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Outline

• Some problems of interest
• Electrical conductivity/resistivity (lab experiment)
• Governing equations:  
• DC resistivity
• Case history: minerals exploration
• Inductive sources
• Case history: water resources
• Other applications
• Future
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some problems of relevance …
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Finding resources

4

Minerals

Ground Water

Hydrocarbons

Geothermal Energy 



Natural hazards
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Volcanoes

Earthquakes

Tsunami



Geotechnical engineering
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Tunnels

Slope stability In-mine safety



Environmental 
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http://www.centennialofflight.gov
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Salt water intrusion

Water contamination

Unexploded Ordnance (UXO)



Surface or underground storage
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Radioactive Waste

CO2 sequestration
Aquifer Storage and Recover

Industrial Waste Disposal



What do these problems have in common?

All require ways to see into the earth without direct sampling.
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Electrical resistivity and conductivity
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DC resistivity and Ohm’s Law

• Electric circuit:

• Ohm’s Law:

• Resistivity:

• Conductivity:
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Electrical Resistivity / Conductivity 
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Basic Equations

* Solve with sources and boundary conditions

Time Frequency

Faraday’s
Law

r⇥ e = � @b

@t
r⇥E = � i!B

Ampere’s
Law

Constitutive
Relationships
(non-dispersive)

r ·B = 0

J = �E

No Magnetic
Monopoles

j = �e

r · b = 0

b = µh

d = "e
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EM Surveys and frequency
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EM Surveys and frequency
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DC resistivity Survey
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Source Data

Input energy m
ea

su
re
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DC resistivity



Fundamental Physics
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Point charge

Point current



Currents and potentials: halfspace
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Currents and potentials: 4-electrode array
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Halfspace (500 Ω")

⇢ =
�VMN

IG

Resistivity



Currents and potentials: 4-electrode array
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Conductive overburden (100 Ω")

Apparent resistivity



Basic Experiment
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• Target: 
- Ore body. Mineralized regions less resistive than 

host 



Basic Experiment
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• Target: 
- Ore body. Mineralized regions less resistive than 

host 

• Setup: 
- Tx: Current electrodes
- Rx: Potential electrodes



Basic Experiment
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Basic Experiment
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• Target: 
- Ore body. Mineralized regions less resistive than 

host 

• Setup: 
- Tx: Current electrodes
- Rx: Potential electrodes

• Currents:
- Preferentially flow through conductors 

• Charges:
- Build up at interfaces



Basic Experiment

• Target: 
- Ore body. Mineralized regions less resistive than 

host 

• Setup: 
- Tx: Current electrodes
- Rx: Potential electrodes

• Currents:
- Preferentially flow through conductors 

• Charges:
- Build up at interfaces

• Potentials: 
- Associated with the charges are measured at the 

surface 26



DC resistivity data

Plotting planePlotting planePlotting plane

IG
V

a
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=
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Each data point is an apparent resistivity:

Source
(Amps)

Potential
(Volts)
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Example pseudosections

1) A single buried conductive block
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Pole-Dipole
• Pole-dipole;  n=1,8;  a=10m;  N=316



Example pseudosections

2) The conductive block with geologic noise.
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Pole-Dipole
• Pole-dipole;  n=1,8;  a=10m;  N=316



Inversion

Inversion
processing

Model Inversion estimates Earth models 
based upon data and prior knowledge.

?

Data

Measurements over 
the Earth are data.
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Example 1: buried prism

• Pole-dipole;  n=1,8;  a=10m;  N=316;  (!s, !x, !z)=(.001, 1.0, 1.0)

Resistivity(model

Data(with(5%(Gaussian(noise

Ohm7m Recovered( resistivity

Predicted(data

Ohm7m
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Example 2: prism with geologic noise

Resistivity(model

Data(with(5%(Gaussian(noise

Ohm7m Recovered( resistivity

Predicted(data

Ohm7m
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• Pole-dipole;  n=1,8;  a=10m;  N=316;  (!s, !x, !z)=(.001, 1.0, 1.0)



DCR Case History:  Mt. Isa
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Seven Steps
Mt. Isa (Cluny prospect)



Mt. Isa (Cluny prospect)

Setup

Geologic model

Question

• Can conductive units, which would be potential targets within the 
siltstones, be identified with DC data?
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Properties

Geologic model Surface topography
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Conductivity table



• Eight survey lines

• Two survey configurations.

