

L_p norm inversion

1

Outline

- Why beyond L_2 ?
- L_p norms
- 2D cross-well tomography
- 3D magnetics
- Case history: 3D gravity at Kevitsa

minimize $\phi = \phi_d + \beta \phi_m$

$$\phi_d = \|\mathbf{W}_d(F[\mathbf{m}] - \mathbf{d}^{obs})\|_2^2$$

 $F[\mathbf{m}]$: linear or non-linear function

$$\phi_m = \alpha_s \int_v (\mathbf{m} - \mathbf{m}_{\text{ref}})^2 dv + \sum_{j=x,y,z} \alpha_j \int_v \left(\frac{d}{dj} (\mathbf{m} - \mathbf{m}_{\text{ref}})^2\right) dj$$

Discretize $\phi_m = \sum_{j=s,x,y,z} \alpha_j \| \mathbf{W}_j (\mathbf{m} - \mathbf{m}_{ref}) \|_2^2$

Change them and explore model space. Is that enough?

Flexibility

 \mathbf{m}_{ref} Prior knowledge

 $\alpha_s, \alpha_x, \alpha_y, \alpha_z$ Relative importance of the norms

1D inversion

4

2D crosswell inversion

3D magnetic inversion

True model

5.0e-02

- 0.045

- 0.04 - 0.035

- 0.03

- 0.025 - 0.02

- 0.015 - 0.01

- 0.005

____0.0e+00

X

_ -4.9e-03

-0.002

- 1.5e-02

- 0.012

- 0.01

- 0.008

- 0.006

- 0.004

- 0.002

_ 0

What is missing?

1D

- L₂ norm: "smallness" and "smoothness"
 - Smooths sharp boundaries
 - May have artefacts
 - Violate physics (negative susceptibility)

What is missing?

• Work so far we have used L_2 norms

$$\phi_m = \int m^2(x) dx \quad \stackrel{\text{Discretize}}{\longrightarrow} \quad \phi_m = \sum_{i=1}^M m_i^2 v_i$$

• General L_p-norm

$$\phi_m = \sum_{i=1}^M |m_i|^p v_i \qquad 0 \le p \le 2$$

	p=2	p=1	p=0.5	p=0
ϕ_m	69	55	54	100

General character

 $\phi_m = \sum_{i=1}^M |m_i|^p v_i$

- Geometric character
 - p=2: all elements close to zero
 - p=1: sparse solution, # of non-zero elements are \leq # of data
 - p=0: minimum support, model with the fewest number of elements
- 1D problem

General Lp objective function

 Each component of a 3D objective function can have its own Lp-norm

$$\phi_m = \sum_{j=s,x,y,z} \alpha_j \int_v |f_j(m)|^{p_j} dv \qquad 0 \le p_j \le 2$$

$$=\phi_s^{p_s}+\phi_x^{p_x}+\phi_y^{p_y}+\phi_z^{p_z}$$

$$f_s(m) = m$$
 $f_x(m) = \frac{dm}{dx}$ $f_y(m) = \frac{dm}{dy}$ $f_z(m) = \frac{dm}{dz}$

Implementation

Single variable m

E.g. Lawson:
$$|m|_L^p \approx \frac{m^2}{(m^2 + \epsilon_m^2)^{1-p/2}} \qquad \epsilon_m$$
: small perterbation

11

Solve: IRLS (Iterative Reweighted Least Squares

$$\sum_{i} |m_{i}|^{p} \simeq \sum_{i} \frac{m_{i}^{2}}{(m^{2} + \epsilon_{m}^{2})^{1 - p/2}} = \|\mathbf{R}^{(k)}\mathbf{m}\|^{2} \qquad \mathbf{R}^{(k)} = \mathbf{diag}\left(\frac{1}{(\mathbf{m}^{2} + \epsilon_{m}^{2})^{1 - p/2}}\right)$$

 $\mathbf{R}^{(k)}$ is an weighting matrix evaluated at current model, $\mathbf{m}^{(k)}$

