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Exploring nonlinear inversions: 
A 1D magnetotelluric example

At some point in many geophysical workflows, an inversion 
is a necessary step for answering the geoscientific question 

at hand, whether it is recovering a reflectivity series from a seismic 
trace in a deconvolution problem, finding a susceptibility model 
from magnetic data, or recovering conductivity from an electro-
magnetic survey. This is particularly true when working with data 
sets where it may not even be clear how to plot the data: 3D direct 
current resistivity and induced polarization surveys (it is not 
necessarily clear how to organize data into a pseudosection) or 
multicomponent data, such as electromagnetic data (we can 
measure three spatial components of electric and/or magnetic 
fields through time over a range of frequencies). Inversion is a tool 
for translating these data into a model we can interpret. The goal 
of the inversion is to find a “model” — some description of the 
earth’s physical properties — that is consistent with both the data 
and geologic knowledge.

In a general inverse problem, we start from a forward problem, 
of the form F[m] = d, where F is the forward operator (the math-
ematical description of the physics/problem), d is our data, and m 
is our earth model (an array of numbers that describes the physical 
properties of the earth). Matt Hall kicked off the discussion of 
inversions in The Leading Edge in his Linear Inversion tutorial 
(Hall, 2016). He walked through how to solve the classic linear 
inverse problem in which the forward simulation takes the form 
F[m] = Gm = d. The example he demonstrated is a deconvolution 
problem; in that case, G is a convolution matrix, m is the reflectivity 
series, and d is a seismic trace. He introduced the concepts of an 
underdetermined problem, motivated the need for regularization, 
formulated the inversion in terms of an optimization problem, and 
solved the linear inverse problem (in true polyglot fashion, using 
Python, Lua, Julia, and R). In this tutorial, we will pick up from 
there and explore a nonlinear forward problem, of the form F[m] = d; 
in this case, our forward operator is a function of the model. In 
the accompanying notebooks (https://github.com/seg), we use 
SimPEG (http://simpeg.xyz) for the implementation in Python 
of the physics simulations, optimization, and structure necessary 
to perform an inversion (Cockett et al., 2015).

Magnetotellurics
We will explore the 1D magnetotelluric (MT) survey tech-

nique, which is a natural source electromagnetic method. In MT, 
plane-wave source fields are generated by solar wind (giving us 
low-frequency signals <1 Hz) and lightning strikes worldwide 
(giving us higher frequency signals >1 Hz). In MT, the model m 
is a description of the earth’s electrical conductivity σ, and F[m] 
solves Maxwell’s equations — giving the electric field E and the 
magnetic field H — for a plane-wave source. In the continuous 
world, Maxwell’s equations are:
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∇×
!
E + iωµ

!
H = 0

∇×
!
H −σ

!
E = 0

with boundary conditions
,                  (1)

where μ is magnetic permeability, generally taken to be the perme-
ability of free space μ0, and ω = 2πf is the angular frequency 
( f is frequency in Hz). When we discretize Maxwell’s equations 
so they can be solved numerically (see the first notebook), we 
obtain a matrix system of the form

A(m)u = b,                                      (2)

where A(m) is a matrix capturing the physics, u is a vector of the 
electric and magnetic fields everywhere in our simulation domain, 
and b includes the boundary conditions that describe the plane 
wave source. This problem is nonlinear because this matrix A 
depends on the conductivity model. When we solve equation 2 
for u, we obtain the electric and magnetic fields everywhere on 
our mesh. Our data consist of samples of the electric and magnetic 
fields where we have receivers. For the MT problem, the measured 
data, d, are impedances; for the 1D problem, the impedance Zxy 
at a single frequency is given by

Zxy = −
Ex

H y

.                                 (3)

Note that the impedance is a complex number, consisting of real 
and imaginary parts. Impedance is a nonintuitive quantity; 
often, we instead consider apparent resistivity2 ρa and phase ψ, 
given by

ρa =
1
µ0ω

|Zxy|2, ψ = tan−1 Im(Zxy )
Re(Zxy )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟.               (4)

For an earth that is a half-space, the apparent resistivity equals 
the true resistivity, and the phase is 45°. When we implement the 
computation of the data, we define a method that: (1) selects the 
values of the electric and magnetic fields at the surface of the 
earth from the fields that we computed everywhere in our domain 
u and (2) computes their ratio to provide us with impedance data, 
that is: P(u) = d.

In summary, to implement the forward simulation for the 
MT problem (F[m] = d), we break it into two steps:

1)	 solve A(m)u = b; and
2)	 compute the impedance data d = P(u).

1University of British Columbia Geophysical Inversion Facility.
2Note that resistivity is the inverse of conductivity ρ = 1/σ.

http://dx.doi.org/10.1190/tle36080696.1.
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In the first notebook, we provide 
details on how each step is performed 
using a finite difference approach. If you 
are looking for more on numerical dis-
cretization, we wrote a tutorial on finite 
volume methods (Cockett et al., 2016).

The inversion aims to solve F -1[d]  
for a model. Just as in the linear prob-
lem, we require regularization to select 
a model from the infinitely many that 
can fit the data. Before we tackle this 
ill-posed inverse problem, let’s explore 
an example of nonuniqueness: how can 
different models give us the same data?

