Simulation-Informed Revenue Extrapolation with Confidence Estimate for Scaleup Companies Using Scarce Time-Series Data

Lele Cao

Sonja Horn

Vilhelm von Ehrenheim

Richard Anselmo Stahl

Henrik Landgren

Revenue and Scaleup

Revenue: total income from generated from main business, indicating performance of a company's performance.

Scaleups: companies with proven scalability, viability and accelerated revenue growth.

Revenue is a highly relevant metric to evaluate a scaleup company!

Revenue Forecast

Investment professionals(IP) rely on **extrapolating company revenue** into the future to **approximate the valuation of companies** and inform their investment decision

Financial data on scaleups is typically proprietary, costly and scarce, forming a huge obstacle for directly applying data-driven methodologies

Forecasting typically done manually and empirically leaving the quality heavily dependent on the investment professionals' experiences and insights

Promise of Data-Driven Approach

Level of **automation**, **objectiveness**, **consistency** and **adaptability** for empirical revenue forecasting is **far from optimal**

Highly desirable for investment professionals evaluating scaleups to have a data-driven method that performs revenue extrapolation on scarce data in an automated way

- A quick way to assess companies' revenue potential with little information needed
- Benchmarking of a manually produced revenue forecasting

Data-Driven Revenue Forecast

The algorithm should

- work for multiple business sectors,
- work on a small dataset,
- commence from short time-series,
- extrapolate for long term (e.g. 3 years),
- estimate confidence,
- have low requirement on auxiliary information,
- be easy to explain.

This is the first work that meets all practical requirements simultaneously.

Example

ARR Forecast: Mean, High, Low & Actual

Revenue Model: Notation

- χ_t The true unobserved revenue
- y_t The "noisy" measurements obtained through estimation
- *U*t The observed "booked" historical revenue numbers

Taylor expansion on x:

$$x_{t+\Delta t} \approx x_t + \left. \frac{\partial x_t}{\partial t} \right|_{t=0} \cdot \Delta t + \frac{1}{2} \left. \frac{\partial^2 x_t}{\partial t^2} \right|_{t=0} \cdot \Delta t^2$$

$$x_{t+\Delta t} \approx x_t + v_t \cdot \Delta t + \frac{1}{2}a_t \cdot \Delta t^2$$
$$v_{t+\Delta t} \approx v_t + a_t \cdot \Delta t$$

In a stable system, we may assume that the acceleration term stays largely constant :

$$x_{t+\Delta t} \approx x_t + v_t \cdot \Delta t + \frac{1}{2}a_t \cdot \Delta t^2$$
$$v_{t+\Delta t} \approx v_t + a_t \cdot \Delta t$$

 $a_{t+\Delta t} \approx a_t$

The true revenue x are usually "hidden", yet one can often observe the measured value y.

During measuring, there can be a systematic error proportional to Δt

 $y_{t+\Delta t} \approx x_{t+\Delta t} + d_t \cdot \Delta t$

Time (*t*)

 $x_{t+\Delta t} \approx x_t + v_t \cdot \Delta t + \frac{1}{2}a_t \cdot \Delta t^2$ $v_{t+\Delta t} \approx v_t + a_t \cdot \Delta t$ $a_{t+\Delta t} \approx a_t$

 $y_{t+\Delta t} \approx x_{t+\Delta t} + d_t \cdot \Delta t$

The unit error can be largely regarded as "static":

 $d_{t+\Delta t} \approx d_t$

Time (*t*)

Revenue \dot{y}_T \mathbf{X}_T y_1 \mathcal{Y}^2 \mathcal{V}_3 X *t* = 1 *t* = 2 *t* = 3 t = Tt = 0

The vectorized form:

 $\mathbf{x}_{t+1} \approx \mathbf{A}\mathbf{x}_t$ and $y_t \approx \mathbf{c}\mathbf{x}_t$,

where $\mathbf{x}_t = [y_t, x_t, v_t, a_t, d_t]^\top$ $\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 1/2 & 1 \\ 0 & 1 & 1 & 1/2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{c} = [1, 0, 0, 0, 0]$ Time (*t*)

Revenue \dot{y}_T \mathbf{X}_T y_1 \mathcal{Y}^2 \mathcal{V}_3 X *t* = 1 *t* = 2 *t* = 3 t = Tt = 0

