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S U M M A R Y
Non-uniqueness in the geophysical inverse problem is well recognized and so too is the ability
to obtain solutions with different character by altering the form of the regularization function.
Of particular note is the use of �p norms with p ∈ [0, 2] which gives rise to sparse or smooth
models. Most algorithms are designed to implement a single �p norm for the entire model
domain. This is not adequate when the fundamental character of the model changes throughout
the volume of interest. In such cases we require a generalized regularization function where
each sub-volume of the model domain has penalties on smallness and roughness and its own
suite of �p parameters.

Solving the inverse problem using mixed �p norms in the regularization (especially for p
< 1) is computationally challenging. We use the Lawson formulation for the �p norm and
solve the optimization problem with Iterative Reweighted Least Squares. The algorithm has
two stages; we first solve the l2-norm problem and then we switch to the desired suite of �p

norms; there is one value of p for each term in the objective function. To handle the large
changes in numerical values of the regularization function when p values are changed, and
to ensure that each component of the regularization is contributing to the final solution, we
successively rescale the gradients in our Gauss–Newton solution. An indicator function allows
us to evaluate our success in finding a solution in which components of the objective function
have been equally influential.

We use our algorithm to generate an ensemble of solutions with mixed �p norms. This illumi-
nates some of the non-uniqueness in the inverse problem and helps prevent overinterpretation
that can occur by having only one solution. In addition, we use this ensemble to estimate the
suite of p values that can be used in a final inversion. First, the most common features of our
ensemble are extracted using principal component analysis and edge detection procedures; this
provides a reference model. A correlation of each member of the ensemble with the reference
model, carried out in a windowed domain, then yields a set of p values for each model cell. The
efficacy of our technique is illustrated on a synthetic 2-D cross-well example. We then apply
our technique to the field example that motivated this research, the 3-D inversion of magnetic
data at a kimberlite site in Canada. Since the final regularization terms have different sets of p
values in different regions of model space we are able to recover compact regions associated
with the kimberlite intrusions, continuous linear features with sharp edges that are associated
with dykes and a background that is relatively smooth. The result has a geologic character that
would not have been achievable without the use of spatially variable mixed norms.

Key words: North America; Magnetic anomalies: modelling and interpretation; Numerical
modelling; Inverse theory; Tomography.

1 I N T RO D U C T I O N

In the general inverse problem we are given data dobs = {dobs
i },

some estimate of their uncertainties {σ i} and an ability to carry out
forward simulations Fi [m] = dpred

i . We search for the model m that

gave rise to the data. A key issue related to the inverse problem is
that there are an infinite number of possible models that can satisfy
the observed data, that is, the inverse problem is ill-posed. Various
assumptions must be made to reduce the solution to a few plausible
candidates. A widespread and successful approach is to pose the
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inversion as an optimization problem

min
m

φ(m) = φd + βφm

s.t. φd ≤ φ∗
d .

(1)

In eq. (1), φd is the misfit function

φd =
N∑

i=1

(
dpred

i − dobs
i

σi

)2

, (2)

and φm is the regularization, or model objective function. It plays a
central role in determining the character of the final model. It can
take many forms but a generic representation, when we attempt to
find 3-D functions that characterize an earth volume, is

φm =
∑

j=s,x,y,z

α j

∫
V

| f j (m)|p j dV . (3)

The functions fj are user-defined but most often have the following
form:

fs = m, fx = dm

dx
, fy = dm

dy
, fz = dm

dz
. (4)

Thus fs(m) measures the size of m and fx(m), fy(m) and fz(m) measure
the roughness along orthogonal directions in 3-D. These functionals
can also include a reference model mref. For ease of notation we shall
omit explicit reference to mref; this is equivalent to setting mref = 0.
The parameters pj specify the values of the �p norm (generally 0 ≤
p ≤ 2) that can be applied to each of the terms; their choice controls
the character of the final model. Solutions with progressively fewer
non-zero values of fj are obtained by successively reducing p from p
= 2 → 0. The other important elements in the regularization are the
α’s; they are user-defined scalars that adjust the relative influence
of the various terms in the regularization function. Finally β is a
scalar trade-off parameter (often called the Tikhonov parameter)
that adjusts the relative weighting of φm and φd in the optimization
problem. It is usually chosen so that the final misfit reaches a target
value φ∗

d or is acceptably small.
The optimization problem is often solved by discretizing the

system, linearizing the equations about a current model and using
a gradient descent algorithm, such as a Gauss–Newton approach,
where we attempt to find a solution that has zero gradients

g = ∂φ(m)

∂m
= ∂φd

∂m

+β

[
αs

∂φs

∂m
+ αx

∂φx

∂m
+ αy

∂φy

∂m
+ αz

∂φz

∂m

]
= 0, (5)

where m refers to a discrete model based on the choice of
parametrization. A solution to eq. (5) can readily be calculated
by gradient descent methods (Hestenes & Stiefel 1952; Nocedal &
Wright 1999). Most often �2-norms are used and this leads to a
quadratic regularization function. For instance, the discretized form
of eq. (3) is

φm = αs‖Vs m‖2
2 +

∑
j=x,y,z

α j‖V j G j m‖2
2, (6)

such that Vs, Vx , Vy and Vz are diagonal matrices relating to the
‘volumes’ of the cells used in discretizing the problem, and Gx , Gy

and Gz are discrete gradient operators. What is sometimes sought,
at least as a first pass, is that if αsφs and αxφx have about the same
numerical value then the two penalty terms are contributing equally.
Dimensional analysis shows that for a uniform discretization h:

[φx ]

[φs]
= [h]−p. (7)

Thus for the �2-norm regularization αs/αx = h−2. If the forward
problem is linear then the inverse problem (for a fixed β) is a linear
system and easily solved.