For the linear inverse problem ($\mathbf{Gm} = \mathbf{d}$)

$$\phi = \|\mathbf{G}\mathbf{m}^{(k+1)} - \mathbf{d}\|^2 + \beta \|\mathbf{R}^{(k+1)}\mathbf{m}^{(k+1)}\|^2$$
$$\nabla_m \phi = 0 \quad \cdots \quad (\mathbf{G}^T \mathbf{G} + \beta \mathbf{R}^{(k)^T} \mathbf{R}^{(k)}) \mathbf{m}^{(k+1)} = \mathbf{G}^T \mathbf{d}^{obs}$$

Iterate until
$$\|\mathbf{m}^{(k+1)} - \mathbf{m}^{(k)}\| < \eta$$

General norm

$$\phi_m = \sum_{j=s,x,y,z} \alpha_j \int_v |f_j(m)|^{p_j} dv$$

$$f_s(m) = (m - m_{\text{ref}}), \ f_x(m) = \frac{dm}{dx}, \ f_y(m) = \frac{dm}{dy}, \ f_z(m) = \frac{dm}{dz}$$
Lawson
$$|f_j(m)|^{p_j} \longrightarrow \frac{\left(f_j(m)\right)^2}{\left(f_j(m)^2 + \epsilon_m^2\right)^{1-p/2}}$$

Solve using Iterative Re-weighted Least Square (IRLS)

2D crosswell example

$$\phi_m = \alpha_s \int_v |\mathbf{m} - \mathbf{m}_{\text{ref}}|^{p_s} dv + \alpha_x \int_v \left| \frac{d}{dx} (\mathbf{m} - \mathbf{m}_{\text{ref}}) \right|^{p_x} dx + \alpha_z \int_v \left| \frac{d}{dz} (\mathbf{m} - \mathbf{m}_{\text{ref}}) \right|^{p_z} dz$$

Each term has three adjustable parameters: (α, p, ϵ_m)

3D magnetic example

Synthetic susceptibility model

- Earth field
 - Inclination: 30°
 - Declination: 45 °
 - |B₀| = 50,000 nT

B

- Susceptible block
 - 100m x 100m x 100m block
 - Block susceptibility = 0.5
 - Block top = 50m

Synthetic survey

Survey parameters: - 100 m line spacing.

- 25 station spacing.
- N=156 (elevation= 2m)

Solving inverse problem with weighting

Model objective function $\phi_m = \alpha_s \int w_s \left(\kappa - \kappa_{\text{ref}}\right)^2 dv + \alpha_x \int w_x \left(\frac{d\kappa}{dx}\right)^2 dx + \alpha_y \int w_y \left(\frac{d\kappa}{dy}\right)^2 dy + \alpha_z \int w_z \left(\frac{d\kappa}{dz}\right)^2 dz$ observation plane Data misfit $\phi_d = \sum_{j=1}^{N} \left(\frac{G_{ij}\kappa_j - d_j^{obs}}{\epsilon_j} \right)$ observation point mod lel cells The Inverse problem is: minimize $\phi = \phi_d + \beta \phi_m$

find β such that $\phi_d = \phi_d^*$ where $\phi_d = N$

Depth weighting

- Decays with depth: $w(z) = \frac{1}{(z+z_o)^{3/2}}$
- z_0 : by least-squares fit between g(z) and $w^2(z)$

Inversion with sensitivity weighting

True model

Without sensitivity weight

1.5e-02

- 0.012

- 0.01

- 0.008

- 0.006

- 0.004

- 0.002

-0.002

_ -4.9e-03

- 0

Positivity

- Susceptibility is positive
- The inverse problem is stated as

minimize $\phi = \phi_d + \beta \phi_m$ subject to $m \ge 0$

• The problem becomes non-linear. Need to address this.

