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G e o p h y s i c a l  T u t o r i a l  —  C o o r d i n a t e d  b y  M a tt   H a l l

Pixels and their neighbors: Finite volume

Abstract 
We take you on the journey from continuous equations to their 

discrete matrix representations using the finite-volume method for 
the direct current (DC) resistivity problem. These techniques are 
widely applicable across geophysical simulation types and have their 
parallels in finite element and finite difference. We show derivations 
visually, as you would on a whiteboard, and have provided an ac-
companying notebook at http://github.com/seg to explore the 
numerical results using SimPEG (Cockett et al., 2015).

DC resistivity 
DC resistivity surveys obtain information about subsurface 

electrical conductivity, σ. This physical property is often diagnostic 
in mineral exploration, geotechnical, environmental, and hydro-
geologic problems, where the target of interest has a significant 
electrical conductivity contrast from the background. In a DC 
resistivity survey, steady-state currents are set up in the subsurface 
by injecting current through a positive electrode and completing 
the circuit with a return electrode (Figure 1). The equations for 
DC resistivity are derived in Figure 2. Conservation of charge 
(which can be derived by taking the divergence of Ampere’s law 
at steady state) connects the divergence of the current density 
everywhere in space to the source term, which consists of two 
point sources, one positive and one negative. The flow of current 
sets up electric fields according to Ohm’s law, which relates current 
density to electric fields through the electrical conductivity. From 
Faraday’s law for steady-state fields, we can describe the electric 
field in terms of a scalar potential, ϕ, which we sample at potential 
electrodes to obtain data in the form of potential differences. 

To set up a solvable system of equations, we need the same number 
of unknowns as equations, in this case two 
unknowns (one scalar, ϕ, and one vector, !
j ) and two first-order equations (one 

scalar, one vector). 
In this tutorial, we walk through set-

ting up these first-order equations in finite 
volume in three steps: (1) defining where 
the variables live on the mesh; (2) looking 
at a single cell to define the discrete di-
vergence and the weak formulation; and 
(3) moving from a cell-based view to the 
entire mesh to construct and solve the 
resulting matrix system. The notebooks 
included with this tutorial leverage the 
SimPEG package (Cockett et al., 2015), 
which extends the methods discussed here 
to various mesh types.

Where do things live?
To bring our continuous equations 

into the computer, we need to discretize 

Rowan Cockett1, Lindsey J. Heagy1, and Douglas W. Oldenburg1

the earth and represent it using a finite set of numbers. In this 
tutorial, we will explain the discretization in 2D and generalize to 
3D in the notebooks. A 2D (or 3D) mesh is used to divide up space, 
and we can represent functions (fields, parameters, etc.) on this mesh 
at a few discrete places: the nodes, edges, faces, or cell centers. For 
consistency between 2D and 3D, we refer to faces having area and 
cells having volume, regardless of their dimensionality. Nodes and 
cell centers naturally hold scalar quantities, while edges and faces 
have implied directionality and therefore naturally describe vectors. 
The conductivity, σ, changes as a function of space and is likely to 
have discontinuities (e.g., if we cross a geologic boundary). As such, 
we will represent the conductivity as a constant over each cell and 
discretize it at the center of the cell. The electrical current density, !
j , will be continuous across conductivity interfaces, and therefore, 
we will represent it on the faces of each cell. Remember that 

!
j  is a 

vector; the direction of it is implied by the mesh definition (i.e., in 

1University of British Columbia. http://dx.doi.org/10.1190/tle35080703.1.

Figure 1. Setup of a DC resistivity survey.

Figure 2. Derivation of the DC resistivity equations.
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x, y, or z), so we can store the array j as scalars that live on the face 
and inherit the face’s normal. When 

!
j  is defined on the faces of a 

cell, the potential, ϕ, will be put on the cell centers. (Since 
!
j  is 

related to ϕ through spatial derivatives, it allows us to approximate 
centered derivatives leading to a staggered, second-order discretiza-
tion.) Once we have the functions placed on our mesh, we look at 
a single cell to discretize each first-order equation. For simplicity 
in this tutorial, we will choose to have all of the faces of our mesh 
be aligned with our spatial axes (x, y, and z); the extension to 
curvilinear meshes will be presented in the supporting notebooks 
at http://github.com/seg.

One cell at a time 
To discretize the first-order differential equations (Figure 2), 

we consider a single cell in the mesh, and we will work through 
the discrete description of equations (a) and (b) over that cell.

(1) In and out
Equation (a) relates the divergence of the current density to 

a source term. To discretize using finite volume, we will look at 
the divergence geometrically. The divergence is the integral of a 
flux through a closed surface as that enclosed volume shrinks to 
a point. Since we have discretized and no longer have continuous 
functions, we cannot fully take the limit to a point; instead, we 
approximate it around some (finite) volume: a cell. The flux out of 
the surface (

!
j ⋅ !n) is actually how we discretized 

!
j  onto our mesh 

(i.e., j) except that the face normal points out of the cell (rather 
than in the axes direction). After fixing the direction of the face 
normal (multiplying by ± 1), we only need to calculate the face 
areas and cell volume to create the discrete divergence matrix.

