

1

Inverse Theory

Doug Oldenburg, Seogi Kang, Lindsey Heagy & the UBC-GIF team

https://courses.geosci.xyz/lapis2019

Dr. Danilo R. Velis

Dr. Fabio I. Zyserman

Collaborators

Seogi

Dom

Thibaut

Some backgrounds

 Doug inspired by Bob Parker, Freeman Gilbert and George Backus: The Geophysical Inverse Problem

З

4

Inverse Theory: Overview

Outline

- Problems where inversion is needed
- Define some terms
- Linear problem
- Understand origin of non-uniqueness
- Ill-conditioning
- Types of constraint information
- Topics for course

some problems of relevance ...

Finding resources

Minerals

Ground Water

Hydrocarbons

Geothermal Energy

Natural hazards

Volcanoes

Tsunami

Earthquakes

Geotechnical engineering

Tunnels

Slope stability

In-mine safety

Environmental

Water contamination

http://www.centennialofflight.gov

Salt water intrusion

Unexploded Ordnance (UXO)

Surface or underground storage

Industrial Waste Disposal

Aquifer Storage and Recover

What do these problems have in common?

All require ways to see into the earth without direct sampling.

Some experiments and data

Cross-well tomography

Direct Current (DC) Resistivity

Some experiments and data

Airborne Time Domain EM

Magnetics

Inversion

Seismic refraction

Inverse problem

- Given data $t_j (j = 1, N)$
- Estimates of uncertainties (data errors)
- Ability to forward model

What is the model / velocity structure, v(z) that produce d the data?

Forward problem: simulate data

- Earth model: physical properties
- Experiment: transmitters, receivers, geometry
- Physics: how energy propagates

Convenient notation

 ${\mathcal F}\,$: forward mapping, ${\mathcal F}[m]=d$

Model space

Model space is a vector space with

- rules of inner products (angles between vector elements)
- norms to measure length

Data space

Elements of data space:

$$\mathbf{d} = (d_1, \dots, d_N) \qquad \in \mathbb{R}^N$$

Each datum:

$$d_j = \mathcal{F}_j[m]$$

 $\mathcal{F}_{j}[\cdot]$: forward mapping

Depends upon:

- Physics of experiment
- Geometry
- Details about source and receiver

Two types of mapping: linear and non-linear

Linear mapping: If f and g are two elements of model space, α and β are constants

$$\mathcal{F}[\alpha f + \beta g] = \alpha \mathcal{F}[f] + \beta \mathcal{F}[g]$$

If it does not hold then \mathcal{F} is **non-linear** mapping

Examples of linear functionals:Biot-Savart:
$$\vec{B}(\vec{r_j}) = \frac{\mu_0}{4\pi} \int_v \frac{\vec{J}(\vec{r}\ ') \times \hat{r}}{|\vec{r_j} - \vec{r}\ '|^2} dv$$
 $m = \vec{J}$ $d_j = \int_a^b g_j(x)m(x)dx$ Convolution: $y(t_j) = \int_{-\infty}^\infty h(\tau)w(t_j - \tau)d\tau$ $m = h$ $\begin{cases} d_j: j \text{-th data} \\ g_j: \text{ kernel} \\ m: \text{ model} \end{cases}$ RMS-to-interval $V_{rms}^2(t_j) = \frac{1}{t_j} \int_0^{t_{max}} v_{int}^2(t)H(t - t_j)dt$ $m = v_{int}^2$

So, two models: $m_1(x)$, $m_2(x)$

Inverse Problem

- Find the model that give rise to the data
- For the RMS problem

$$V_{rms}^{2}(t_{j}) = \frac{1}{t_{j}} \int_{0}^{t_{max}} v_{int}^{2}(t)H(t-t_{j})dt$$

- Forward problem: Given v_{int} compute V_{rms}
- Inverse problem: Given V_{rms} find v_{int}

Questions:

- Does a solution exist?
- How to construct a solution?
- Is it unique?
- How to handle non-uniqueness

Answers depend upon available data:

- infinite amount of accurate data
- finite amount of accurate
- finite amount of inaccurate data

Inversion with perfect data

Forward problem:

$$V_{rms}^{2}(t) = \frac{1}{t} \int_{0}^{t} v_{int}^{2}(u) du$$

 V_{rms} : rms velocity v_{int} : interval velocity $(\mathbf{t}) = \mathbf{t} + \mathbf{t}$

