
Non-linear inversion
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Outline
• Non-linear forward problem

• Non-linear optimization (Newton’s)
- Quadratic convergence

• Example problem: DC resistivity
- Physics
- Discretization
- Optimization
- 2D synthetic inversion
- 3D field example: Mt. Isa
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Non-linear inversion

• Set inverse problem

• For linear problem:

- And quadratic regularization:

- This is quadratic so we can solve in one step

• Problem becomes non-linear if:
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Non-linear inversion
• Data:

• Examples:

• Solve optimization problem: 
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d = F [m]

If F [·] is Linear operator d = Gm
Non-linear: F [am1 + bm1] 6= aF [m1] + bF [m2]

- Seismic
- Maxwell’s (1st order wave equation)
- DC resistivity 

minimize �(m) = �d + ��m(m)



Non-linear inversion
• Data:

• Examples:

• Solve optimization problem: 
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d = F [m]

If F [·] is Linear operator d = Gm
Non-linear: F [am1 + bm1] 6= aF [m1] + bF [m2]

minimize �(m) = �d + ��m(m)

(1) Discretize PDE and solve forward problem
(2) Iteration

- Seismic
- Maxwell’s (1st order wave equation)
- DC resistivity 



Non-linear optimization
• Single variable    :

• Case I: f is quadratic

• Suppose
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Local
Global



Local Quadratic:
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Non-linear optimization
• Newton’s Method

i. Begin with 
ii. Solve a local quadratic for 
iii.
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Quadratic convergence: 
• Things can go wrong

• If wrong direction, negative curvature

• If right direction but           is wrong
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Convergence conditions
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Summary: Newton’s method
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Linear Non-linear
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Solution in one step
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Multivariate functions
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�(m) m 2 {m1,m2, ...,mM}
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Minimize

Taylor expansion

Note similarity to single variable



Define
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Finding a solution
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(i) Begin with m(k)

(ii) Solve H
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Our inversion
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Comparison to linear problem
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Nonlinear Problem: (JTJ + �)�m = �(JT �d+ �m)

Linear Problem:
(Gm = d)

(F [m] = d)

Sensitivity     acts as a local linear for non-linear operator

(GTG+ �)�m = �(GT d+ �m)

�d = F [m]� dobs

J
J�m = �d



General algorithm: 
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minimize � = �d + ��m
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until convergence
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�

(line search)

(cooling)

Many variants: - Solving system 
- Cooling rate
- ….



Summary
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Linear Non-linear

(JTJ + �)�m = �(JT �d+ �m)(GTG+ �)�m = �(GT d+ �m)

�d = F [m]� dobs

d = Gm d = F [m]

m(k+1) = m(k) + ↵�m

All understanding from linear problems is valid for nonlinear problems



Source Data

Input energy m
ea

su
re
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DC resistivity



• DC resistivity is sensitive to:
• σ: Conductivity [S/m]
• ρ: Resistivity [Ωm]
• σ = 1/ρ

• Varies over many orders of 
magnitude

• Depends on many factors:
• Rock type. porosity, fluid…

• Has many applications: Mineral 
exploration, ground water, geotechnical, …: 
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Electrical conductivity



Basic Experiment
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• Target: 
- Ore body. Mineralized regions less resistive than 

host 



Basic Experiment
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• Target: 
- Ore body. Mineralized regions less resistive than 

host 
• Setup: 

- Tx: Current electrodes
- Rx: Potential electrodes



Basic Experiment
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Basic Experiment
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• Target: 
- Ore body. Mineralized regions less resistive than 

host 
• Setup: 

- Tx: Current electrodes
- Rx: Potential electrodes

• Currents:
- Preferentially flow through conductors 

• Charges:
- Build up at interfaces



Basic Experiment
• Target: 

- Ore body. Mineralized regions less resistive than 
host 

• Setup: 
- Tx: Current electrodes
- Rx: Potential electrodes

• Currents:
- Preferentially flow through conductors 

• Charges:
- Build up at interfaces

• Potentials: 
- Associated with the charges are measured at the 

surface
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Forward problem
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~e = �rV

r · �rV = I�(r) = q

~j · n̂ = 0 at boundary

A(m)u = q

generically,

Continuous Discrete (FV)

G: gradient matrix

M�: conductivity inner product matrix

q: source term

Finite&volume&mesh
?&Pixels&and&neighbors?