Survey and Data

Easting (m) Easting (m)

mS/m

Apparent resistivity,
pole - dipole.

Data set #1:

Surface topography
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• Eight survey lines

• Two survey configurations.

Survey and Data

Easting (m) Easting (m)

mS/m

Apparent resistivity,
dipole - pole

Easting (m) Easting (m)

mS/m

Data set #2:
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Surface topography



Processing and interpretation

3D resistivity model Animation
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EM Surveys and frequency
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Inductivity source EM survey
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Basic Experiment
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• Setup: 

transmitter and receiver are in a 
towed bird 



Basic Experiment
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• Setup: 

transmitter and receiver are in a 
towed bird 

• Primary: 

Transmitter produces a primary 
magnetic field



Basic Experiment
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transmitter and receiver are in a 
towed bird 

• Primary: 

Transmitter produces a primary 
magnetic field

• Induced Currents: 

Time varying magnetic fields 
generate electric fields everywhere 
and currents in conductors



Basic Experiment

• Setup: 

transmitter and receiver are in a 
towed bird 

• Primary: 

Transmitter produces a primary 
magnetic field

• Induced Currents: 

Time varying magnetic fields 
generate electric fields everywhere 
and currents in conductors

• Secondary Fields:

The induced currents produce a 
secondary magnetic field.
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Electromagnetic Induction 

Security scan Metal detector



Why airborne EM?

Resolve SkyTEM

Large areas

Rugged terrain

~ 100km

Deep Targets

Airborne Survey 

Large Loop
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Receiver: Time  Domain

• Primary field has off-time
• Measure secondary fields 
• Receivers can be mounted on transmitter 

loop or above it
SkyTEM

Current Response

HeliSAM
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Vertical Magnetic Dipole over a halfspace (TDEM)
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VMD

Step-off



Current Density
Plan view

Geometry

Time: 0.01ms

⇢air = 1 ⌦m

⇢half = 100 ⌦m

VMD

Current density (jy)
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Summary: propagation through time

Nabighian (1979)

0.002 ms

jy

0.035 ms

jy

0.01 ms

jy
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Layered earth
• 3 layers + air, 
• !" varies

Geometry

• Four different cases:
- Halfspace

ρ" = 100 Ωm
- Resistive 

ρ" = 1000 Ωm
- Conductive 

ρ" = 10 Ωm
- Very conductive 

ρ" = 1 Ωm

• Fields
- jy off-time
- b off-time

⇢air

⇢1 = 100⌦m

⇢2 =? ⌦m

⇢3 = 100 ⌦m

h1 =$20$m
h2 =$20$m

h3 =$∞ m

VMD
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Layered earth currents (jy)

Halfspace

Conductive

Resistive

Very conductive

ρ" = 100 Ωm
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Layered earth currents (jy)

Halfspace

Conductive

Resistive

Very conductive

ρ" = 100 Ωm ρ" = 1000 Ωm
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Layered earth currents (jy)

Halfspace

Conductive

Resistive

Very conductive

ρ" = 100 Ωm

ρ" = 10 Ωm

ρ" = 1000 Ωm
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Layered earth currents (jy)

Halfspace

Conductive

Resistive

Very conductive

ρ" = 100 Ωm

ρ" = 10 Ωm

ρ" = 1000 Ωm

ρ" = 1 Ωm
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dbz/dt sounding curves