Although convenient, the �2-norm can be restrictive from the
viewpoint of exploring model space. This has prompted the use of
other �p-norms. The �1-norm has received considerable attention.
When applied to the smallness term it yields ‘spikey‘ or impul-
sive models; when applied to the derivative term, it yields lay-
ered or blocky solutions (Li 1993; Farquharson & Oldenburg 1998;
Daubechies et al. 2010). The benefits of �0-norm have also been re-
alized in generating minimum support models. When applied to the
smallness component it gives a sparse model, when applied to the
derivative term it gives compact objects (Last & Kubik 1983; Bar-
bosa & Silva 1994; Portniaguine 1999; Ajo-Franklin et al. 2007).
Other solutions on the full range for 0 ≤ p ≤ 2 can help widen the
search, but �0, �1 and �2 often form the main applications.

In most applications the same norm has been applied uniformly
to all components fj(m) making up the regularization, either glob-
ally or locally (Sun & Li 2014). A next step, which we are taking in
this paper, is to use different norms for different components of eq.
(3). The motivation is that the character of the model might change
throughout the volume of interest; for instance it could be smooth
and sparse in one region, and small and blocky in another. As an
example, consider the magnetic data shown in Fig. 1. This is a total
field magnetic map taken over the Tli Kwi Cho (TKC) kimberlite
deposit, Northwest Territories. Different geologic structural features
are evident: (a) linear structures corresponding to dykes, (b) com-
pact bodies corresponding to kimberlite pipes and (c) a background
host unit that is smoothly varying. An inversion algorithm that uses
different �p-norms in different regions could capture the essence of
this geology.

Our paper has two parts. In the first, we develop a stable two-
stage algorithm for carrying out the optimization of spatially vari-
able mixed norm (SVMN) objective functions. The essential part
of this algorithm is to introduce an iterative re-scaling of the partial
derivatives so that different components of the objective function
can impact the solution throughout the inversion process. To illus-
trate our procedure we use the 2-D seismic tomography problem of
Sun & Li (2014). We define an indicator function that allows us to
evaluate our success in finding a solution in which components of
the objective function have been equally influential. To implement
the general lp-norm measure we use the Lawson approximation
(Lawson 1961).

The development of a stable algorithm for solving multicompo-
nent objective functions with variable �p-norm allows us to generate
solutions that have different character and, partially, explore solu-
tion space. Our approach is to carry out a set of inversions that use
different combinations of �p-norms. The suite of models generated
can be subjected to further analysis. We use Principal Component
Analysis (PCA) and edge detection algorithms to define dominant
features and then use those images to determine �p-norms relevant
to any particular sub-domain of the model. The efficacy of our ap-
proach is shown by carrying out SVMN inversions of the magnetic
data shown in Fig. 1.

2 M E T H O D O L O G Y

In this study we focus on the general �p-norm measures of the form

φ p
s =

∑
i

|mi |p (8)
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270 D. Fournier & D.W. Oldenburg

Figure 1. TMI data map from an airborne DIGHEM survey flown in 1992 over the DO-18/27 kimberlite pipes, formerly known as the Tli Kwi Cho (TKC)
deposit, Northwest Territories. The study area comprises both linear and compact features of interest.

to constrain the inverse problem in eq. (1). Several approximations
to the �p-norm have been implemented so that the function remains
differentiable at mi = 0. Approximations such as the Huber norm
(Huber 1964)

∑
i

|mi |p ≈
∑

i

{
m2

i , |mi | ≤ ε,

2ε|mi | − ε2, |mi | > ε,

}

and the Ekblom norm (Ekblom 1973):

∑
i

|mi |p ≈
∑

i

(m2
i + ε2)

p/2
(9)

have been used to approximate the �1-norm, where a small threshold
value ε is added (Li 1993; Gorodnitsky & Rao 1997; Farquharson
& Oldenburg 1998). Similarly, the �p-norm can be approximated by

Lawson’s algorithm (Lawson 1961):

∑
i

|mi |p ≈
∑

i

m2
i

(m2
i + ε2)

1−p/2
. (10)

This formulation has received considerable attention in the litera-
ture and emerged as an important method in geophysical inversion.
Under this approximation, the �p-norm penalty eq. (3) takes the
form:∫

V
| f (m)|p j dV ≈

∫
V

f (m)2(
f (m)2 + ε2

j

)1−p j /2
dV , (11)

where once again f(m) from eq. (4) can either be a measure of the
model or its spatial gradients, and m may, or may not be replaced
by m − mref. The function can be discretized and evaluated through
the Iterative Reweighted Least-Squares (IRLS) approach where the
denominator is replaced by model parameters from the most recent
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iteration. The smallest model component can be written as

φ ps
s =

∑
i

m2
i

((m(k−1)
i )2 + ε2

s )
1−ps/2

Vi , (12)

where m(k−1)
i are model parameters obtained at a previous iteration

and Vi are ‘volume’ terms connected with the discretization. In
eq. (12) we have explicitly written the objective function as φ ps

s to
indicate that we are evaluating a smallest model component with an
�p-norm with p = ps. The approximated norm can be expressed in
linear form as

φ ps
s = ‖Vs Rs m‖2

2, (13)

