

Intent Based Networking the technology

Jeff Tantsura Head of Networking Strategy @Apstra Chair IETF Routing and RIFT working groups, IAB

Why IBN?

Why IBN?

apstra

apstra

IBN Landscape

apstra

IBN Landscape

Intent Based Networking Maturity Levels

aostra

IBN standardization – just the beginning

Network Working Group Internet-Draft Intended status: Informational Expires: June 26, 2020

A. Clemm Futurewei L. Ciavaglia Nokia L. Granville Federal University of Rio Grande do Sul (UFRGS) J. Tantsura Apstra, Inc. December 24, 2019

Intent-Based Networking - Concepts and Definitions
draft-irtf-nmrg-ibn-concepts-definitions-00

 \leftarrow Has recently been adopted as the rg document

Outlines number of fundamental IBNS building blocks and their relationship:

- SSoT: Single Source of Truth A functional block in an IBN system that normalizes users intent and serves as the single source of data (normalized intended state) for every consumer.
- IBA: Intent Based Analytics Analytics that are defined and derived from user' intent and used to validate the intended state.
- PDP: Policy Decision Point part of intent definition, technology agnostic.
- PEP: Policy Enforcement Point technology/device aware (e.g ACL or FW rule).

Ability to reason about Intent is a fundamental property of an IBNS! Complex systems fail in mysterious ways ;-)

CLOS topologies are extremely regular/uniform and mutate (expand) in a very predictable way. PoD structure provides clear boundaries.

https://engineering.fb.com/data-center-engineering/f16-minipack/

Telco WAN evolution

Day 0

https://www.travelportland.com/article/portland-japanese-garden

Day 2

https://www.pinterest.com/pin/300756081335600951

IBN in Telco WAN – is there a hope? IETF TEAS ACTN framework is a step in the right direction

https://datatracker.ietf.org/meeting/103/materials/slides-103-edu-sessk-an-ietf-traffic-engineering-overview-01

IBN in Telco WAN – is there a hope? What about 5G?

E2E Network Slicing is too complex, transport part of it is a perfect candidate for IBN

https://datatracker.ietf.org/meeting/105/materials/slides-105-teas-sessa-03-5g-transport-slice-connectivity-interface-00

IBN in Telco WAN – 5G NS

E2E Network Slicing is too complex, transport part of it is a perfect candidate for IBN

IBN Design Philosophy

Networks managed as a whole system, not individual components

Successful networks are defined by the outcomes produced by the whole system

Intent Based Networking is about "what" not "how"

More details in: draft-irtf-nmrg-ibn-concepts-definitions

IBN life cycle

apstra

Day in the IBNS life

Programmable Network and Interfaces

Network

A network is programmable when the control and data planes provide an interface that allows the state of the network to be modified and monitored through a machine readable data-driven API's

Source: Navigating Network Complexity: Book by Jeff Tantsura and Russ White

apstra

Programmable Network and Interfaces

Interfaces

Capabilities: Provides information what can be programmed or controlled. This included schema's and metadata, or rather information about how the control structures are organized, and how information is presented by network devices to the controller.

Inventory: Provides information about what devices are installed where in the network, potentially including any information about physical connections.

Topology: Provides information about the state of links connecting network devices. This includes all the artifacts of the topology described.

Telemetry: Includes operational state, counters, and other information about the current network state. This includes but not limited by: resources used/available, queue depths, delay, jitter, etc...

Source: Navigating Network Complexity: Book by Jeff Tantsura and Russ White

The need for data normalization

→ Fruitcake

Source: food.com

The need for data normalization

Architectural Goals of IBN

Problems to be solved:

- Composition/decomposition@scale
- Dealing with changes:
 - Planned change can I achieve desired (future) state while preserving original intent (meeting SLO's)
 - Unplanned change impact of the change, difference between intended and operational states, how to get to intended state (remediation/notification)

Architectural Goals of IBN

Problems to be solved:

- Closed loop validation:
 - continuously validate outcomes against the intent to ensure that the composition is working as intended
 - extract more knowledge by collecting less data thru IBA (Intent Based Analytics)
 - highly optimized SNR (signal to noise ratio) in analytics

Dealing With Scale?

Composition

The Free Encyclopedia

Function composition (computer science)

From Wikipedia, the free encyclopedia

Article Talk

Not to be confused with object composition.

In computer science, function composition is an act or mechanism to combine simple functions to build more complicated ones. Like the usual composition of functions in mathematics, the result of each function is passed as the argument of the next, and the result of the last one is the result of the whole. Programmers frequently apply functions to results of other functions, and almost all programming languages allow it. In some cases, the composition of functions is interesting as a function in its own right, to be used later. Such a function can always be defined but languages with first-class functions make it easier. The ability to easily compose functions encourages factoring (breaking apart) functions for maintainability and code reuse. More generally, big systems might be built by composing whole programs.

Main page Contents Featured content Current events Random article Donate to Wikipedia

k

Why model a graph?

- Networks are intuitively the connected set of nodes and relationships
- As network requirements **change** the model can be easily **extended**
- Efficiently run **queries** that were **not anticipated** at model design time

Hint: you **will not** know all the queries at model definition time

Intent-> Graph composition

Function composition

apstra

apstra

apstra

Resulting Model

Query: Links that carry "A2" traffic

Decomposition

Article Talk

WIKIPEDIA

The Free Encyclopedia

Main page

Contents Featured content Current events Random article Donate to Wikipedia Wikipedia store

Interaction

Help About Wikipedia Community portal Recent changes

Read Edit View history S

Decomposition (computer science)

From Wikipedia, the free encyclopedia

Contents [hide]		
1	Overview	
2	Decomposition topics	
	<u>2.1</u>	Decomposition paradigm
	2.2	Decomposition diagram
3	See also	
4	References	
5	External links	

Decomposition in computer science, also known as factoring, is breaking a complex problem or system into parts that are easier to conceive, understand, program, and maintain.

Decomposition: walking the graph

apstra

Intent Based Analytics Extract more knowledge by collecting less data (orders of magnitude less)

Was I looking for something?

Gathering high def telemetry

For all my leaf1 interfaces

For all my leafs

internet int nadiket makket indiket makket makket makket makket makket makket indiket makket in makket makket in makket met anad Mark Innad Mark nadi meri madi me

So that I have insight

alonara makan mara makalonara makan mara makalonara makan mara makan mara makan m Question: Is my fabric ECMP imbalanced? analikar and ket and ker and ker and ker

IBA : ECMP fabric health (load sharing across fabric links)

apstra

Would ML be helpful?

Source: BRKOPS-3825, Frank Brockners

IBA – context aware analytics

Declaratively specified, definition is de-coupled from instantiation

Once specified, is in constant sync with intent

Extracts knowledge out of the raw telemetry – context drives the content New telemetry is "wired-in"

Conclusion

- Basic automation, while hot topic is the first and easiest step in the IBN journey
- Single source of truth is mandatory for an IBN system to be able to reason about any change
- Day 2 operations @scale:
 - context aware continues validation
 - dealing with changes
 - configuration drift
 - remediation
 - is the most complicated area of technologies to deal with!

Questions

Thank You!

www.apstra.com

f

https://www.linkedin.com/company/apstra

https://www.facebook.com/apstrainc/

