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Revenue and Scaleup

Revenue: total income from generated from main business, indicating performance of a 
company’s performance.

Scaleups: companies with proven scalability, viability and accelerated revenue growth.

Revenue is a highly relevant metric to evaluate a scaleup company!



Revenue Forecast

Investment professionals(IP) rely on extrapolating company revenue into the future to 
approximate the valuation of companies and inform their investment decision

Financial data on scaleups is typically proprietary, costly and scarce, forming a huge 
obstacle for directly applying data-driven methodologies

Forecasting typically done manually and empirically leaving the quality heavily dependent on 
the investment professionals’ experiences and insights



Promise of Data-Driven Approach

Level of automation, objectiveness, consistency and adaptability for empirical revenue 
forecasting is far from optimal

Highly desirable for investment professionals evaluating scaleups to have a data-driven 
method that performs revenue extrapolation on scarce data in an automated way

● A quick way to assess companies’ revenue potential with little information needed
● Benchmarking of a manually produced revenue forecasting 



Data-Driven Revenue Forecast

The algorithm should

● work for multiple business sectors,
● work on a small dataset,
● commence from short time-series,
● extrapolate for long term (e.g. 3 years),
● estimate confidence,
● have low requirement on auxiliary information,
● be easy to explain.

This is the first work that meets all practical requirements simultaneously.



Example



Revenue Model: Notation

xt

yt

ut

The true unobserved revenue

The “noisy” measurements obtained through estimation

The observed “booked” historical revenue numbers
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In a stable system, we may assume that the 
acceleration term stays largely constant : 
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The true revenue x are usually “hidden”, yet 
one can often observe the measured value y.

yt
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dt ᐧΔt 

During measuring, there can be a systematic 
error proportional to Δt
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The unit error can be largely regarded as 
“static” :

dt ᐧΔt 
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Measurement 
is the key!
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Explain a Tuple  (8.7, Jan 18, 1.5, 1.7)

● Jan 18 - the time when obtaining this tuple

● 8.7 - the revenue obtained in Jan 18 is 8.7

● 1.5 (current YoY growth) 
- the revenue of Jan 17 is 8.7/1.5=5.8

● 1.7 (next YoY growth) 
- the revenue ratio: Feb 18 / Feb 17 = 1.7
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Filtering by :
● business, 
● year-month, 
● revenue, 
● YoY revenue growth

yt+1

Sampling:
A stochastic approach
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But wait!

Intuitively the confidence band should grow into 
the future (hopefully not in a crazy manner) 
instead of a narrow band!
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Growing Confidence

Extrapolate multiple times

&

Assume Gaussian



In Production!

Adapted from 

EQT Motherbrain

Platform



Benchmarking
Datasets: ARR129 and SapiQ

Baselines: ARIMA, Prophet, DeepAR, LSTM and Informer

Evaluation procedure: “rolling origin” with 10 trajectories per baseline

Metrics using mean prediction: RMSE, MAPE and PCC

Metrics using confidence estimate prediction: NLL and ACC
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Qualitatively

● Missing data points are imputed.

● The trajectory is smooth so that 
patterns and trends are easier to 
identify.

● Confidence can be naturally 
estimated everywhere.

● The 95% Confidence Interval starts 
much narrower.



Investors Perspective

For example, will a company be valued 3x in 2 years?

We measure metrics like TPR>2x_in_2/3y, which is the true positive rate of scaleups that 
reach 2x revenue after 2 or 3 years.



Thanks! 
● For further questions and details, feel free to check out our code and paper:

https://github.com/EQTPartners/sire

● Or, email us: tech_motherbrain-research@eqtpartners.com

● Learn more about EQT Motherbrain at: 
https://eqtgroup.com/motherbrain & https://eqtventures.com/motherbrain

https://github.com/EQTPartners/sire
mailto:tech_motherbrain-research@eqtpartners.com
https://eqtgroup.com/motherbrain
https://eqtventures.com/motherbrain