Rs = diag

[(
(m(k−1))

2 + ε2
s

)ps/2−1
]1/2

. (14)

Carrying out the same IRLS operation on the derivative components
yields

φ
p j
j = ‖V j R j D j m‖2

2, (15)

where the IRLS weights are calculate by

R j = diag

[(
(D j m(k−1))2 + ε2

j

)p j /2−1
]1/2

. (16)

In this study, we replace the gradient terms G j with a finite differ-
ence operator

D j =

⎡
⎢⎢⎣

−1 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . . 0 −1 1

⎤
⎥⎥⎦. (17)

This makes φs and φj dimensionally equivalent and the default
scaling values can be set to αs = αj = 1. This simplifies greatly the
implementation of the IRLS when dealing with discretization using
variable cell sizes. The final regularization function is thus

φ p
m = αs‖Vs Rs m‖2

2 +
∑

j=x,y,z

α j‖V j R j D j m‖2
2. (18)

The core IRLS procedure described in Table 1 involves two main
stages:

(1) Stage 1 solves the inverse problem using �2-norms (ps = pj

= 2). The assumption is made that the globally convex �2-norm
regularized inversion is a good approximation of the true solution
and it is used to form the initial IRLS weights defined in eq. (14).
The β parameter is controlled by a cooling schedule that starts with
a high value and is successively decreased until φd ≈ φ∗

d .
(2) Stage 2 starts from the solution obtained in Stage 1 and solves

the inverse problem for specified ps, px, py and pz values. This is
done iteratively using the regularization in eq. (18) and a standard
Gauss–Newton procedure. A gradient descent direction δm is found
by solving

H δm = g, (19)

where H is the approximate Hessian and g is the gradient of the ob-
jective function. We use the Conjugate Gradient method (Hestenes
& Stiefel 1952) to solve this system.

The model update at the kth iteration is

m = m(k−1) + αδm, (20)

where the step length α is found by a line-search back-stepping
method (Nocedal & Wright 1999). Gradient steps are only per-
formed if the data misfit remains within the user-defined tolerance
ηφd .

|φd − φ∗
d |

φ∗
d

≤ ηφd . (21)

If outside the tolerance, the algorithm repeats the Gauss–Newton
calculation with the previous m(k−1) and a different β-value, either
lower or higher depending on the achieved φd. This β-search step
is an important component in the workflow when the minimization
switches between an l2 to an lp objective function because φ p

m can
vary markedly. This can force a change of β by a few orders of
magnitude in some cases. Once an appropriate β has been found
such that eq. (21) is respected, the model update m(k) is accepted and
used for the next iteration cycle. The IRLS process continues until
the change in regularization falls below some pre-defined tolerance
ηφm

|φ(k−1)
m − φ(k)

m |
φ

(k)
m

< ηφm . (22)

We set to ηφm = 10−5 (0.01 per cent change) in all our experiments.
The choice of threshold ε parameters remains a subject of dis-

agreement among researchers. In the early work of Last & Kubik
(1983), it was suggested that the threshold value should be small
or near machine error (ε < 10−8) in order to best approximate the
�p-norm. The same strategy was later adopted by others (Barbosa
& Silva 1994; Stocco et al. 2009). Other researchers, such as in
Ajo-Franklin et al. (2007), observed instabilities with small values
and opted for a wider range (10−4 < ε < 10−7). More recently,
Sun & Li (2014) proposed an ε-search phase to highlight regions
reacting favourably to the �p-norm regularization, followed by a fi-
nal inversion step with fixed threshold value (ε 	 10−4). A similar
strategy has also been proposed by Zhdanov & Tolstaya (2004) after
selecting an optimal point on a trade-off curve.

In this study, we opt for a cooling strategy. Threshold values εj’s
are initialized at a large value then monotonically reduced such that

ε
(k)
j = ‖ f j (m)(0)‖∞

ηk
, (23)

where η is a user-defined cooling rate constant and ‖fj(m)(0)‖∞
denotes the largest function value obtained at the end of Stage 1 of
the algorithm for j = s, x, y, z. At the start of Stage 2, the Lawson
approximation with large ε is effectively an �2-norm. Thus there
is only a small change in regularization between Stages 1 and 2 of
the algorithm. This is desired since the �p-norm regularization is
highly nonlinear. As the iteration process continues and ε → 0, the
emphasis of the regularization function sweeps through the range
of model values. Function values that are driven to the minimum
of the regularization function are maintained at that value unless
needed by one of the competing functions. This process continues
until the algorithm reaches the convergence criteria presented in
eqs (21) and (22). From a user standpoint, the cooling strategy is
attractive as it eliminates the requirement to predetermine optimal
ε threshold values and instead relies on a cooling rate η. We found
experimentally that η ≈ 1.25 generally yielded an optimal trade-off
between computational time (number of iterations) and convergence
to suitable solution.
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272 D. Fournier & D.W. Oldenburg

Table 1. IRLS algorithm in pseudo-code made of two stages: Stage 1 Initialization with convex least-squares inversion,
Stage 2 IRLS updates with inner β-search steps.