The vectorized form:

 $\mathbf{x}_{t+1} \approx \mathbf{A}\mathbf{x}_t$ and $y_t \approx \mathbf{c}\mathbf{x}_t$,

where $\mathbf{x}_t = [y_t, x_t, v_t, a_t, d_t]^{\top}$ $\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 1/2 & 1 \\ 0 & 1 & 1 & 1/2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{c} = [1, 0, 0, 0, 0]$ Time (t)

The vectorized and exact form:

 $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \boldsymbol{\omega}_t$ and $y_t = \mathbf{c}\mathbf{x}_t + \boldsymbol{\epsilon}_t$

$$\omega_t \sim \mathcal{N}(0,\mathbf{Q}) \qquad \epsilon_t \sim \mathcal{N}(0,\mathbf{R})$$

 $egin{aligned} & \mathbf{x}_0 \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Omega}) \ & \boldsymbol{\mu} = [y_0, x_0, v_0, a_0, d_0]^\top \ & \boldsymbol{\Omega} \in \mathbb{R}^{5 imes 5} & ext{covariance matrix} \end{aligned}$

The vectorized and exact form:

 $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \boldsymbol{\omega}_t$ and $y_t = \mathbf{c}\mathbf{x}_t + \boldsymbol{\epsilon}_t$

$$\omega_t \sim \mathcal{N}(0,\mathbf{Q}) \qquad \epsilon_t \sim \mathcal{N}(0,\mathbf{R})$$

Initial State
$$\begin{cases} \mathbf{x}_0 \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Omega}) \\ \boldsymbol{\mu} = [y_0, x_0, v_0, a_0, d_0]^\top \\ \boldsymbol{\Omega} \in \mathbb{R}^{5 \times 5} \text{ covariance matrix} \end{cases}$$

Revenue Model : Parameters?

Revenue Model : Optimization!

Revenue Model : Optimization!

Revenue \dot{y}_T \downarrow \mathbf{X}_T $\mathcal{Y}_{\downarrow}^{1}$ \mathbf{X}_0 t = Tt = 0t = 1t=2t=3

The vectorized and exact form:

$$\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \boldsymbol{\omega}_t$$
 and $y_t = \mathbf{c}\mathbf{x}_t + \boldsymbol{\epsilon}_t$

$$\mathbf{x}_0 \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Omega}) \qquad \boldsymbol{\omega}_t \sim \mathcal{N}(0, \boldsymbol{Q}) \qquad \boldsymbol{\epsilon}_t \sim \mathcal{N}(0, \mathbf{R})$$

Target: locate x using observed measurement y

How?

Find optimal parameters using EM algorithm!

Time (t)

Revenue Model : Optimization!

- Using certain procedure Simulate comparable dynamics in a dataset ${f U}$
- Based on known signal Previous revenue from financial report \mathcal{U}_1

Measurements $u_t \xrightarrow{U} \mathcal{Y}_{t+1}$


```
\mathcal{U}_t \xrightarrow{\mathbf{U}} \mathcal{Y}_{t+1}
```

Explain a Tuple (8.7, Jan 18, 1.5, 1.7)

- Jan 18 the time when obtaining this tuple
- 8.7 the revenue obtained in Jan 18 is 8.7
- 1.5 (current YoY growth)
 the revenue of Jan 17 is 8.7/1.5=5.8
- 1.7 (next YoY growth)
 the revenue ratio: Feb 18 / Feb 17 = 1.7

Measurements $u_t \xrightarrow{U} \mathcal{Y}_{t+1}$

Dataset U

Filtering by :

- business,
- year-month,
- revenue,
- YoY revenue growth

Sampling: A stochastic approach

Forecast

Growing Confidence

In Production!

