
NANOG Session: open
sourcing the network model

and unlocking the value of
understanding the wide area

network
python3 Network Traffic Modeler (pyNTM)

Tim Fiola

Network Modeling and Automation Enthusiast

deck v11

Agenda

u Problem statement

u Network modeling is strategic

u What is a network model?

u We need open source tools in this
space

u What is pyNTM and why is it helpful?

u pyNTM features and roadmap

u Can pyNTM help you now?

u Next steps

u Demo

Problem Statement – Understanding the wide
area network during failure states and how to
grow the network is difficult

u In a large, meshy network, it becomes difficult to
understand how a given failure will truly impact interface
utilization in other parts of the network

u Leads to educated guessing and general rules of thumb on
how/where to augment/grow the network

Understanding WAN behavior is difficult
(continued)

u Auto-bandwidth RSVP network adds additional complexity
uThe demands (traffic) a link handles can change throughout

the day/week/season

uBypass LSPs can have non-intuitive impacts

uAuto-bandwidth LSP behavior can be non-deterministic

uAdding capacity in one part of the network can impact LSP
behavior in the opposite part of the network

Aggravating factors

uWAN capacity cannot be solved simply
throwing money at the problem
uWAN circuits are expensive
uWAN circuits are not always available
uIt often takes a long time to turn up new capacity

Let’s talk
about

modeling!

. . . well, the Wide-Area-Network kind

But why male models?

Network modeling provides insight into
WAN behavior . . .

uModeling allows unique, data-based understanding of
how network will behave during
uFailover

uChanges in the traffic matrix

uChanges in topology, such as adding RSVP mesh or changing a
link metric

uProvides insight as to how auto-bandwidth LSP meshes
will behave

. . . and this insight provides strategic value
by allowing efficient capital allocation

uThis increased understanding of the WAN helps
prevent
uOverbuilding WAN links, which strands capital
uUnderbuilding WAN links, which increases risk

A network model helps people in the
following roles to perform better

uCapacity Planner
uPlan network to optimize latency, cost, simplest topology, etc

uNetwork Engineer
uTest different topologies

uAnyone working a maintenance
uSimulate the effects of taking down a router for a maintenance

uAnyone with interest in network performance

The Network Model
An Overview

A network model has two input components

u Topology

uLayer 3 nodes

uCircuits between layer 3 nodes

ucomprised of 2 unidirectional
interfaces

uShared Risk Link Groups (SRLGs)

uRSVP LSPs

uTraffic Matrix
uEach entry describes a

demand

uEach demand has

u magnitude, which
describes how much
traffic is in that demand

uA source and destination
node

uAn example is on the next
slide

Traffic Matrix
u The traffic matrix for a network will vary throughout the

day, month, season, etc

u Getting good traffic matrices can be challenging . . .

u. . . but understanding your network’s traffic matrices
allows for truly effective engineering and planning

Destination

Source

A B C

A - 45 120

B 60 -

C 75 150 -

This example traffic matrix
shows traffic sourced from
Node A destined to Node C
with a magnitude of
120Mbps

How will this traffic transit
the network?

Sample traffic matrix (Mbps)

Network modeling provides simulation capability

u Applying the traffic matrix to the topology and converging the
model produces a simulation
u The simulation provides data on network behavior (state) for the

given traffic matrix and topology

u For a given day, you can produce a simulation for different
parts of the day by creating a traffic matrix and/or topology
for each part of the day
u What happens during a given failure if it were to occur at different

parts of the day?

u What is the best time to conduct a maintenance on a given router?

u Where is the best place to augment the network to best handle our
holiday traffic matrices?

Without modeling, rules of thumb are often
used for WAN Engineering/Planning

u Rules of thumb
uAre general

uEx: Augment circuits when utilization reaches 50%

uMay result in overbuilding (stranding capital) or underbuilding
(increasing risk)

uDo not necessarily protect against failures you are interested in

uDo not provide any insight as to what failures may be
interesting

uMay have unintended consequences

Modeling advantages and benefits
uSimulations provide

u Insight as to how your network traffic will behave during a
failure event

u Insight as to how your network will behave with additional
traffic

uBetter understanding of how RSVP LSP meshes will behave

uModeling can show you where the WAN is vulnerable
uWhat failures SHOULD you be interested in?

uA simulation engine provides a platform upon which to
build sophisticated analysis tools
uEx: I want to design/plan a network to optimize costs

Modeling advantages and benefits (continued)

uModeling wide area network behavior allows you to
uEfficiently allocate capacity/capital where it’s really

needed
uPlan for and understand events you care about

uSimulations produce actionable DATA!
uA model is a great source from which to mine data

uAt a minimum, modeling allows you to make a more
educated decision
uYou don’t need a sophisticated model to begin to

reap the benefits of modeling

Some
example use
cases for
network
models

Understanding
current network
topology

How many ECMP
paths does a given
demand take across
the IGP topology?

