

1

Electrical conductivity and its applications

Doug Oldenburg, Seogi Kang, Lindsey Heagy & the UBC-GIF team

https://courses.geosci.xyz/lapis2019

Outline

- Some problems of interest
- Electrical conductivity/resistivity (lab experiment)
- Governing equations:
- DC resistivity
- Case history: minerals exploration
- Inductive sources
- Case history: water resources
- Other applications
- Future

some problems of relevance ...

Finding resources

Minerals

Ground Water

Hydrocarbons

Geothermal Energy

Natural hazards

Volcanoes

Tsunami

Earthquakes

Geotechnical engineering

Tunnels

Slope stability

In-mine safety

Environmental

Water contamination

http://www.centennialofflight.gov

Salt water intrusion

Unexploded Ordnance (UXO)

Surface or underground storage

Industrial Waste Disposal

Aquifer Storage and Recover

What do these problems have in common?

All require ways to see into the earth without direct sampling.

Electrical resistivity and conductivity

DC resistivity and Ohm's Law

- Ohm's Law: riangle V = IR
- Resistivity:

• Electric circuit:

$$\rho = R \frac{A}{l}$$

• Conductivity: $\sigma = \rho^{-1}$

A

Electrical Resistivity / Conductivity

Basic Equations

	Time	Frequency
Faraday's Law	$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$	$ abla imes \mathbf{E} = -i\omega \mathbf{B}$
Ampere's Law	$ abla imes \mathbf{h} = \mathbf{j} + \frac{\partial \mathbf{d}}{\partial t}$	$ abla imes \mathbf{H} = \mathbf{J} + i\omega \mathbf{D}$
No Magnetic Monopoles	$\nabla \cdot \mathbf{b} = 0$	$\nabla \cdot \mathbf{B} = 0$
Constitutive Relationships (non-dispersive)	$\mathbf{j} = \sigma \mathbf{e}$ $\mathbf{b} = \mu \mathbf{h}$ $\mathbf{d} = \varepsilon \mathbf{e}$	$\mathbf{J} = \sigma \mathbf{E}$ $\mathbf{B} = \mu \mathbf{H}$ $\mathbf{D} = \varepsilon \mathbf{E}$
	4 20	

* Solve with sources and boundary conditions

EM Surveys and frequency

EM Surveys and frequency

DC resistivity Survey

Fundamental Physics

Currents and potentials: halfspace

Currents and potentials: 4-electrode array

Currents and potentials: 4-electrode array

Conductive overburden (100 Ωm)

- Target:
 - Ore body. Mineralized regions less resistive than host

Elura Orebody Electrical resistivities

Rock Type	Ohm-m
Overburden	12
Host rocks	200
Gossan	420
Mineralization (pyritic)	0.6
Mineralization (pyrrhotite)	0.6

• Target:

- Ore body. Mineralized regions less resistive than host
- Setup:
 - Tx: Current electrodes
 - Rx: Potential electrodes

• Target:

- Ore body. Mineralized regions less resistive than host

• Setup:

- Tx: Current electrodes
- Rx: Potential electrodes
- Currents:
 - Preferentially flow through conductors

Elura Orebody Electrical resistivitiesRock TypeOhm-mOverburden12Host rocks200Gossan420Mineralization (pyritic)0.6Mineralization (pyrhotite)0.6

• Target:

- Ore body. Mineralized regions less resistive than host

• Setup:

- Tx: Current electrodes
- Rx: Potential electrodes
- Currents:
 - Preferentially flow through conductors
- Charges:
 - Build up at interfaces

• Target:

- Ore body. Mineralized regions less resistive than host

• Setup:

- Tx: Current electrodes
- Rx: Potential electrodes
- Currents:
 - Preferentially flow through conductors
- Charges:
 - Build up at interfaces
- Potentials:
 - Associated with the charges are measured at the surface

Rock Type	Ohm-m
Overburden	12
Host rocks	200
Gossan	420
Mineralization (pyritic)	0.6
Mineralization (pyrrhotite)	0.6

DC resistivity data

Example pseudosections

• Pole-dipole; n=1,8; a=10m; N=316

Example pseudosections

Inversion

Example 1: buried prism

• Pole-dipole; n=1,8; a=10m; N=316; (α_s , α_x , α_z)=(.001, 1.0, 1.0)

Example 2: prism with geologic noise

• Pole-dipole; n=1,8; a=10m; N=316; (α_s , α_x , α_z)=(.001, 1.0, 1.0)

DCR Case History: Mt. Isa

Mt. Isa (Cluny prospect)

Seven Steps

Setup

Mt. Isa (Cluny prospect)

Geologic model

Question

• Can conductive units, which would be potential targets within the siltstones, be identified with DC data?

Properties

Geologic model

Conductivity table

Rock Unit	Conductivity
Native Bee Siltstone	Moderate
Moondarra Siltstone	Moderate
Breakaway Shale	Very High
Mt Novit Horizon	High
Surprise Creek Formation	Low
Eastern Creek Volcanics	Low

Surface topography

Survey and Data

- Eight survey lines
- Two survey configurations.

Surface topography

Survey and Data

- Eight survey lines
- Two survey configurations.