Go forwards
A classic example that demon-

strates the nonuniqueness of MT data 
is the equivalence of the conductivity-
thickness product (conductance) of a 
thin layer. If we start with a layer that 
has a conductivity of σ, halve its thick-
ness, and double its conductivity, the 
resulting data will be similar. In 
Figure 1, we show apparent resistivity 
and phase data for five models, each of 
which has the same conductance. In 
all of the simulations, the data show a 
decrease in apparent resistivity and an 
increase in phase starting at ~10 Hz. 
Thus, in all of the data we have evidence 
of a conductive layer, and the frequency range at which it appears 
is an indicator of the depth of the layer (you can explore by 
changing the depth variable in the model setup of the second 
notebook). However, all scenarios produce similar data. Even 
with a small amount of noise, we cannot expect an inversion 
code to separate the conductivity and thickness of a conductive 
unit without incorporating additional information. When setting 
up the inverse problem and defining regularization (next up), it 
is important to realize that the choices we make there will 
influence the character of the model we recover, as the data alone 
do not provide us with a unique model. 

Go backwards
There are many models that can fit the data, so we need a 

means of regularizing our inversion so that we can select a single, 
reasonable model from the (infinitely) many that agree with the 
data. We will come back to how the regularization ϕm is defined, 
but for now, consider it as a measure of how “reasonable” the 
model is based on our prior knowledge about the earth. Formally, 
we pose the inversion as an optimization problem:

minimize   
m

φm(m)

subject to F [m]= d obs
.                       (5)

Essentially we are saying “find the model m that best fits the 
assumptions we are making in the regularization ϕm(m) and that 

agrees with the observed data dobs.” In practice, our data are noisy, 
so there is no sense in fitting them exactly. Rather, we pose the 
optimization problem as a trade-off between fitting the data and 
fitting the regularization, so our inverse problem can be stated as: 

minimize
m

φ(m) =φd(m)+β φm(m) ,               (6)

where ϕd(m) is the data misfit, a measure of how far our simulated 
data are from the observed data; ϕm(m) is the regularization; and β 
is a trade-off parameter that weights the relative importance of the 
data misfit and regularization in the optimization. A larger β says 
that we want our model to do a good job minimizing the regulariza-
tion, while a smaller β turns down the importance of the regularization 
and says that fitting the data is more important in the inversion.

The data misfit is often taken to be a weighted l2 norm:

φd (m) = 1
2
‖Wd (F [m]−dobs )‖22,                 (7)

where Wd captures the noise model (typically it is a diagonal 
matrix containing the standard deviation of each datum).

The regularization is one place where a priori information 
about the geologic setting can be brought in. There are a variety 
of regularization functionals that can be chosen, but one of the 
most widely used is Tikhonov regularization, which again uses 
l2 norms: 

Figure 1. MT responses from five models, each having an equivalent conductivity-thickness product for the 
conductive layer. (a) Conductivity models, (b) apparent resistivity (ρa), and (c) phase (ϕ).
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φm(m) = 1
2
(αs‖Ws(m−mref )‖22 +αz‖Wz (m)‖22).      (8)

The first term is often referred to as the “smallness” as it 
measures the “size” of the model (in the l2 sense). The matrix Ws 

is generally taken to be a diagonal matrix that may contain infor-
mation about the length scales of the model or be used to weight 
the relative importance of various parameters in the model. The 
scalar αs weights the relative importance of this term in the regu-
larization. Notice that we include a reference model, mref. Often 
this is defined as a constant value, but if more information is 
known about the background, that can be used to construct a 
more intricate reference model. Here, we will not delve too far 
into how the reference model impacts the recovered results, but 
you are encouraged to change mref in the notebooks and investigate 
its impact.

The second term is often referred to as the “smoothness.” The 
matrix Wz approximates the derivative of the model with respect 
to depth, and is hence a measure of how “smooth” the model is. 
The term αz weights the relative importance of smoothness in the 
regularization.

From this setup, we see that there are quite a number of choices 
to make: defining uncertainties on the data (Wd), selecting a 
reference model (mref), choosing the importance of smallness and 
smoothness (αs and αz), and selecting a trade-off parameter (β). 
Let’s start by assuming a known noise model, fix αs and αz, and 
explore the impact of the trade-off parameter β. Our forward 
problem depends on the electrical conductivity. For the inverse 
problem, however, we are free to use any function of the conductiv-
ity as a parameter. The electrical conductivity of earth materials 
varies by many orders of magnitude and is strictly positive. Thus 
it is advantageous to use log(σ) as the model in the inverse problem. 
For a nonlinear problem, we also have the additional choice of 

the initial model m0 at which to start the inversion. Although we 
will not discuss the choice of m0, you are encouraged to change 
the initial model in the notebooks and examine the impact it 
makes because it can be significant.