Understanding
failover by modeling
failures

Links

Nodes

Shared risk link group(s)
(SRLG)

Understanding where it
makes sense to augment
a network

Deploy capital where
it’s most needed

Don’t strand capital

More
example use
cases for
network
model

Understanding how
changes in the
network affect
traffic flow

More/less traffic
Adding capacity to
existing links

New links

Metric changes

RSVP
Implementations

Adding RSVP
overlay to IGP
network

Adding/removing
parallel LSPs

Failover

What failures should I be
interested in?

Making network modeling more
accessible to everyone

uWe need open-source tools that allow
programmatic network modeling and simulation

uSpecifically, there are two needed components
uOpen source modeling engines (pyNTM)

uOpen source tools to create reasonable traffic
matrices

u Nice-to-have: open source GUI for visualization

So, what is pyNTM?
upyNTM is the python3 Network Traffic Modeler
upyNTM is an open source WAN modeling engine
uApplies a traffic matrix to a network topology to route

traffic as the network would
uUses networkx module to get the topology path info

unetworkx is a GREAT tool to get path info in a topology . . .

u . . . but there’s more to modeling than just path info

upyNTM builds on networkx paths to create network-
specific state

Networkx and pyNTM roles in pyNTM simulations

Demand (traffic) paths (networkx)

RSVP paths (networkx)

Interface utilization (pyNTM)
Interface reserved bandwidth (pyNTM)
Demand path’s interfaces (pyNTM)
RSVP LSP path’s interfaces (pyNTM)

Networkx and pyNTM
with ECMP traffic
u You can’t model utilization

from a demand with ECMP by
splitting traffic evenly across
all the unique equal-cost end-
to-end paths
u This would be end-to-end load

balancing

u IGPs load balance hop-by-hop,
not end to end

u Spreading the traffic evenly
across the 3 unique end-to-end
paths results in the traffic spread
shown

A

B

C E

D

G

F

4

8

4

4

4

4

4

4

12 Mbps

Unique paths are:
A-B-D-G
A-C-E-G
A-C-F-G

Networkx and pyNTM with
ECMP traffic (continued)
u pyNTM models hop-by-hop ECMP

across the 3 unique paths
u This is how OSPF and ISIS load

balance

u Hop-by-hop load balancing results
in the traffic spread shown

u This hop-by-hop spread is very
different than the end-to-end
load balancing traffic spread

u pyNTM models interface
utilization from IGP (hop-by-hop)
load balancing

Unique paths are:
A-B-D-G
A-C-E-G
A-C-F-G

A

B

C E

D

G

F

6

6

6
6

3

3

3

3

12 Mbps

Why is pyNTM
helpful?

u PyNTM leverages path information
from networkx in a network state-
specific context, allowing for modeling
of network-specific state:
u Modeling utilization on interfaces

u Modeling traffic consuming interface
bandwidth

u Modeling RSVP LSPs consuming reservable
interface bandwidth

u Determining the available path(s) that
have a given amount of reservable
bandwidth

u IGP ECMP load-balancing splits

u pyNTM APIs allow for programmatic
network modeling capability

Why is pyNTM
helpful?
(continued)

u pyNTM allows users to easily modify
the network topology and determine
alternate network state based on that
change; for example:
u Failing layer3 Nodes, Circuits, SRLGs, etc
u Adding new nodes, interfaces, traffic

demands, SRLGs to the topology
u Adding new/additional auto-bandwidth

LSPs to the topology

u pyNTM is specifically designed to
easily relate objects in the model:
u Traffic Demands
u RSVP LSPs
u End-to-end path info
u Interfaces
u Nodes

pyNTM Features and Roadmap

pyNTM features (as of v1.5)

u IGP (OSPF/ISIS) routing

u RSVP LSP Full Mesh
u Traffic source and destination must match LSP source and

destination

u Auto-bandwidth LSPs

u Fixed/manually-assigned setup bandwidth LSPs

u Shared Risk Link Groups (SRLGs)

u Currently supports modeling a single link between layer 3
nodes
u For many use cases, it’s valid to combine multiple links with same

cost between 2 nodes into a single link in a network model

Feature requests and pull requests are
accepted on GitHub!

u Submit feature requests or pull requests at
https://github.com/tim-
fiola/network_traffic_modeler_py3/issues

u Current open feature requests include
u IGP shortcuts

uMultiple/parallel links between two layer 3 nodes
uModeling multiple/parallel links between nodes may incur a large

performance cost

uWe have top people looking into that problem . . . TOP . . . PEOPLE

uAssigning manual cost to RSVP LSP

https://github.com/tim-fiola/network_traffic_modeler_py3/issues

Possible roadmap features

uIt’s helpful to have community input on
these possible features and any others
uAllowing only a % of interface capacity to be

used for reservable bandwidth
uRegional RSVP LSP meshes that stitch together

at region boundaries

uPerformance improvements and optimizations

Can pyNTM help
you right now?

