise Predicted data

Pole-Dipole
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Induced Polarization: Summary

• Sources of IP

• Conceptual model of IP

• Chargeability 

• IP data 

• Pseudosections

• Two stage DC-IP inversion

• Case history: Mt. Isa

• EM-IP Inversion (EM decoupling) 

• Case history: TKC
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Case history: Mt. Isa

Rutley et al., 2001
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Setup

• Mt. Isa (Cluny propect) • Geologic model

Question

• Can conductive, chargeable units, which would be potential targets 
within the siltstones, be identified with DC / IP data?
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Properties

Geologic model

Resistivity and Chargeability 
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Recap: Synthesis from DC

• Identified a major conductor à black shale unit

• Some indication of a moderate conductor 

3D resistivity model Geologic section

Resistivity section

Can a chargeable, moderate conductor in the siltstones be identified? 
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Survey and data

Easting (m) Easting (m)

Apparent chargeability,
dipole- pole.

Surface topography

• Eight survey lines

• Two configurations
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Processing

Animation3D chargeability model
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Interpretation

A: Resistive, Non-chargeable

B: Moderate conductivity; low 
chargeabilty

C: Very high conductivity (> 
10 S/m)

E and F: High conductivity 
and high chargeability

G: Other chargeable regions

Resistivity model Chargeability model
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Synthesis
A: Surprise Creek Formation

– Resistive, non-chargeable

B: Moondarra and Native Bee 
siltstones

C: Breakaway Shales
– Very high conductivity

E and F: Mt Novit Horizon
– High conductivity and high 

chargeability

G: Other chargeable regions within 
siltstone complex

Resistivity model Chargeability model

Geologic section Resistivity section
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Induced Polarization: Summary

• Sources of IP

• Conceptual model of IP

• Chargeability 

• IP data 

• Pseudosections

• Two stage DC-IP inversion

• Case history: Mt. Isa

• Case history: Santa Cecilia

• EM-IP Inversion (EM decoupling) 

• Case history: TKC
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EM-IP Inversion 
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EM-IP Inversion: Goals

• Standard time domain DC-IP

• Conductivity inversion

– DC data

– EM data

• Illustrate the value of data which is 
often discarded

EM portion
Generally considered noise

DC datum
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EM-IP Inversion: Goals

• Standard time domain DC-IP

• Conductivity inversion
– DC data

– EM data

• Illustrate the value of data which is 
often discarded

• Use EM conductivity to obtain clean 
IP data:
– IP = Observation - EM

• Numerical example from a gradient 
array

DC datum

IP portion
Assumed no EM-coupling
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Survey and Data

Transmitter 
Measured Voltage
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EM portion
Generally considered noise

DC datum
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Transmitter 
Measured Voltage (off-time)

Survey and Data

Observation = EM + IP

EM
dominant

IP
dominant
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Gradient array

A1

A2 A4

• Model • Survey

– 200m bi-pole (625 data)

– times: 1-600ms 

A1

A2 A4

A3
A3

σ (S/m) η ! (s)

A1 1 0

A2 0.1 0.1 0.5

A3 0.01 0.1

A4 0.001 0 0.5
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DC data

A1

A2
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Off-time data

5 ms

off-time

80 ms

130 ms 650 ms

A1

A2 A4

A3
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DC inversion

• Recovered 3D conductivity

True Recovered

Apparent conductivity

• Depth weighting

– Compensate for high 
sensitivity near surface 
(similar to mag.)
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EM inversion

True Recovered

• Recovered 3D conductivity

6 ms

• No depth weighting

1 ms
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Conductivity models

• True, DC, and EM conductivities

True DC EM

EM data contain signal 
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• Off-time at 80 ms

EM decoupling

Observation Predicted EM

EM conductivity

IP  = Observation – EM
TDEM simulation
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• Off-time at 80 ms

EM decoupling

Observation Predicted EM IP

EM conductivity

IP  = Observation – EM
TDEM simulation
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IP data at 80 ms

EM decoupling

IP  = Observation – EM

True IP Half-space

A1

A2 A4

A3
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IP data at 80 ms

EM decoupling

IP  = Observation – EM

True IP Half-space DC

A1

A2 A4

A3
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IP data at 80 ms

EM decoupling

IP  = Observation – EM

True IP Half-space DC EM

A1

A2 A4

A3
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Chargeability > 0.015

IP inversion

True IP Half-space DC EM

A1 A3

A2

A1 A3

A2

A1 A3

A2

A1 A3

A2
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Case History:

Inversion of airborne geophysical data 
over the Tli Kwi Cho kimberlite complex

Devriese et al, 2017; Fournier et al, 2017; Kang et al, 2017

Rock Model from Geophysics Rock Model from Drilling

27

47

https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0142_1.pdf
https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0140_1.pdf
https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0141_1.pdf