Stage 1: Initialization (φ2
m ) Stage 2: IRLS (φ p

m ) β-Search

min
m

φd + βφ2
m while |φ(k−1)

m −φ
(k)
m |

φ
(k)
m

> ηφm Solve H δm = g

s.t. φd = φ∗
d do β-Search m = m(k−1) + αδm

β(0), m(0), R(0), φ
(0)
m k := k + 1 if

|φd −φ∗
d |

φ∗
d

> ηφd

– β(k), m(k), R(k) adjust β, re-do
– – else
– – continue

2.1 Synthetic 2-D example

To demonstrate our methodology we use the 2-D traveltime tomog-
raphy example presented in Sun & Li (2014). The synthetic velocity
model shown in Fig. 2(a) is made up of a smooth velocity high and a
blocky velocity low centred at a 1000 m along the x-axis; the back-
ground velocity is 2000 m s−1. Contour lines corresponding to the
25th and 75th percentile values for both anomalies are also plotted.
An array of 11 transmitters and 13 receivers is positioned on either
side of the model which is discretized into 32 × 64 square 25 m
cells. First arrival data are calculated for each transmitter–receiver
pair by taking the line integral of slowness (reciprocal of velocity)
along each ray path; this yields a total of 143 observations. Gaussian
noise of 5 per cent is added to the simulated data shown in Fig. 2(b).
We will first attempt to invert this data with mixed-norm penalties
that are applied on the entire model.

2.1.1 Stage 1: �2-norm solution

Starting with Stage 1, we first solve this inverse problem with the
conventional �2 norm regularization (ps = px = py = 2). After
convergence of the algorithm (φd ≈ φ∗

d ), we recover the model pre-
sented in Fig. 3(a). We can distinguish two velocity anomalies at
roughly the right depth with respect to the true model. We note how-
ever that the shape and horizontal extent of both targets are poorly
defined. Anomalies are stretched along the straight-ray paths asso-
ciated with the experiment.

Visually, the solution exhibits characteristics of remaining near
the reference model of 2000 m s−1 while also attempting to be
smooth. Numerical evaluation of the components of the regular-
ization function for this solution yields:

(

This might suggest that φs, φx and φy are roughly equal in impor-
tance. As we later attempt to improve this solution with variable
�p-norm measures, we will need a general metric to evaluate our
success in finding a solution in which components of the objec-
tive function have been equally influential. Rather than comparing
the actual values of the norms, we propose to quantify the relative
importance of each term based on their partial derivatives, or gradi-
ents. From eq. (5) we expect to find an optimal solution where the
sum of the gradients vanishes, either because all components are
equal to zero, or because multiple gradients have opposite signs. To
quantify the size of the gradients we use the infinity norm

∥∥g j

∥∥
∞ =

∥∥∥∥∂φ j

∂m

∥∥∥∥
∞

. (24)

The
∥∥g j

∥∥
∞ metric is appealing for a few reasons: (i) it is directly

linked to the minimization process because we use gradient descent
methods, (ii) it does not depend on the dimension M of the parameter

space as do other measures that involve a sum of components of the
vector, (iii) the theoretical maximum can be calculated analytically
for any given �p-norm function. These properties will become useful
in the following section when we attempt to balance different norm
penalties applied on a cell-by-cell basis.

We quantify the relative importance of the regularizations terms
with a proportionality ratio:

λ∞ = αs ‖gs‖∞
αx ‖gx‖∞ + αy

∥∥gy

∥∥
∞

. (25)

For the �2-norm solution presented in Fig. 3, we calculate a propor-
tionality ratio near unity (λ∞ = 1.65). This confirms that, with the
current α-scaling strategy, smallness and smoothness penalties are
contributing near equally to the solution. As we further generalize
the regularization function for arbitrary �p-norm measures, we will
attempt to maintain this proportionality ratio (λ∞ ≈ 1) between
competing functions. From Fig. 3 we conclude that the �2-norm
regularization applied uniformly to the entire model domain does
not provide an acceptable solution. We want to find more compact
solutions but that display both smooth and abrupt boundaries. We
therefore employ more general �p norms.

2.1.2 Stage 2: �p-norm penalties

The idea of combining different norms for the simultaneous recov-
ery of smooth and blocky features has partially been explored by
Sun & Li (2014). They demonstrated the benefits of dividing model
space into regions with different �p-norm penalties. The choice of
norms was limited to be either l1 or l2 norm. Little has been pub-
lished however on the independent mixing of model and gradient
norms on the range p ∈ [0, 2], although this problem was initially
addressed in (Fournier 2015).

Before attempting to vary the penalties locally (i.e. within the
model domain) we first tackle the general mixed-norm problem.
As an entry point we attempt to minimize the following objective
function:

min
m

φ(m) = φd + β

⎡
⎣αsφ

0
s +

∑
j=x,y

α jφ
2
j

⎤
⎦

s.t. φd ≤ φ∗
d .

(26)

Based upon our previous work, we expect the solution to be sparse,
in terms of non-zero model parameters (ps = 0), while smooth with
respect to the model gradients (px, py = 2). This should be more suit-
able for imaging smooth and compact velocity anomalies. Using the
standard IRLS strategy (αs = αx = αy = 1), we obtain the solution
presented in Fig. 4(a). Instead of the expected smooth model, we
have recovered scattered anomalies concentrated near the velocity
targets. The solution has been dominated by φ 0

s . The influence from
the smoothness penalties φ 2

x and φ 2
y has been marginal. Comparing
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Inversion using spatially variable mixed �p norms 273

Figure 2. (a) Synthetic 2-D traveltime tomography problem made up of a rectangular velocity low and a smooth Gaussian velocity high. Contour lines (25th
and 75th percentile) are shown in black for the true position and shape of the velocity anomalies. Transmitters (red) and receivers (green) are positioned on
opposite sides of the model domain. (b) The data map for the 143 line integral data calculated for each transmitter–receiver pair.