Options for modeling/simulation
Feature Commercial Options pyNTM

Cost $$$ $0

APIs for programmatic modeling Y Y
Includes capability to create traffic
matrix

Y N

Sophisticated GUI for visualization Y N

Open Source N Y

Dependent on vendor Y N

Modeling with python should be a thing now!

uPython is a mature language
uPython is prevalent in the communications

networking domain
uThe need for network modeling is great since more

and more networks are facing problems associated
with scaling

Modeling with python should be a thing
now! (continued)

uThe capability for basic modeling in the
commercial products is mature
uThey’ve been around for about 17-ish years

u Mature technologies can be modularized
uOne app to create a traffic matrix

uOne app to model using the traffic matrix

So who is
pyNTM for?

u If your org/company can generate a reasonable
traffic matrix
u Access to data scientists
u PMACCT and NetFlow
u Forecasted traffic demands

u If your org has basic python coding skills
u If your org does not want to rely on and/or manage

external modeling vendors
u If your WAN is IGP only
u If your WAN is IGP + full mesh RSVP

pyNTM provides the open source modeling and simulation engine
and can help you today

u Otherwise, features are still being added!
u I’m happy to talk and discuss features you need to

model your network with pyNTM

Next steps

uDownload pyNTM from PyPi via pip3
upip3 install pyntm

uAccess the full repository on GitHub
uhttps://github.com/tim-fiola/network_traffic_modeler_py3

uProvides access to sample scripts

uProvides access to beta features
uInteractive visualization

uSimple User Interface to help hu-mans explore model topology

https://github.com/tim-fiola/network_traffic_modeler_py3

Next Steps (continued)

uAccess the free training modules
uhttps://github.com/tim-

fiola/network_traffic_modeler_py3/wiki

uRead the docs
uDocstrings are real and are a thing
uhttps://readthedocs.org/projects/pyntm/

uContribute!
uIf you can enshrine network behavior in code or script

useful workflows in pyNTM, please submit a pull
request on GitHub!

https://github.com/tim-fiola/network_traffic_modeler_py3/wiki
https://readthedocs.org/projects/pyntm/

Notes about demos

uThey always seem like a good idea, until they don’t
u In a room this size, a demo does NOT come through

clearly
uSO . . .

uWe’re going to cowboy this a bit and show screenshots of the
demo, not the demo recording

uThe point of this is to show you that using the pyNTM
APIs programmatically is a real thing

Demo Snapshots
• Load model file

• Look at interface utilization

• Visualize network (beta feature)

• Get shortest path between 2 layer 3 nodes

• Fail interface

• Visualize network

• Look at interface utilization during failure

• Get demands on an interface

• Get path info for an ECMP demand

Load Model File

Update simulation

Visualize Network (beta feature)

uThe network visualization is a good tool to
use in the training modules because it
allows you to get a feel for the network and
topology

uThe network visualization is likely not
practical for a larger network

Visualize the
network

u Produces a locally
served, interactive
map produced by
mpld3

Find shortest path(s) between 2 nodes

uUses get_shortest_path method off of the Model object
uReturns a dictionary object with cost and path keys
uThe path value is a list of lists of interfaces along the

shortest path(s) from source to destination
uEach shortest path would be a separate list in the path list

Look at interface utilization (only
interfaces above 90%)

Fail an interface

Fail an interface (continued)

Look at
interface
utilization
during
failure (all
interfaces)

Interface utilization highlights

u We failed interface
from A to B
u Interface B to A

automatically
entered failed state
because failing one
interface brings
entire circuit down

u Interface from A to D
is at 164% utilization

Visualize
network with
failure

Entire circuit
between A and B
is down

The interface
from A to D shows
purple (over 100%
utilized

Get demands on interface . . . But first,
docstrings!

Get path info for a demand with equal
cost multiple paths

These traffic demands are driving the utilization on that interface

Get paths for a demand with multiple,
equal cost paths

The path call returns a list of interfaces that the traffic demand egresses from source to destination

2 paths!

Visualization
with path

uPaths for demand
from A to B were
uAàD, DàB

uAàD, DàE, EàB

Node
A

Node
D

Node
B

Node
E

FIN