Adapted from EQT Motherbrain Platform

Benchmarking

Datasets: ARR129 and SapiQ

Baselines: ARIMA, Prophet, DeepAR, LSTM and Informer

Evaluation procedure: "rolling origin" with 10 trajectories per baseline

Metrics using mean prediction: RMSE, MAPE and PCC

Metrics using confidence estimate prediction: NLL and ACC

Metrics:		RMSE		MAPE		PCC		NLL		ACC	
Dataset:		ARR129	SapiQ	ARR129	SapiQ	ARR129	SapiQ	ARR129	SapiQ	ARR129	SapiQ
Methods	SiRE (Ours)	9.6917	57.8620	0.0480	0.6571	0.8284	0.6049	7.0578	8.5866	0.7102	0.5539
	ARIMA [1, 3]	31.1630	117.0928	0.2091	0.9603	0.5590	0.4388	10.1357	10.6687	0.5230	0.3305
	Prophet [29]	33.0980	119.3963	0.3899	1.0763	0.5095	0.3780	9.9370	11.0289	0.5233	0.3203
	DeepAR [22] [†]	13.3720	76.1662	0.1347	0.8909	0.6212	0.5091	9.3044	9.8906	0.6300	0.4095
	LSTM [12] [†]	26.9251	88.0435	0.1894	0.9504	0.5721	0.4544	11.0396 [*]	$10.4210^{^{\ast}}$	0.4983 [*]	0.3407^{*}
	Informer [39] [†]	12.7482	84.2029	0.0958	0.8630	0.7448	0.5207	9.5108 [*]	10.2366^{*}	0.6238 [*]	0.4009*

Benchmarking

Datasets: ARR129 and SapiQ

Baselines: ARIMA, Prophet, DeepAR, LSTM and Informer

Evaluation procedure: "rolling origin" with 10 trajectories per baseline

Metrics using mean prediction: RMSE, MAPE and PCC

Metrics using confidence estimate prediction: NLL and ACC

Metrics:		RMSE		MAPE		PCC		NLL		ACC	
Dataset:		ARR129	SapiQ	ARR129	SapiQ	ARR129	SapiQ	ARR129	SapiQ	ARR129	SapiQ
Methods	SiRE (Ours)	9.6917	57.8620	0.0480	0.6571	0.8284	0.6049	7.0578	8.5866	0.7102	0.5539
	ARIMA [1, 3]	31.1630	117.0928	0.2091	0.9603	0.5590	0.4388	10.1357	10.6687	0.5230	0.3305
	Prophet [29]	33.0980	119.3963	0.3899	1.0763	0.5095	0.3780	9.9370	11.0289	0.5233	0.3203
	DeepAR [22] [†]	13.3720	76.1662	0.1347	0.8909	0.6212	0.5091	9.3044	9.8906	0.6300	0.4095
	LSTM [12] [†]	26.9251	88.0435	0.1894	0.9504	0.5721	0.4544	11.0396 [*]	10.4210^{*}	0.4983 [*]	0.3407^{*}
	Informer [39] [†]	12.7482	84.2029	0.0958	0.8630	0.7448	0.5207	9.5108 [*]	10.2366*	0.6238 [*]	0.4009*

Qualitatively

- Missing data points are imputed.
- The trajectory is smooth so that patterns and trends are easier to identify.
- Confidence can be naturally estimated everywhere.
- The 95% Confidence Interval starts much narrower.

Note: The actual name and revenue (Y-axis) of the scaleup is regarded as sensitive information and therefore removed from the plots. The forecast starts from the "cutoff date".

Investors Perspective

For example, will a company be valued 3x in 2 years?

We measure metrics like **TPR>2x_in_2/3y**, which is the true positive rate of scaleups that reach 2x revenue after 2 or 3 years.

1	Methods:	SiRE	ARIMA	DeepAR	Informer
ADD120	TPR>2x_in_2/3y	0.6938	0.5560	0.5904	0.5875
AKK129	TPR>3x_in_2/3y	0.6809	0.5100	0.6060	0.5723
	TPR>2x_in_2/3y	0.5780	0.3903	0.4316	0.4126
SaniO	TPR>3x_in_2/3y	0.5402	0.3729	0.4040	0.3890
SapiQ	TPR>3x_in_4/5y	0.5537	0.3505	0.3830	0.4057
	TPR>4x_in_4/5y	0.5290	0.3511	0.3714	0.3965

Thanks!

- For further questions and details, feel free to check out our code and paper: <u>https://github.com/EQTPartners/sire</u>
- Or, email us: <u>tech_motherbrain-research@eqtpartners.com</u>
- Learn more about EQT Motherbrain at:
 <u>https://eqtgroup.com/motherbrain</u> & <u>https://eqtventures.com/motherbrain</u>