Figure 3. (a) Recovered smooth model and (b) predicted data. Contour lines are shown in (a) for the true position and shape of the velocity anomalies.

the partial derivatives of the objective function confirms this. After
convergence, the calculated proportionality ratio is λ∞ = 7.31 ×
108. This is a significant change from the end of Stage 1 where λ∞
≈ 1. Clearly Stage 2 of the IRLS took the solution away from the
proportionality condition, which translated into the poor recovery
of continuous velocity anomalies.

2.1.3 Scaled �p-norm penalties

A more desirable solution can be obtained if proportionality among
the components of the objective function is preserved throughout the
IRLS process. Since the inverse problem is solved using gradients of
the composite objective function φ(m), the relative magnitude of the
individual gradients is a driving force in controlling the iteration step
in eq. (19). Taking the partial derivatives of the linearized Lawson
norm as prescribed in eq. (11) yields

g p = ∂φ p

∂m
= f (m)

( f (m)2 + ε2)
1−p/2

V . (27)

In eq. (27) the superscript p on the gradient, gp, refers to the asso-
ciated p-value and is not to be interpreted as an exponential. These
are plotted in Fig. 5(a) as a function of f(m) and for various values of
p. We note that the magnitude of the derivative increases rapidly for
small p and ε values as f(m) → 0. This property of the IRLS approx-
imation is important because, when attempting to combine different
norm penalties within the same objective function, there will be a
systematic bias towards small �p-norm penalties. To circumvent this
bias we define the following gradient-based scaling

γ =
[ ‖g2‖∞

‖g p‖∞

]1/2

. (28)

By using this scaling, we can equalize the size of the gradients
associated with any �p norm. We can easily compute ‖gp‖∞ for any
function f(m) by taking the partial derivative of eq. (27) and setting
it to zero. This maximum gradient of the Lawson approximation
occurs at f(m)∗

f (m)∗ =
{∞ or f (m)max, p ≥ 1

ε√
1−p

, p < 1,
(29)
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274 D. Fournier & D.W. Oldenburg

Figure 4. Recovered mixed-norm models using (a) the conventional IRLS and (b) the scaled-IRLS algorithm for ps = 0 and px = py = 2. The contour lines
are shown for the true position and shape of the velocity anomalies. (c), (d) Predicted data plot obtained with both approaches.

Figure 5. (a) Derivatives of the Lawson approximation over range of model function f(m) and for a fix threshold parameter ε = 10−1 chosen for visual purpose
only. For p < 2, gradients increase rapidly as f(m) → 0 resulting in a regularization function dominated by sparse norms. (b) Gradients after applying the γ

scaling, bringing all maximums to be equal.
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Inversion using spatially variable mixed �p norms 275

from which we can calculate ‖gp‖∞ by substituting f(m)∗ into eq.
(27). Fig. 5(b) presents the scaled gradients for different approxi-
mated �p norms. Note that the largest derivative of any norm is at
most as large as the �2-norm penalty for f (m) ∈ R. This equaliza-
tion of the norm derivatives guarantees that multiple penalties can
co-exist and impact the solution at every step of the IRLS, regardless
of the chosen {p, ε} values.

By applying the scaling to the vector gradients of the model and
derivatives term, we define a Scaled-IRLS (S-IRLS) regularization
function of the form:

φ̂ p
m = αs‖Vs R̂s m‖2

2 +
∑

j=x,y,z

α j‖V j R̂ j D j m‖2
2 (30)

such that IRLS weights in eqs (14) and (16) are replaced by

R̂s = γs Rs

R̂ j = γ j R j .
(31)

The scaling parameters γ s and γ j are:

γs =
[ ∥∥g2

s

∥∥
∞∥∥gps

s

∥∥
∞

]1/2

, γ j =
[ ∥∥g2

j

∥∥
∞∥∥g

p j
j

∥∥
∞

]1/2

. (32)

This re-scaling is done for two reasons. First, at the transition be-
tween Stages 1 and 2, it preserves the balance between the misfit
and regularization terms and thus no large adjustment in the trade-
off parameter β is needed. Second, this ensures that proportionality
between φ0

s and φ2
j is preserved during the �p-norm inversion.

Two options are possible to compute the γ -scalings: (i) take the
maximum absolute gradient directly from the gradient values in
eq. (27), or (ii) calculate

∥∥gp
j

∥∥
∞ analytically as prescribed in eq.

(29). We have found that Option 2 is more stable since it is based
upon a theoretical maximum of the gradient and not on a particular
realization of that maximum that arises from the distribution of
values in the current model m(k).

The outcome of the re-scaling strategy is shown in Fig. 4(b). The
solution seems to have our desired properties of being sparse in
terms of model values and having smooth edges. It is interesting to
note from Figs 4(c) and (d) that both solutions honour the observed
data within the same tolerance, yet the S-IRLS solution is a better
representation of the true model. The final calculated proportionality
ratio λ∞ = 1.41 confirms that the scaling strategy was successful
in balancing the impact of the sparse and smooth regularization
functions.