Bound Constraints

• Physical property bounds in each cell

$$\mathbf{m}_L \leq \mathbf{m} \leq \mathbf{m}_H$$

Eldad's book 2015

- Projected Gradient Gauss-Newton (Kelly, 1999; Haber,)
 - At each GN iteration

 $\delta \mathbf{m} = \mathbf{H}^{-1} \delta \mathbf{d} + \alpha \mathbf{g}$

H: Hessian for cells not at the bounds
g: gradient for cells at the bounds
α: scalar

Positivity of susceptibility $\ \mathbf{m} \geq 0$

3D magnetic inversion:

- depth (or sensitivity) weighting
- positivity (bounds): $\mathbf{m} \geq 0$

sus-with-weight-pos

Magnetic inversion with Lp norms

Model objective function

$$\phi_m = \alpha_s \int_v w_s \left| \kappa - \kappa_{ref} \right|^{p_s} dv + \alpha_x \int_v w_x \left| \frac{d\kappa}{dx} \right|^{p_x} dx + \alpha_y \int_v w_y \left| \frac{d\kappa}{dy} \right|^{p_y} dy + \alpha_z \int_v w_z \left| \frac{d\kappa}{dz} \right|^{p_z} dz$$
Data misfit $\phi_d = \sum_{j=1}^N \left(\frac{G_{ij}\kappa_j - d_j^{obs}}{\epsilon_j} \right)$

The Inverse problem is:

minimize $\phi = \phi_d + \beta \phi_m$ find β such that $\phi_d = \phi_d^*$ where $\phi_d = N$ subject to $\kappa \ge 0$

3D magnetic inversion:

- depth (or sensitivity) weighting
- positivity (bounds): $\mathbf{m} \geq 0$
- $L_p \text{ norm } (p_s=0, p_x=p_y=p_z=2)$

weight-pos-lp

sus-with-

3D magnetic inversion:

- depth (or sensitivity) weighting
- positivity (bounds): $\mathbf{m} \geq 0$
- L_p norm ($p_s=0$, $p_x=p_y=p_z=1$)

-pos-101

weight

sus-with

Summary: magnetic inversion

Summary: magnetic inversion

Summary: L_p-norms

$$\phi_m = \alpha_s \int_v w_s \left| \kappa - \kappa_{\text{ref}} \right|^{p_s} dv + \alpha_x \int_v w_x \left| \frac{d\kappa}{dx} \right|^{p_x} dx + \alpha_y \int_v w_y \left| \frac{d\kappa}{dy} \right|^{p_y} dy + \alpha_z \int_v w_z \left| \frac{d\kappa}{dz} \right|^{p_z} dz$$

- Non-linear inversion
- Balancing each term is not trivial (Fournier and Oldenburg, 2019)
- Provides a capability to explore model space
 - Altering each parameter \rightarrow generates a different model

Field example: Kevitsa Ni-Cu-PGE, Finland

- Discovered in early 1980's
- New Boledan
- 160 M tons of Nickel

- Large number of acquired datasets
 - DC-Resistivity and IP
 - Magnetotelluric
 - 2D-3D Seismic refraction
 - Airborne TEM + FEM
 - Magnetics
 - Gravity

- Complex geology
 - >2.04 Ga
 - Ultra-mafic intrusion
 - Volcanic and sedimentary host
 - Important folding and faulting

• Seismic refraction profile

- Physical property logs
 - 279 bore holes
 - > 500k samples

Code	Density
OVB: Overburden	Low
VBA: Basalt	Medium
IGB: Gabbro	Medium
UPX: Pyroxenite	High
UDU: Dunite	Low
UKO: Komatiite	Low
BXH: Breccia	Medium
MPH: Phyllite	Low
MPHB: Carboneceous Phyllite	Medium
MSCBK: Black Schist	High
VMO: Volcanic - Mafic	Medium
VIO: Volcanic	Low

• Kevitsa (Gravity)

• Smooth model (conventional L₂-norm)

Exploring the model space

Exploring the model space

• Plot iso-contours of density anomalies from 9 models

• Interpreting with variability

Outline

- Why beyond L_2 ?
- L_p norms
- 2D cross-well tomography
- 3D magnetics
- Case history: 3D gravity at Kevitsa

Next up ...