The β knob. If the noise is Gaussian, then the sum of squares 
(our data misfit) is a Chi-squared distribution, which has an 
expected value of Ndata (in our case, we divide this by two to match 
our definition of ϕd). Thus, the ideal choice of β is one that gives  
 
us φd

* ≈
1
2
N data . To demonstrate the effect of β, we consider a  

 
five-layer model, originally shown in Whitall and Oldenburg 
(1992), and will demonstrate inversions when we achieve the target 
misfit, underfit the data, and overfit the data. The conductivity 
model used is the solid black line in Figure 2a. For these inversions 
we fix the regularization parameters to αs = 10−2, αz = 1 and set 
mref = log 10−2 S/m, and the initial model, m0 = mref (feel free to 
change them in the notebook). We start the inversion with a large 
β and decrease its value to plot the trade-off or Tikhonov curve 
(Figure 2b). In blue, we show the inversion that is stopped when 
the data misfit approximately equals the target misfit (the star in 
Figure 2b). Figures 2c and 2d show the data as apparent resistivity 
and phase, which is a visualization of our complex-valued imped-
ance data. The blue line in Figure 2a shows the recovered model, 
which identifies the general structure and conductivity values of 
the five layers. In this case, we are employing a smooth regulariza-
tion, thus we expect to recover smoothly varying structures.

If we instead choose a larger β, reducing the contribution of 
the data misfit to the objective function, we underfit the data, as 
is shown in orange in Figure 2. Although we still see evidence 
of two conductive structures, we do not recover their amplitudes 
and do a poor job resolving the location and widths of the conduc-
tive layers. (If you had to pick the top of the first layer, where 
should it be?) Examining the plots in Figures 2c and 2d, there 

Figure 2. Inversions that fit the data (blue), underfit the data (orange), and overfit the data (green). (a) True (black) and recovered electrical conductivity models. (b) 
Tikhonov curve showing the trade-off between the misfit and regularization, target misfit (red star), and achieved misfit corresponding to each of the inversion results 
shown (c) observed (black) and predicted apparent resistivity data, (d) observed (black) and predicted phase data.
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is more insight about the subsurface 
conductivity that can be learned by 
pushing the inversion to extract more 
from the data.

On the other extreme, we can choose 
a very small β and try to fit all of the 
details in the data. Doing this, we obtain 
the results shown in green in Figure 2. 
When we push the inversion to fit the 
(noisy) data very closely, we end up fitting 
the noise. To do this, conductivity con-
trasts are exaggerated and oscillatory and 
erroneous conductivity structures are 
introduced in the inversion.

The α knobs. For the inversions 
shown in Figure 2, we prescribed the values αs, αz. What impact 
do they have on the character of the model we recover? 

In Figure 3, we compare two inversions with different regu-
larization parameters: (1) a “smooth” inversion (blue line) with 
αs = 10−5 and αz = 1 and (2) a “small” inversion (orange line) with 
αs = 1 and αz = 10−5. In both, β was chosen so that a desired target 
misfit was achieved. The smooth inversion penalizes large gradi-
ents; the resulting model has two smooth peaks. Note that we 
smooth over the resistive third layer, overestimating its conductiv-
ity. The small inversion instead favors models that are close to the 
reference model; this model has more structure. The resistivity of 
the first layer matches well, and the conductivity of the third layer 
is closer to its true value, but additional oscillatory structures are 
introduced at depth. In the third notebook, you can explore the 
impact of these parameters yourself.

In practice, these parameters are often determined by experi-
mentation; strategies such as examining length scales are often 
successfully adopted (see page 38 in Oldenburg and Li, 2005). 
Changing the relative values of αs and αz is one way to bring in 
a priori information. If we know very little, often starting with a 
smooth inversion is a good option; this penalizes structure (high 
gradients) while showing general trends. If more structure is 
expected, or a reliable reference model can be built from additional 
data such as physical property measurements, well logs, or additional 
geophysical/geologic data, then the influence of the smallness term 
may be increased. There are a few other ways to bring in additional 
a priori information. If we are expecting a more “blocky” model, 
we can choose a different norm (such as an l1 norm), or if we have 
structural constraints, we can introduce other weighting structures 
(e.g., on the smoothness); these are knobs for another tutorial, and 
there is discussion in Oldenburg and Li (2005).

Summary
In this tutorial, we have introduced the forward simulation for 

MT and explored a few aspects of the inverse problem. Prior to 
jumping into an inversion, it is important to know the limitations 
of the survey and data, and what you can and cannot resolve, even 
if there is no noise. Forward modeling is a powerful tool for setting 
realistic expectations of an inversion.

To set up and solve the inverse problem, we posed the inversion 
as an optimization problem that searches for a model of the earth 
that minimizes an objective function consisting of a data misfit 

and a regularization term. There are many choices to be made in 
defining the various elements of the inverse problem, including 
how to assign uncertainties, selecting a trade-off parameter, 
defining the regularization function, and choosing initial and 
reference models. In this tutorial we explored two of the knobs: 
(1) the trade-off parameter and (2) the relative importance of 
smallness and smoothness contributions in Tikhonov regulariza-
tion. The interactive notebooks that are provided allow you to 
change parameters and experiment with their impact. 

Corresponding author: skang@eos.ubc.ca
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