3 AU T O M AT E D M I X E D - N O R M
M O D E L L I N G

In the preceding section we have developed a methodology to find
a solution that minimizes a combination of model norms. Different
combinations of norms allow us to generate a variety of models
that adequately fit the data and sample model space in a systematic
manner. This flexibility promotes two objectives. First, inverting for
diverse models provides immediate insight about non-uniqueness
and can prevent practitioners from overinterpreting a single inver-
sion result. This is one of the most important aspects of our work.
The second objective is more challenging. As outlined in the intro-
duction, we want to use different combinations of norms on different
parts of the model space so that we obtain solutions that are geo-
logically informative. This selection process can rapidly become
overwhelming for large problems in complex geological settings.
A semi-automated approach that can capture the heterogeneity of

the Earth, with minimal intervention from an expert, is needed. Our
strategy is:

(1) Run a suite of inversions over a range of p parameters applied
to the model norm and its spatial gradients. We will assume that
the suit of models is a representative sampling of diverse solutions
from the �p space.

(2) Form an average model (mP ) that captures most of the vari-
ability in the solution space

(3) Extract p parameters for windowed portions of model space
based on the correlation between the average mP and individual
models.

(4) Carry out a final SVMN inversion with local p parameters.

There are numerous ways to implement the above strategy. Here,
we use a combination of PCA and edge detection algorithms. We
illustrate our approach with a 2-D synthetic example and a 3-D field
example.

3.1 Exploring the model space

Having dealt with scaling issues between �p-norm measures, we can
now exploit the full flexibility of the regularization function in eq.
(3). Our goal is to generate a suite of models under a broad range
of assumptions. To demonstrate the flexibility of our algorithm, we
carry out seven additional inversions, using a combination of norms
on a range of ps, px, py ∈ [0, 1, 2] values (px = py in all cases). The
solutions, nine in total, are presented in Fig. 6. All models have a
final misfit φ∗

d ≈ 143 and use the same �2-norm solution to initiate
the IRLS steps.

We make the following observations. The two velocity anomalies
centred at 1000 m on the x-axis are dominant features. There is a
progressive transition from a smooth model (upper left) to a blocky
solution (lower right) as ps, px and py decrease. The upper body
(velocity low) appears to be most often represented as a blocky
body with sharp edges. The lower anomaly (velocity high) tends to
be more smooth. Away from the anomalous regions, the velocity is
relatively smooth and close to the background reference model of
2000 m s−1.

3.2 Average PCA model

We assume that the suite of models presented in Fig. 6 contains
sufficient variability to be representative of our solution space and
we wish to use these to extract the main features. There are numerous
approaches to accomplish this and they vary in complexity from
simple averaging to advanced machine learning algorithm. We use
a PCA (Pearson 1901; Hotelling 1933). Considering each model in
Fig. 6 as a data vector, the principal components of our solution
space can be written as[
m1 , ... , mnM

] ≈ A W (33)

such that PCA vectors along the columns of A ∈ R
nM×nV con-

tains a subset of nV eigenvectors spanning the model space. These
vectors encode the principal source of variation across the nine
models recovered. The corresponding weights W ∈ R

nV ×nM , also
known as loadings, are scalars relating how each principal compo-
nent contributes to each model. We use the PCA algorithm from the
open-source Python library Scikit-Learn.decomposition.PCA
(Pedregosa et al. 2011). The number of principal components
to be used in the analysis is determined by the experimenter.
Fig. 7 presents the four largest principal components covering in
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276 D. Fournier & D.W. Oldenburg

Figure 6. Suite of inverted models for various combination of norms ps, px = py ∈ [0, 1, 2] (αs = αx = αy = 1). The contour lines (25th and 75th percentile)
are shown in black for the true position and shape of the velocity anomalies.

Figure 7. PCA vectors covering 75 per cent of the model variances.

this case over 75 per cent of the variance present in the model
space.

Next, we generate a representative model by computing a
weighted averaged model based on the positive PCA loadings such

that

mP =
∑nV

i=1

∑nM
j=1 Wi j mi∑nV

i=1

∑nM
j=1 Wi j

. (34)

The average model mP is presented in Fig. 8. We note the close
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Inversion using spatially variable mixed �p norms 277

Figure 8. (a) Averaged PCA model mP (b) predicted data. The contour lines are shown in (a) for the true position and shape of the velocity anomalies.

resemblance with the true model. The background is fairly uniform
near 2000 m s−1; the low-velocity anomaly appears to be a block
with a velocity near 1900 m s−1 and the high-velocity anomaly ap-
pears in a smooth feature with a maximum velocity near 2100 m s−1.

3.3 Parameters extraction

Next, we want to extract optimal inversion parameters on a cell-by-
cell basis in order to best describe local features. To do so, we resort
to a pattern recognition approach. In order to remove biases towards
extreme model values, we transform our model space into a simpler
parametric representation. We use a Canny edge detection algorithm
from the open-source library Scikit-Image.feature.Canny

(Pedregosa et al. 2011). Fig. 9 shows the parametric edges extracted
from all nine inversions and the average PCA model mP

From this simplified representation of each model, we perform a
moving window correlation rmi mP between the average PCA model
mP and each of the mi solutions:

rmi mP =
∑n

j=1(mi j − m̄i )(m P j − m̄ P )√∑n
j=1(mi j − m̄i )2

∑n
j=1(m P − m̄ P j )2

, (35)

where m̄i and m̄ P are the average model and PCA model values
inside the window denoted by the subscript j. The parameters ps, px

and py associated with the highest correlation are used in a weighted
average as defined in eq. (34). The process is repeated over the entire
model space. For our example we use 20 × 20 pixels window. The
recovered ps and px , py values are presented in Fig. 10(a) and
(b), respectively. We note that the norm on the model gradients is
generally larger in the bottom region of the model corresponding to
the location of the smooth positive anomaly.