Forward problem

• Solve forward problem:
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A(m)u = q • Matrix     :
- Sparse
- Symmetric
- Positive definite
- Real-valued (can be complex sometimes)

A

u = A(m)�1q

Use iterative or direct solver

A: system matrix (nN ⇥ nN)

m: model (M ⇥ 1)

u: potentials to solve (nN ⇥ 1)

q: righthand side (nN ⇥ 1)



Inverse problem
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• Solve

• How to compute sensitivity matrix 

• Forward modelling:

- data are potential difference between two nodes

(JTJ + �)�m = �(JT �d+ �m)
�d = F [m]� dobs

d = F [m]Predicted data:

Residual:

J Jij =
@di
@mj

u: potential on the nodes

A(m)u = q
V

uj uk

d = Pu

u 2 RnN

P : projection matrix

P =

0

B@
0 0 �1 0 0 1 0
�1 0 0 0 0 1 0
...

. . .
...

1

CA



Inverse problem: computing sensitivity

• Find 

• Chain rule:

29

rmu(m)
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Examine sensitivity 

• For DC problem 
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P : projection matrix

A(m)

�1
: forward modelling

J = �PA(m)�1G(m,u)

A = GTM�G

M� = diag

�
Av

T
diag(� � vol)

�

G(m,u) = rm

⇥
A(m)u(m)

fixed

⇤
= G

T
diag

�
Gu

�
Av

T
diag(vol)

Av: averaging matrix

vol: volume of cells



Putting everything together

• Solve

• Using CG we need: 

• but,                                              all sparse matrices    
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(JTJ + �)�m = �(JT �d+ �m)

JT y y 2 RN

Jv v 2 RMJv v 2 RM

J = �PA(m)�1G(m,u)



Example 2D DC resistivity
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Conductivity model • Dipole-dipole array
- n-spacing = 10
- Electrode-spacing = 10m
- # of data = 135

• 5% Gaussian noise added

Apparent resistivity pseudo-section
Data histogram Voltage

Dipole-Dipole



DC inversion: iteration 1

True model

Predicted model

Observed data

Predicted data

Tikhonov curve

Normalized misfit



DC inversion: iteration 2

True model

Predicted model

Observed data

Predicted data

Tikhonov curve

Normalized misfit



DC inversion: iteration 3

True model

Predicted model

Observed data

Predicted data

Tikhonov curve

Normalized misfit



DC inversion: iteration 4

True model

Predicted model

Observed data

Predicted data

Tikhonov curve

Normalized misfit



DC inversion: iteration 5

True model

Predicted model

Observed data

Predicted data

Tikhonov curve

Normalized misfit



DCR Case History:  Mt. Isa
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Seven Steps
Mt. Isa (Cluny prospect)



Mt. Isa (Cluny prospect)

Setup
Geologic model

Question

• Can conductive units, which would be potential targets within the 
siltstones, be identified with DC data?
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Properties

Geologic model Surface topography
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Conductivity table



• Eight survey lines

• Two survey configurations.

Survey and Data

Easting (m) Easting (m)

mS/m

Apparent resistivity,
pole - dipole.

Data set #1:

Surface topography
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• Eight survey lines

• Two survey configurations.

Survey and Data

Easting (m) Easting (m)

mS/m

Surface topography
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Apparent resistivity,
dipole - pole

Data set #2:



Processing and interpretation

3D resistivity model Animation
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Synthesis
• Identified a major conductor ! black shale unit
• Some indication of a moderate conductor 

3D resistivity model Geologic section

Resistivity section
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Summary
• Non-linear forward problem

• Non-linear optimization (Newton’s)
- Quadratic convergence

• Example problem: DC resistivity
- Physics
- Discretization
- Optimization
- 2D synthetic inversion
- 3D field example: Mt. Isa
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Next up …

46



The end
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