
www.intentionet.com

Batfish: Make BGP
route-leaks history
February 2020

Samir Parikh
samir@intentionet.com

What is Batfish?

Pre-deployment network validation solution

Started as a Microsoft Research project in 2012

• Open sourced in 2014 (Apache 2.0)

• Contributors from Intentionet, BBN, Colgate University,
Microsoft,
Princeton, UCLA, USC, …

Used by many Fortune 500 companies

How It Works

How It Works

And many
more…

How It Works

Analysis engine

Network models

Queries

Policies

Interfaces:
Ethernet0/0:

InterfaceBW: 10e6,
InputFilter: filter_in
……….

192.0.0.0 ≤ out.prefix
out.prefix ≤ 192.1.0.0
best.valid ⇒ out.lp = 120
best.valid ⇒ out.ad = 20
………

Vendor Neutral
Configuration Model

Routing
Model

Mathematical Model of
Network Behavior

Batfish Policies and Queries

Comprehensive Firewall/ACL Analysis

• Is my firewall protecting sensitive
services?

• What is the impact of this
ACL change?

Configuration Audit

• Are all devices compliant with site
standards?

• Are all protocol sessions (BGP,
IPsec, MLAG, …) compatible?

Comprehensive Reachability Analysis

• Can any flow violate
cross-site isolation?

• Is the DNS server accessible from
anywhere?

Route and Forwarding Analysis

• Is my network redundant?
• What happens if I change

this route policy?

Live Demonstrations

1) Leverage Batfish for continuous configuration validation

2) Analyze a change to a routing policy

3) Identify and prevent potential route-leak

DEMO #1 – Continuous configuration validation

pe1 pe2

cust01 cust02

• This demo uses Batfish to build an test suite for multi-vendor configuration
validation

• Tests inspired by MANRS guidelines
https://github.com/manrs-tools/MANRS-validator

DEMO #1 – Continuous configuration validation

https://github.com/manrs-tools/MANRS-validator

def test_customer_bgp_session_input_policy(bf, customer_list):
"""Ensure all customer BGP peering sessions have INPUT policy configured"""
bf.asserts.current_assertion = 'Assert all customer BGP sessions have input route policy'

nodes = [] # determine the list of peering nodes which need to be evaluated
for customer in customer_list:

nodes.append(customer['Node'])
nodespec = ','.join(nodes)

retrieve the BGP session configuration for all peers on the peering nodes
df = bf.q.bgpPeerConfiguration(nodes=nodespec).answer().frame()
bad_peers_in = []

for customer in customer_list:
check the BGP session configuration for specific peers and
extract input routing policy
iPol = df[(df['Node'] == customer['Node']) & \

(df['Remote_IP'] == customer['Remote_IP'])]['Import_Policy']
if len(iPol.iloc[0]) == 0:

bad_peers_in.append(f"{customer['Node']}:{customer['Remote_IP']}")

test = (len(bad_peers_in) == 0)

Vendor agnostic policies

Example

Ensure all customer BGP
sessions have an input policy

DEMO #1 – Continuous configuration validation

DEMO #2 – Test a routing policy change

pe1 pe2

cust01 cust02

DEMO #2 – Test a routing policy change

pe1 pe2

cust01 cust02

PE Input policy for cust01

ip as-path access-list customer1 permit ^609
!
ip prefix-list customer1 deny 10.0.0.0/8 le 32
ip prefix-list customer1 deny 0.0.0.0/0
ip prefix-list customer1 deny 127.0.0.0/8 le 32
ip prefix-list customer1 deny 0.0.0.0/8 le 32
ip prefix-list customer1 permit 0.0.0.0/0 le 32
!
ip community-list expanded customer1 permit _609:.*_
!
route-map customer1-in permit 10
match as-path customer1
match ip address prefix-list customer1
match community customer1
set community 609:1
!
route-map customer1-in deny 20

DEMO #2 – Test a routing policy change

cust01 cust02

pe1 pe2

Update policy to block /24 prefixes
ip as-path access-list customer1 permit ^609
!
ip prefix-list customer1 deny 10.0.0.0/8 le 32
ip prefix-list customer1 deny 0.0.0.0/0
ip prefix-list customer1 deny 127.0.0.0/8 le 32
ip prefix-list customer1 deny 0.0.0.0/8 le 32
ip prefix-list customer1 permit 0.0.0.0/0 le 32
!
ip prefix-list BLOCK24 permit 0.0.0.0/0 ge 24
!
ip community-list expanded customer1 permit _609:.*_
!
route-map customer1-in deny 10
match ip address prefix-list BLOCK24
!
route-map customer1-in permit 20
match as-path customer1
match ip address prefix-list customer1
match community customer1
set community 609:1 additive
!
route-map customer1-in deny 30

DEMO #2 – Test a routing policy change

Process to analyze routing policy change

1) Collect BGP-Adj-RIB-In for peer in question

2) Upload snapshot with current and proposed policy to Batfish

3) Compare Batfish routing policy evaluation between current and proposed policy

DEMO #3 – Prevent a route-leak

pe1

cust01 cust02

pe3

pe2isp01-nyc

isp01-den

isp02-chi

DEMO #3 – Prevent a route-leak

Scenario

• Peer AS isp01 wants to send prefixes of length >/24 to load-balance traffic across
peering links

Validation Steps

1. Collect BGP-Adj-RIB-In and verify that existing policy blocks >/24 prefixes
2. Update policy and test to verify that policy accepts prefixes
3. Validate that prefixes are not exported out of your AS
4. Repeat 3 & 4 until policy is correct

Getting Started with Batfish is easy!

One line with Docker
https://batfish.readthedocs.io/en/latest/getting_started.html#installing-batfish

Advanced tutorials & videos

https://www.github.com/batfish/pybatfish/
tree/master/jupyter_notebooks
https://www.youtube.com/channel/
UCA-OUW_3IOt9U_s60KvmJYA

https://batfish.readthedocs.io/en/latest/getting_started.html
https://www.github.com/batfish/pybatfish/tree/master/jupyter_notebooks
https://www.youtube.com/channel/UCA-OUW_3IOt9U_s60KvmJYA

https://github.com/saparikh/nanog78-demo

Download the presentation and demo

https://github.com/saparikh/nanog78-demo

Validate your BGP policies with Batfish!

batfish-org

batfish.org

@batfish

Thank You