ρ" = 100 Ωm

ρ" = 10 Ωm

ρ" = 1000 Ωm

ρ" = 1 Ωm
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Case History: Kasted

Vilhelmsen et al. (2016)
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Setup

A) Survey Area: Kasted, 
Demark

B) Borehole locations

Local Geology:
W-E cross-section
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Properties

• Buried valleys with clays beneath

• Infill (water-bearing): coarse sand and 
gravel

• Clays are conductive (1-40 Ωm)

• Water-bearing sands and gravels are 
more resistive (>40 Ωm)

Geological Cross-Section
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Survey
SkyTEM System System Configuration

• Low moment (LM) used to image near surface structures
• High moment (HM) used to image deeper structures
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Data
Blue: data used for Kasted study

• 333 line km of data, 100 m line-
spacing

• Data points with strong coupling to 
cultural noise were removed 
(~30%)
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Processing (inversion)

• Spatially constrained 1D inversion → quasi-3D approach

• 9,500 soundings were inverted using 25 layers

Depth slice 5 m above sea-level Approximate depth to the top of 
Paleogene clay layer
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Interpretation

• Inversion results used to construct 
geological model.

• Delineated 20 buried and cross-
cutting valley structures.

Delineation of valley structures
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Synthesis

MODFLOW-USG groundwater model

• 3D geologic model incorporated 
into MODFLOW-USG 
groundwater modeling tool

• Extracted water from 2 wells.

• Downdraw between the two wells 
correlated with the resistive valley 
structures
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Other EM surveys
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Electromagnetics at sea
• Other uses 

- Hydrocarbons
- Gas hydrates
- Sea floor mining
- Tectonic 
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EM Surveys and frequency
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Natural EM sources

Auroral electrojet; aurora

Sun and magnetosphere, solar storms

Lightning
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3D resistivity at Iceland



Future problem: groundwater

• Consider Edmonton-Calgary Corridor (ECC)
- Large scale problem
- But conductivity itself is not completely informative

• Questions
- Where are the aquifers and aquitards? 
- What is the water quality (e.g. arsenic, salt water)?
- What is the storage capacity, flow rate?
- How are the aquifers recharged (or not)?
- Are losing water or gaining water? (water balance)

• Stake holder
- Farmers
- Government and industry
- Public
- Hydrogeologists, engineers, geophysicists

70

AEM resistivity Alberta Corridor

Baker (2011)



Next Generation of Geoscience Problems

• Multi-disciplinary

• Geophysics has a support role

• Inversion needed in multiple places

• Interaction is needed
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Research challenges keep increasing
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• How to extract information about 
physical properties from data

• How to integrate that to help 
solve the geoscience problem?

• Who are the researchers?
- Industry
- Academia

• Tools for cooperation: Open Source

Next Generation of Geoscience Problems



Open Source

• Collaboration
- Development of software
- Implementing and applying

• Development practices
- Shared repository 
- Version control
- Automated testing
- User and developer documentation
- Peer review of code
- Issue tracking
- Attribution for contributors
- Licensing
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Open source communities already doing this: 



Sampling of modern open-source projects

• For EM 
- empymod
- jInv
- Geoscience Australia
- pyGIMLi
- Fatiando
- SimPEG
- …

• They differ in objectives, 
capabilities, structure, 
interactivity, license, and 
language 
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• Modular framework for simulation and 
inversion of geophysical data

- gravity, magnetics, vadose flow, DC/IP, FDEM, 
TDEM 

• Open source 

• Written in Python

• Specific to electromagnetics
- Quasi-static Maxwell 
- Tensor, OcTree, Curvilinear and Cylindrical 

meshes
- Easily visualize fields, fluxes, charges
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http://simpeg.xyz

http://simpeg.xyz/


GeoSci.xyz
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Thank You

geosci.xyz

simpeg.xyz

slack.simpeg.xyz

courses.geosci.xyz/aem2018

SimPEG TeamResources
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Thank you