Analytic inverse:

$$v_{int} = V_{rms} \left(1 + \frac{2t V'_{rms}(t)}{V_{rms}} \right)^{1/2}$$

Term tV_{rms} ' magnifies small changes in V_{rms} at late times

 \rightarrow large changes in v_{int}

What is learned

- V_{rms} known exactly $\rightarrow v_{int}$ recovered uniquely
- Forward problem "smooths"
- Inverse problem must "roughen"

Inversion with finite number of accurate data

- Interpolate to obtain $V_{rms}(t)$, then use analytic solution:
- Each interpolation \rightarrow different $v_{int}(t)$
- Non-unique, even with accurate data

Inversion with finite number of inaccurate data

• Increases non-uniqueness

. . .

• Infinite number of ways to interpolate

Visualizing non-uniqueness

III-conditioning

_et
$$d^{obs} = d^{true} + \delta d$$

 $\mathcal{F}^{-1}[d^{true}] = m_c$ (constructed model)
 $\mathcal{F}^{-1}[d^{obs}] = \mathcal{F}^{-1}[d^{true} + \delta d] = m_c + \delta m$

Suppose $\|\delta d\|$ is small

Does that mean $\|\delta m\|$ is small?

Return to RMS problem

Suppose
$$v_{int}(t) = v_0$$
 (constant) v_0 $V_{rms}(t) = v_0$ $V_{rms}(t) = v_0$ Perturbation $V_{rms}(t) = v_0 + asin(\omega_0 t)$ $V_{rms}'(t) = a\omega_0 cos(\omega_0 t)$ $\begin{cases} a: constant \\ \omega_0: arbitrary value \end{cases}$

Analytic solution
$$v_{int} = V_{rms} \left(1 + \frac{2tV'_{rms}(t)}{V_{rms}} \right)^{1/2}$$

 $\delta v_{int} \propto \frac{t a \omega_0}{-}$

 v_0

Can be arbitrarily large even if 'a' is small

Return to RMS problem

Suppose
$$v_{int}(t) = v_0$$
 (constant) $v_{rms}(t) = v_0$

Perturbation
$$V_{rms}(t) = v_0 + asin(\omega_0 t)$$

 $V_{rms}'(t) = a\omega_0 cos(\omega_0 t)$
 $\begin{cases} a: \text{ constant} \\ \omega_0: \text{ arbitrary value} \end{cases}$

Small changes in the data can result in large changes in the recovered model Inverse problem is ill-conditioned

$$\delta v_{int} \propto rac{ta\omega_0}{v_0}$$
 \Longrightarrow Can be arbitrarily large even if

'a' is small

Summary for inverse problem

- Non-unique
- Ill-conditioned

The Inverse Problem is ill-posed

Any inversion approach must address these issues

What information is available?

Physics

- Magnetic susceptibility is positive

 $\kappa \geq 0$

- Or values must lie between certain bounds

 $m_l \leq m \leq m_u$

What information is available?

 Joint data sets connected with same property (e.g. electric conductivity)

What information is available?

- Joint data sets from different properties

- Petrophysics
- Well-logs

- Geologic structure
- Geologic constraints
- Reference model
- Bounds
- Multiple data sets
- Physical property measurements

Framework for Inverse Problem

Find a single "best" solution by solving optimization

Tikhonov (deterministic)

minimize
$$\phi = \phi_d + \beta \phi_m$$

subject to $m_L < m < m_H$

 $\begin{cases} \phi_d: \text{ data misfit} \\ \phi_m: \text{ regularization} \\ \beta: \text{ trade-off parameter} \\ m_L, m_H: \text{ lower and upper bounds} \end{cases}$

Bayesian (probabilistic)

Use Bayes' theorem

 $P(m|d^{obs}) \propto P(d^{obs}|m)P(m)$

 $\begin{cases} P(m): \text{ prior information about } m \\ P(d^{obs}|m): \text{ probability about the data errors (likelihood)} \\ P(m|d^{obs}): \text{ posterior probability for the model} \end{cases}$

Two approaches:

- (a) Characterize $P(m|d^{obs})$
- (b) Find a particular solution that maximizes $P(m|d^{obs})$ (MAP: (maximum a posteriori) estimate

This course

- Tikhonov style inversion
- Linear and non-linear problems
- Progressively incorporate different types of a priori information
- Thematic examples (1D, 2D, 3D)
- Case histories
- Open source resources (Jupyter notebooks)

Major components for the week