Surface topography

Data set #2: Apparent resistivity, dipole - pole

Processing and interpretation

3D resistivity model

Animation

Inductivity source EM survey

• Setup:

transmitter and receiver are in a towed bird

• Setup:

transmitter and receiver are in a towed bird

• Primary:

Transmitter produces a primary magnetic field

• Setup:

transmitter and receiver are in a towed bird

• Primary:

Transmitter produces a primary magnetic field

• Induced Currents:

Time varying magnetic fields generate electric fields everywhere and currents in conductors

• Setup:

transmitter and receiver are in a towed bird

• Primary:

Transmitter produces a primary magnetic field

• Induced Currents:

Time varying magnetic fields generate electric fields everywhere and currents in conductors

• Secondary Fields:

The induced currents produce a secondary magnetic field.

Electromagnetic Induction

Why airborne EM?

Deep Targets

Airborne Survey

Resolve

Receiver: Time Domain

- Primary field has off-time
- Measure secondary fields
- Receivers can be mounted on transmitter
 loop or above it

Vertical Magnetic Dipole over a halfspace (TDEM)

Current Density

49

Summary: propagation through time

50

Layered earth

- 3 layers + air,
- ρ_2 varies

- Four different cases:
 - Halfspace

 $\rho_2 = 100 \ \Omega m$

- Resistive

 $\rho_2 = 1000 \ \Omega m$

- Conductive

 $\rho_2 = 10 \ \Omega m$

- Very conductive

 $\rho_2 = 1 \ \Omega m$

- Fields
 - j_y off-time
 - b off-time

-----,...,

52

Layered earth currents $(j_y)_{\rho_2 = 100 \ \Omega m}$

_....,

Layered earth currents (j_y) $\rho_2 = 100 \Omega m$

 $\rho_2 = 10 \ \Omega m$

Layered earth currents (j_y)

55

db_z/dt sounding curves

Case History: Kasted

Vilhelmsen et al. (2016)

Setup

- A) Survey Area: Kasted, Demark
- B) Borehole locations

Local Geology: W-E cross-section

Properties

Geological Units	Resistivity (Ωm)
Palaeogene Clay	1-10
Clay Till	25-60
Sand Till	>50
Meltwater Sand and Gravel	>60
Glaciolacustrine Clay	10-40
Miocene Silt and Sand	>40
Miocene Clay	10-40
Sand	>40
Clay	1-60

- Buried valleys with clays beneath
- Infill (water-bearing): coarse sand and gravel
- Clays are conductive (1-40 Ω m)
- Water-bearing sands and gravels are more resistive (>40 $\Omega m)$

Survey

- Low moment (LM) used to image near surface structures
- High moment (HM) used to image deeper structures

Data

Blue: data used for Kasted study

- 333 line km of data, 100 m linespacing
- Data points with strong coupling to cultural noise were removed (~30%)

Processing (inversion)

- Spatially constrained 1D inversion \rightarrow quasi-3D approach
- 9,500 soundings were inverted using 25 layers

Depth slice 5 m above sea-level

Approximate depth to the top of Paleogene clay layer

Interpretation

- Inversion results used to construct geological model.
- Delineated 20 buried and crosscutting valley structures.

MODFLOW-USG groundwater model

- 3D geologic model incorporated into MODFLOW-USG groundwater modeling tool
- Extracted water from 2 wells.
- Downdraw between the two wells correlated with the resistive valley structures

Other EM surveys

Electromagnetics at sea

- Other uses
 - Hydrocarbons
 - Gas hydrates
 - Sea floor mining
 - Tectonic

EM Surveys and frequency

Natural EM sources

Sun and magnetosphere, solar storms

Lightning

Auroral electrojet; aurora

3D resistivity at Iceland

Future problem: groundwater

- Consider Edmonton-Calgary Corridor (ECC)
 - Large scale problem
 - But conductivity itself is not completely informative
- Questions
 - Where are the aquifers and aquitards?
 - What is the water quality (e.g. arsenic, salt water)?
 - What is the storage capacity, flow rate?
 - How are the aquifers recharged (or not)?
 - Are losing water or gaining water? (water balance)
- Stake holder
 - Farmers
 - Government and industry
 - Public
 - Hydrogeologists, engineers, geophysicists

AEM resistivity Alberta Corridor

Next Generation of Geoscience Problems

- Multi-disciplinary
- Geophysics has a support role
- Inversion needed in multiple places
- Interaction is needed

Research challenges keep increasing

Next Generation of Geoscience Problems

- How to extract information about physical properties from data
- How to integrate that to help solve the geoscience problem?

- Who are the researchers?
 - Industry
 - Academia
- Tools for cooperation: Open Source

Open Source

Open source communities already doing this:

- Collaboration
 - Development of software
 - Implementing and applying
- Development practices
 - Shared repository
 - Version control
 - Automated testing
 - User and developer documentation
 - Peer review of code
 - Issue tracking
 - Attribution for contributors
 - Licensing

253 contributors

1,095 contributors

41 612 contributors

Sampling of modern open-source projects

- For EM
 - empymod
 - jlnv
 - Geoscience Australia
 - pyGIMLi
 - Fatiando
 - SimPEG

- ...

• They differ in objectives, capabilities, structure, interactivity, license, and language

- Modular framework for simulation and inversion of geophysical data
 - gravity, magnetics, vadose flow, DC/IP, FDEM, TDEM
- Open source
- Written in Python
- Specific to electromagnetics
 - Quasi-static Maxwell
 - Tensor, OcTree, Curvilinear and Cylindrical meshes
 - Easily visualize fields, fluxes, charges

GeoSci.xyz

Thank You

courses.geosci.xyz/aem2018

SimPEG Team

Rowan

Seogi

Gudni

Adam

Dom Thibaut

ut Mike

Dieter

Devin Franklin

Doug

Thank you