Discovery of Tli Kwi Cho (TKC)

DIGHEM Q7200Hz

Location of TKC, NWT

Kimberlite pipe structure

Devriese et al. (2016)
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Time domain EM data

AeroTEMII
(2003)

VTEM
(2004)

NanoTEM
(1993)

DIGHEM
(1992)

Decay curve
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Step 1: Conductivity inversion
DIGHEM

Positive VTEM
(EM-dominant)

Recovered 3D conductivity

Cooperative
Inversion

Outline of two pipes
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Step 2: EM-decoupling

Observed Predicted EM

IP = Observation - EM

130 micro-s
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Step 2: EM-decoupling

Observed IP

130 micro-s

Predicted EM

IP = Observation - EM
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410 micro-s

Observed Predicted EM

Step 2: EM-decoupling

IP = Observation - EM
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Observed IP

410 micro-s

Predicted EM

Step 2: EM-decoupling

IP = Observation - EM
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Step 3: 3D IP inversion

130 micro-s

Recovered 3D pseudo-chargeability

Outline of two pipes
Conductivity contour
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Step 3: 3D IP inversion

130 micro-s 410 micro-s

Recovered 3D pseudo-chargeability

Outline of two pipes
Conductivity contour
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Step 4: Estimate η and τ

• A1-A3 has small time constant

• A4 has greater time constant

Anomaly contours

�(!) = �1 + �1
⌘

1 + (1� ⌘)(ı!⌧)c

Cole-Cole model

η

A1

A4

τ (μs)
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Gravity Magnetics DIGHEM VTEM

Data Integration

Kimberlite Model
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Density Susceptibility Conductivity Early chargeability

Kimberlite Model

Data Integration: 5 physical property models
Late chargeability
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Data Integration: 5 physical property models

Rock Model from Geophysics Rock Model from Drilling

Kimberlite Model

Density Susceptibility Conductivity Early chargeability Late chargeability
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Next up

End of Induced Polarization



Additional Material

• Tutorial: IP over Landfills
• Case History: Landfill in Denmark
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IP over Landfills
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Landfills: Hazards and Goals
Nearmont and Congress landfills, Tucson, Arizona

Tucson city limits and regional landfills

• Pollutants
– Toxic leachates (mercury, arsenic, 

cadmium, lead, PVC, solvents)

• Concerns
– Health
– Water contamination
– Construction hazard
– Devalues property

• Goals
– Locate abandoned landfills
– Assess size
– Characterize the waste
– Monitor reclamation
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Physical Properties

Waste Type Description Resistivity Susceptible Chargeable

Electronic/
Technological

Metallic objects, heavy 
metals in solution Low Yes Yes

Construction Debris
Wood, cement, iron  
rebar, wall board, 
asbestos, glass, plastics 

High Frequently Weakly

Earth Materials Clays, various fill Low/Moderate Occasionally Yes

Green waste trees, wood clippings etc Variable No Weakly

65



Traditional Landfill Surveys

DC ResistivityMagnetic Near-Surface Electromagnetic

• Most popular surveys have limited success

• IP might be a better diagnostic

• Responsive to: metallic debris, green waste, organic matter, some 
construction materials
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Resistivity historical waste boundaries

Chargeability

Outside waste 
dump limits
Chargeability=0

• Waste material:  Mixed solid waste (MSW)

• Observations:
– Resistivity not correlated with pit margins (non-diagnostic)
– Chargeability (IP) correlates well with historical pit margins (diagnostic)

Ryan Airfield (Eastern Pit)

Dipole-dipole (a=7.5ft, n=0.5-6)
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Resistive waste 
within landfill

IP correlates with 
landfill

historical waste boundaries

Resistivity

Chargeability

• Waste material:  Construction / demolition
• Observations:

– Waste correlates with region of high resistivity
– Waste correlates with chargeable region (significant IP anomaly).

Dipole-dipole (a=7.5ft, n=0.5-6)

Ryan Airfield (Western Pit)
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Ryan Airfield (Composite)

• Waste material:  
– MSW and construction / 

demolition

• Observations:
– Well locations picked with 

aim of not intercepting waste
– Verified by drilling

Chargeability isosurface
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Tumamoc Landfill

Low resistivity 
waste and leachate

historical waste boundaries

• Waste material:  Construction / demolition

• Observations:
– Low resistivity down-gradient from waste → likely conductive leachate 
– Low resistivity and IP offset from one another
– IP falls within historic landfill boundaries

Color: resistivity
Contours: chargeability
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Tucson region: Organic material

Sewer cover 
near IP line

Resistivity

Chargeability

• Waste material: green-waste, trees, clippings
• Observations:

– Resistivity low 
– Weak but elevated IP signature

Dipole-dipole (a=7.5ft, n=0.5-6)
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Nearmont Landfill

Dipole-dipole (a=7.5ft, n=0.5-6)