We now define Scaled-IRLS weights on a cell-by-cell basis as:

R̂s = diag

[
γ s ◦

(
(m(k−1) − mmref )2 + ε2

s

)◦ ps/2−1
]1/2

,

R̂x = diag

[
γ x ◦

(
(Dx (m(k−1) − mmref ))2 + ε2

x

)◦ px /2−1
]1/2

,

R̂y = diag

[
γ y ◦

(
(Dy (m(k−1) − mmref ))2 + ε2

y

)◦ py/2−1
]1/2

,

(36)

where ◦ps , ◦px and ◦py define the element-wise Hadamard power
and γ s◦, γ x◦ and γ y◦ are the element-wise scaling multiplications

defined in eq. (31). In this fashion, the approximated mixed norm
regularization can vary on a cell-by-cell basis.

Finally we proceed with our SVMN inversion. The data are now
inverted using the extracted local parameters, applied on a cell-
by-cell basis, and the result is shown in Fig. 11. There is a good
correspondence with the true model: both the low-velocity blocky
anomaly and the high-velocity smooth anomaly are imaged at the
right location, with the right shape and near their respective seismic
velocity. It is worth noting that we have achieved this result without
direct input from the user, other than choosing a window size at the
parameter extraction phase.

4 C A S E S T U DY: D O - 1 8 / 2 7 A I R B O R N E
M A G N E T I C S

We now use our algorithm to invert airborne magnetic survey ac-
quired over the DO-18/27 diamondiferous kimberlite pipes previ-
ously shown in Fig. 1. The deposit is located 30 km SE from the Lac
de Gras region, Northwest Territories. The DO-18/27 kimberlites
pipes are more conductive and susceptible than the host archean
rocks and easily identifiable from airborne surveys (Pell 1997; De-
vriese et al. 2017; Fournier et al. 2017). They are also associated
with a large network of magnetic dyke swarms. Our goal is to better
recover the shape of compact kimberlite pipes as well as the narrow
and elongated dykes.

At the time of acquisition, the inducing field strength, inclination
and declination were 59 500 nT, 83◦ and 19.5◦, respectively. As a
first step, we rotate the magnetic data 30◦ clockwise in order to
align the strike of dykes along the Cartesian directions (not shown
here). We assign 5 nT uncertainty on the data. We discretize the
Earth into 25 m cubic cells and invert the data with the conventional
smooth �2-norm assumption with the open-source SimPEG package
(Cockett et al. 2015). As shown in Fig. 12(a), the magnetic dykes
appear to break between each survey line due to a large flight line
separation. Considering the regional geology, the magnetic dykes
are likely to be continuous throughout the region and they should
be better represented by plate-like bodies.

As previously done on the synthetic 2-D model, we proceed with
a series of inversions to sample solution space. Since we are now
dealing with a 3-D problem, a large number of combinations of
norms for ps, x, y, z = 2, 1, 0 is possible. We are mostly interested in
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278 D. Fournier & D.W. Oldenburg

Figure 9. Parametric representation of the nine inverted models derived form the Canny edge detection algorithm.

Figure 10. Local p values on (a) the model norm φ
ps
s and (b) model gradients φ

px
x , φ

py
y extracted from the solution space.

Figure 11. (a) The final SVMN inversion result (b) predicted data. Contour lines are shown in (a) for the true position and shape of the velocity anomalies.
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Inversion using spatially variable mixed �p norms 279

Figure 12. Horizontal sections through nine inversions of the airborne magnetic data over TKC after rotating back to UTM coordinates. Sparsity parameters
are imposed along different directions to enforce lateral continuity.

accentuating trends along the dykes and better resolving the shape of
the kimberlite pipes. Lowering the norm applied to specific model
gradients promotes the recovery of piecewise continuous bodies
along the same direction. So rather than applying an �p norm on
all model gradients equally, we want to reduce the p value on each
gradient independently. This would, in theory, require 81 inversions
if we set ps, x, y, z = 2, 1, 0. We narrow down our analysis to eight
models based on the following criteria. (i) We expect the geology

to extend vertically, but the weak depth resolution of magnetic data
does not allow us to distinguish clear trends for steeply dipping
bodies. So we restrict our analysis to smooth vertical models (pz =
2). (ii) We want to concentrate on continuity and character of the
dykes in the two orthogonal directions. We therefore vary px, y = 2,
1, 0. Figs 12(b)–(i) presents horizontal sections at 75 m below the
surface for eight subsequent inversion trials. We note that sparsity
imposed on the model gradients along a specific Cartesian direction
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280 D. Fournier & D.W. Oldenburg

Figure 13. Estimated parameters from the correlation between all the inverted models. (a) The averaged PCA model m̄P and its Canny edge representation.
(b–d) Average p values for φ

p
s , φ

p
x and φ

p
y , respectively. The outlines of the kimberlite pipes are shown for reference.

helps in recovering continuous features. While it is possible to
manually divide the survey area into regions with variable norms
(Fournier et al. 2016), we will attempt to extract these preferential
orientations through the methodology prescribed in the previous
section.

The following analysis steps are performed in 2-D along the same
horizontal section at 75 m depth. We restrict our analysis to this
horizontal depth section for three reasons: (i) we want to sample the
cross-section of the DO-27 kimberlite pipe buried under a thick layer
of glacial till, (ii) near surface features recovered in most models
are dominated by the flight line separation, which we are trying to
suppress with this process, (iii) we have stronger confidence in the
geometry of the geology in 2-D.

