
Lp norm inversion
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Outline

• Why beyond L2?

• Lp norms 

• 2D cross-well tomography

• 3D magnetics

• Case history: 3D gravity at Kevitsa
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Lp-norms and Constraints
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1D inversion 

4

Model Data

Misfit curves



2D crosswell inversion
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3D magnetic inversion
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Obs. Pred. Misfit

True model



What is missing?
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1D 2D

• L2 norm: “smallness” and “smoothness”
- Smooths sharp boundaries
- May have artefacts
- Violate physics (negative susceptibility)
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What is missing?
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• Work so far we have used L2 norms

• General Lp-norm
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General character
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�m =
MX

i=1

|mi|pvi
• Geometric character

- p=2: all elements close to zero
- p=1: sparse solution, # of non-zero elements are ≤ # of data
- p=0: minimum support,  model with the fewest number of elements

• 1D problem
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• Each component of a 3D objective function can have its own 
Lp-norm 
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Implementation
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Derivative
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Derivatives for m ! 0 are ill-defined 
Various approaches to handle this: Huber, Ekblom, Lawson
E.g. Lawson: ✏m: small perterbation|m|pL ⇡ m2

(m2 + ✏2m)1�p/2

p=0.5



Solve: IRLS (Iterative Reweighted Least Squares 
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General norm
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2D crosswell example
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Each term has three adjustable parameters: (↵, p, ✏m)

p=2, px=2, pz=2 p=0, px=2, pz=2 p=0, px=1, pz=1 True



3D magnetic example
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Synthetic susceptibility model

• Earth field
- Inclination: 30°
- Declination: 45 °
- |B0| = 50,000 nT

• Susceptible block
- 100m x 100m x 100m block
- Block susceptibility = 0.5
- Block top = 50m
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50m

100m



Synthetic survey
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Contoured “perfect” data Contoured data with noise = 2 nT

- 100 m line spacing.
- 25 station spacing.
- N=156  (elevation= 2m)

Survey parameters:



Solving inverse problem with weighting
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Depth weighting
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• Decays with depth:

• z0: by least-squares fit between g(z) and w2(z)
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Inversion with sensitivity weighting
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True model

Without sensitivity weight

Negative



Positivity

• Susceptibility is positive

• The inverse problem is stated as

• The problem becomes non-linear. Need to address this.
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minimize � = �d + ��m

subject to m � 0



Bound Constraints
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• Physical property bounds in each cell

• Projected Gradient Gauss-Newton (Kelly, 1999; Haber,   )
- At each GN iteration

mL  m  mH

�m = H�1�d+ ↵g

H: Hessian for cells not at the bounds
g: gradient for cells at the bounds
↵: scalar

m � 0Positivity of susceptibility

Eldad’s'book'2015?



3D magnetic inversion:
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True model

Without positivity

- depth (or sensitivity) weighting
- positivity (bounds): m � 0



Magnetic inversion with Lp norms
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3D magnetic inversion:
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- depth (or sensitivity) weighting
- positivity (bounds):
- Lp norm (ps=0, px=py=pz=2)

m � 0

True model

Without positivity



3D magnetic inversion:
- depth (or sensitivity) weighting
- positivity (bounds):
- Lp norm (ps=0, px=py=pz=1)

m � 0

True model

ps=0, px=py=pz=2



Summary: magnetic inversion
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True model No weight Sensitivity weight

ps=px=py=pz=2 ps=0, px=py=pz=2 ps=0, px=py=pz=1



Summary: magnetic inversion
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True model No weight Sensitivity weight

ps=px=py=pz=2 ps=0, px=py=pz=2 ps=0, px=py=pz=1

All models are fitting the observed data



Summary: Lp-norms
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• Non-linear inversion
• Balancing each term is not trivial (Fournier and Oldenburg, 2019)
• Provides a capability to explore model space 

- Altering each parameter ! generates a different model

ps=px=py=pz=2 ps=0, px=py=pz=2 ps=0, px=py=pz=1



Field example: 
Kevitsa Ni-Cu-
PGE, Finland
• Discovered in early 

1980’s
• New Boledan
• 160 M tons of Nickel
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Kevitsa

• Large number of acquired 
datasets
• DC-Resistivity and IP

• Magnetotelluric

• 2D-3D Seismic refraction

• Airborne TEM + FEM

• Magnetics

• Gravity
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Kevitsa

• Complex geology
• >2.04 Ga

• Ultra-mafic intrusion

• Volcanic and sedimentary host

• Important folding and faulting

• Seismic refraction profile
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Kevitsa

• Physical property logs 
• 279 bore holes
• > 500k samples
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Kevitsa

• Kevitsa (Gravity)

34



Kevitsa

• Smooth model 
(conventional L2-norm)
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Kevitsa

Exploring the 
model space
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ps=2

ps=1

ps=0

px= py = pz=2 px= py = pz=1 px= py = pz=0



Kevitsa

Exploring the 
model space
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ps=2

ps=1

ps=0

px= py = pz=2 px= py = pz=1 px= py = pz=0



Kevitsa

• Plot iso-contours of density 
anomalies from 9 models

• Interpreting with variability
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Outline

• Why beyond L2?

• Lp norms 

• 2D cross-well tomography

• 3D magnetics

• Case history: 3D gravity at Kevitsa
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Next up …
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