Resistivity

Chargeability

• Waste material: Municipal solid waste (MSW)
• Observations:

– low resistivity + high IP (ideal “fingerprint”)
– MSW waste confirmed with drilling
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Example: Landfill Monitoring

Before

After

• Waste material: municipal solid waste (MSW)

• Surveys:
– 2003: IP survey
– 2003-2007: 4 year biodegrediation program
– 2009: Repeat IP survey

• Observations: 
– Reduction in IP anomaly indicates the effectiveness of biodegredation
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Summary

• Resistivity may not be a good indicator of waste

Mixed Waste

Construction/
Demolition
Waste

Green Waste
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Summary
• Chargeability may be a more consistent indicator of waste

Mixed Waste

Construction/
Demolition
Waste

Green Waste
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Case History: 
Mapping a landfill, Denmark

Gazoty et al., 2012
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Setup

Horlokke area, Denmark

• Landfill 
– Years: 1968-1978
– 100m x 100m
– Sludge from waste treatment plant
– Estimated volume: 65,000m3

• Containment
– No membrane 
– No leachate capture 
– No isolation system

• Current state
– Landfill: hydrocarbons, iron, 

inorganics
– Contaminant plume 

• 500m to west; depth (50-60 m)

• Chlorinated compounds

Landfill
boundary
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Setup

• Horlokke landfill
– Located on an outwash plane (low topography)
– Clay layer: top 2-3m
– Waste layer: 6-8m thick

• General geology
– Gravel and sand with interbedded clay
– Water level: 2-3m depth
– Sand layers below landfill host regional aquifer

• Aquifer is used for drinking water
– Watershed is west of the site
– No risk currently
– Concern if watershed shifts east due to climate 

change

Geologic section
Landfill
boundary
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Objectives

• Delineate the boundaries and depth of 
the current landfill

• Locate the leachate plume

• Identify lithologies
– Aquitards

– Clay-rich sandy layers

– Deep silt/clay lens  

Geologic section
Landfill
boundary
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Properties

Resistivity Chargeability Gamma

sand/gravel High Low Low

clay/till Low High High

sand High Low Low

landfill High (?) High (?)

Geologic section

Physical properties
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Survey
Study area

Time domain IP (TDIP)

Data (chargeability):

• Well logs:

– 25 boreholes, ~85 m depth

– Gamma logs (white dots)

– Induction and resistivity logs

• DC-IP survey:

– 11 lines (each ~410 m)

– Gradient array

– Input current: 4sec on and 4sec off

– 20 time gates (8 per decade)

Landfill
boundary
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Processing / Inversion

• Cole-Cole inversion:

– Laterally constrained 
inversion (LCI)

– Invert for Cole-Cole 
parameters

Recovered Cole-Cole sections:

⇢(!) = ⇢0
h
1 +M0(1�

1

1 + (i!⌧)c
)
i

⇢0: DC resistivity

M0: Chargeability

⌧ : Time constant

c: Frequency dependence

0
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Interpretation: Delineating the landfill
Chargeability (M0) sections

Chargeability

Location map

Using 100 mV/V cutoff: 50,000m3 

From historic record:     65,000m3

P1

P16

P11

P15

Landfill
boundary

Landfill
boundary

Estimated volume 83



Interpretation: Clay layer (Aquitard)

Chargeability

Formation Resistivity Chargeability Gamma

Clay Low 
(60 ohm m) High High

Resistivity and chargeability sections

Interpretation

• Creek overlays the clay layer (acts as aquitard) 

1605 1587

1605 1587

Resistivity
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Interpretation: Clay-rich sandy layer

Chargeability

Resistivity and chargeability sections
1605 1587

1605 1587

Resistivity

Formation Resistivity Chargeability Gamma

Clay Low High High

Clay-rich 
sandy layer High Moderate

(50-100 mV/V) High
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Interpretation: Silt/clay lens

Chargeability

Resistivity and chargeability sections
1605 1587

1605 1587

Resistivity

Formation Resistivity Chargeability Gamma

Clay Low High High

Clay rich 
sandy layer High Moderate

(50-100 mV/V) High

Silt/clay
lens Low High High
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Interpretation: Lithology
Location map

Geologic interpretation

Resistivity and chargeability sections

Chargeability

Resistivity
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Interpretation: Lithology
Location map

Geologic interpretation

Resistivity cut-off volume (<100 Ωm)

Resistivity and chargeability sections

Chargeability

Resistivity
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Synthesis: delineating the leachate

Contaminated plume section

Geologic interpretation

Resistivity cut-off volume (<100 Ωm)

Resistivity and chargeability sections

Chargeability

Resistivity
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Summary

• Found boundaries for the waste

• Estimated volume for the waste

• Delineated the leachate plume

• Lithology of the background

– Aquitard

– Clay-rich sandy layer

– Clay lens
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