We first perform a model averaging through a PCA followed by
an edge detection analysis. The selection of an optimal window size
and detection parameters used by the Canny algorithm is problem
specific as it depends on the size and shape of features of interest.
We used a 10 × 10 cells moving window (250 × 250 m). Fig. 13(a)
presents the recovered mP overlaid by the edge solution. The dif-
ferent dyke orientations are clearly visible, as well as the circular
anomalies associated with the kimberlites pipes. We then proceed

with a parameter extraction step based on the correlation between
mP and the solution space. Sparse norms for the model and its
gradients are shown in Figs 13(b)–(d).

In a final step, we proceed with the SVMN inversion. This yields
the model presented in Fig. 14. The solution highlights the important
features in the region:

(1) Two continuous and narrow anomalies striking at 315◦N.
Both dykes show the same apparent break, which may correspond
to left-lateral faulting event at Northing 71346500.

(2) A third dyke striking at 60◦N appears to overprint the signa-
ture of the weakest dykes.

(3) The magnetic anomaly associated with DO-18 in the north
coincides with the location of the known pipe.

(4) The southern anomaly related to DO-27 shows higher sus-
ceptibility along the northern edge of the pipe. This anomaly was
the initial target identified by the exploration team and later drilled.
It is now understood that the main magnetic signal originating from
DO-27 is associated with the hypabyssal kimberlite (HK) unit, a
sheet-like intrusive mafic unit that has low diamondiferous content.
Our inversion is thus consistent with the geology.
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Inversion using spatially variable mixed �p norms 281

Figure 14. Final mixed-norm susceptibility model recovered over the DO-18/27 kimberlite pipes shown with blue outlines.

This final solution is an improvement over all nine previous in-
versions as it has managed to recover both elongate and continuous
dykes striking in different directions, as well as compact isolated
kimberlite pipes. A similar result has previously been shown in
Fournier (2015), but that required tedious manual effort to select
the norm models. We have accomplished the same result by using
only the geophysical data and an entirely automated process for
selecting parameters.

5 C O N C LU S I O N

The geophysical inverse problem is inherently non-unique and the
character of the solution is controlled by a regularization function
that consists of multiple terms each of which is designed to affect
the final outcome in a specific way. Smallness penalties force the
solution to be close to a reference model; roughness penalties are
focused on spatial variation. When composited into a final regular-
ization, each term is pre-multiplied by a constant (α in our notation).
Selecting appropriate values of α is challenging because the numer-
ical value of the penalty depends upon the selected p norm as well

as the numerical discretization used to evaluate derivatives. As the
number of penalty terms grows, and especially when each involves a
different p-norm, pre-specifying the α values becomes challenging,
time consuming and sometimes ineffective. In addition, solving an
�p-norm problem when p < 1 poses additional challenges because
the problem is no longer convex. To address these challenges, we
take the following approach: (i) we replace the �p norms with the
Lawson norm and, at each iteration, solve a local linear problem
using IRLS; (ii) we use a two-stage process where, in the first stage,
all penalties are �2 and in the second stage they are replaced by their
final �p values; (iii) we replace the spatial derivatives with finite
differences. This makes all penalty terms dimensionally equivalent
and allows the α parameters to have a default value of unity; (iv)
we rescale the gradients at each IRLS iteration so that all penalty
terms can be equally influential in the final solution; (v) we intro-
duce a proportionality ratio of the gradient vectors, λ∞, to measure
success in achieving equal contribution from different terms in the
regularization; (vi) we cool the parameter ε in the Lawson norm and
use λ∞ to indicate whether a slower cooling is needed. Although
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282 D. Fournier & D.W. Oldenburg

we have portrayed our algorithm as one that produces a solution
in which all terms in the regularization are equally effective in the
final inversion, it is trivial to incorporate different weightings; λ∞
then reflects the desired relative weightings.

Our inversion algorithm allows us explore two important items.
The first is to sample the solution space associated with �p norms.
The character of the model changes markedly with p value and
inversions with different combinations of norms provides insight
about which features might be required by the data and their geologic
character. The importance of seeing multiple solutions to the same
inverse problem cannot be overestimated.

The second important item is to construct a solution that encom-
passes different types of geologic features with a single domain.
The geology at Tli Kwi Cho is a motivating example. At this level
of complexity however, there are too many p parameters for a user
to specify manually and some way to automate the procedure is
required. We provide one strategy: (i) carry out a suite of �p inver-
sions and build an ensemble of models; (ii) extract common features
using a PCA analysis and build an average model mP ; (iii) in a win-
dowed environment, perform correlations of ensemble member with
mP ; for computing correlations we map the models to their Canny
Edge representation; (iv) the suite of p values corresponding to the
largest correlation coefficient is assigned to the cell at the centre of
the moving window; (v) a final inversion, in which each cell has its
own suite of p values, is carried out. This should be a candidate for
a best model to interpret geologically.

Implementing the above process using SVMN has provided us
with an image of magnetic susceptibility at TKC that is better re-
lated to geology than any other single inversion we have done. The
methodology by which we generate and select the ensemble of pos-
sible solutions and the analysis by which we extract the SVMN
parameters deserves further investigation. Finally, from a geomet-
ric perspective, we have so far used penalty terms on the model
gradients measured along the three Cartesian directions. This is
only appropriate if geological features are intersecting at right an-
gles. Future work could increase the flexibility of the inversion by
allowing gradient measures at variable angles.
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