So we have half of the equation discretized — the left-hand 
side. Now we need to take care of the source: it contains two dirac 

delta functions — these are infinite at their origins, r
s+

 and r
s−

 (infin-
ity is not exactly something a computer does well with!). However, 
the volume integral of a delta function is well defined: it is unity if 
the volume contains the origin of the delta function; otherwise, it 
is zero. As such, we can integrate both sides of the equation over 
the volume enclosed by the cell. Since Dj is constant over the cell, 
the integral is simply a multiplication by the volume of the cell vDj. 
The integral of the source is zero unless one of the source electrodes 
is located inside the cell, in which case it is q = I. Now we have a 
discrete description of equation (a) over a single cell:

vDj = q.                                       (1)

(2) Scalar equations only, please
Equation 2 is a vector equation, so really it is two or three 

equations involving multiple components of 
!
j . We want to work 

with a single scalar equation, allow for anisotropic physical proper-
ties, and potentially work with non-axis-aligned meshes — how 
do we do this?! We can use the weak formulation where we take 
the inner product ( !a∫ ⋅

!
bdv) of the equation with a generic face 

function, 
!
f . This reduces requirements of differentiability on the 

original equation and also allows us to consider tensor anisotropy 
or curvilinear meshes (Haber, 2014).

In Figure 5, we visually walk through the  discretization of 
equation 2. On the left-hand side, a dot product requires a single 
cartesian vector, [jx, jy]. However, we have a j defined on each face 
(2 jx and 2 jy in 2D). There are many different ways to evaluate this 
inner product: we could approximate the integral using trapezoidal, 
midpoint, or higher-order approximations. A simple method is to 
break the integral into four sections (or eight in 3D) and apply the 
midpoint rule for each section using the closest components of j to 
compose a cartesian vector. A Pi matrix (size 2 × 4) is used to pick 

out the appropriate faces and compose the 
corresponding vector. (These matrices are 
shown with colors corresponding to the 
appropriate face in Figure 5.) On the right-
hand side, we use a vector identity to in-
tegrate by parts. The second term will 
cancel over the entire mesh (as the normals 
of adjacent cell faces point in opposite 
directions) and ϕ on mesh boundary faces 
are zero by the Dirichlet boundary condi-
tion. (We are using Dirichlet for simplicity 
in this example; in practice, Neumann 
conditions are often used. This is because 
“infinity” needs to be further away if ap-
plying Dirichlet boundary conditions since 
potential falls off as 1/r2 and current density 
as 1/r3.) This leaves us with the divergence, 
which we already know how to do!

The final step is to recognize that, now 
that the equation is discretized, we can 
cancel the general face function f and 
transpose the result (for convention’s sake):

1
4

Pi
⊤

i=1

4

∑ vΣ −1 vPij=D
⊤vφ .      (2)

Figure 3. Anatomy of a finite volume cell.

Figure 4. Geometrical definition of the divergence and the discretization.
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All together now
We have now discretized the two first-order equations over 

a single cell. What is left is to assemble and solve the DC system 
over the entire mesh. To implement the divergence on the full 
mesh, the stencil of ± 1’s must index into j on the entire mesh 
(instead of four elements). Although this can be done in a for-
loop, it is conceptually, and often computationally, easier to 
create this stencil using nested kronecker products (see notebook). 
The volume and area terms in the divergence get expanded to 
diagonal matrices, and we multiply them together to get the 
discrete divergence operator. The discretiza-
tion of the face inner product can be ab-
stracted to a function, Mf (σ -1), that com-
pletes the inner product on the entire mesh 
at once. The main difference when imple-
menting this is the P matrices, which must 
index into the entire mesh. 

With the necessary operators defined 
for both equations on the entire mesh, we 
are left with two discrete equations

diag(v)Dj=q
M f (σ

−1)j=D⊤diag(v)φ
.         (3)

Note that now all variables are defined 
over the entire mesh. We could solve this 
coupled system or we could eliminate j and 
solve for ϕ directly (a smaller, second-order 
system).

diag(v)DM f (σ
−1)−1D⊤diag(v)φ =q .   (4)

By solving this system matrix, we obtain 
a solution for the electric potential ϕ every-
where in the domain. Creating predicted 

data from this requires an interpolation to the electrode locations 
and subtraction to obtain potential differences! 

Moving from continuous equations to their discrete ana-
logues is fundamental in geophysical simulations. In this tutorial, 
we have started from a continuous description of the governing 
equations for the DC resistivity problem, selected locations on 
the mesh to discretize the continuous functions, constructed 
differential operators by considering one cell at a time, and 
assembled and solved the discrete DC equations. Composing 
the finite-volume system in this way allows us to move to 

Figure 6. Electric potential on (a) tensor and (b) curvilinear meshes.

Figure 5. Discretization using the weak formulation and inner products.
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different meshes and incorporate various types of boundary 
conditions that are often necessary when solving these equations 
in practice. 

Corresponding author: rcockett@eos.ubc.ca
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