An Open Platform to Teach How the Internet Practically Works

Thomas Holterbach NANOG 78, San Francisco

Joint work with Tobias Bühler, Tino Rellstab, and Laurent Vanbever

theory

exercises

Which messages are exchanged?

exercises

Which messages are exchanged?

labs

These concepts are not sufficient to understand how the Internet *practically* works

In practice, there are peering agreements with stringent SLAs

Network operators talking during NANOG'76

In practice, there are thousands of ASes and connectivity must be monitored network-wide

IXP IPs: YES, out-of-country IPs: NO

IXP Country Jedi Emile Aben

In practice, debugging can be tricky

- I'm seeing it coming from both Zayo and HE
- ae2.cs1.lga5.us.zip.zayo.com
- 9. ae18.ter1.lga5.us.zip.zayo.com
- 10. 192.205.36.105
- 11. cr1.n54ny.ip.att.net
- 12. cgcil22crs.ip.att.net
- 13. cgcil21crs.ip.att.net
- 14. dvmco22crs.ip.att.net
- 15. slkut21crs.ip.att.net
- 16. la2ca21crs.ip.att.net
- 17. gar20.la2ca.ip.att.net

Anybody else is experiencing packet loss since last Tuesday across the AT&T network in the L.A. area?

NANOG mailing list December 9, 2019

At ETH Zurich, we let the students operate their own mini-Internet,

At ETH Zurich, we let the students operate their own mini-Internet, altogether, like if they were the network operators

At ETH Zurich, we let the students operate their own mini-Internet, altogether, like if they were the network operators

The feedback we receive from our students is very positive

"It really allows us to apply the theoretical concepts" "I am quite confident about many things on the Internet now" "It is a unique project"

Quotes are from an anonymous survey

An Open Platform to Teach How the Internet Practically Works

Thomas Holterbach NANOG 78, San Francisco

Joint work with Tobias Bühler, Tino Rellstab, and Laurent Vanbever

An Open Platform to Teach How the Internet Practically Works

Thomas Holterbach ETH Zurich thomahol@ethz.ch

Tino Rellstab ETH Zurich tinor@student.ethz.ch

ABSTRACT

Each year at ETH Zurich, around 100 students build and operate their very own Internet infrastructure composed of hundreds of routers and dozens of Autonomous Systems (ASes). Their goal? Enabling Internet-wide connectivity.

We find this class-wide project to be invaluable in teaching our students how the Internet *practically* works. Our students have gained a *much* deeper understanding of the various Internet mechanisms alongside with their pitfalls. Besides students tend to love the project: clearly the fact that all of them need to cooperate for the entire Internet to work is empowering.

In this paper, we describe the overall design of our teaching platform, how we use it, and interesting lessons we have learnt over the years. We also make our platform openly available [8].

1 INTRODUCTION

Most undergraduate networking courses, including ours [23], aim at teaching "how the Internet works". For the instructor, this typically means painstakingly going through the TCP/IP protocol stack, one layer at a time, following a bottom-up [18] or top-down approach [13]. At the end of the lecture, students (hopefully) have learned concepts such as switching, routing, and reliable transport; together with the corresponding protocols.

Learning these concepts is not sufficient to understand how the Internet *really* works though or, alternatively, why it does *not* work: for this, we think one also needs to understand the ins and outs of how the Internet is operated which includes topics such as network design, network configuration, network monitoring, and...network debugging. Understanding these topics is important as Internet operations have a *huge* impact on its behavior. Among others, most of the Internet downtime are due to human-induced errors [17]. Yet, undergraduate networking courses seldom include these topics, most likely because they are so few principles governing them.

We argue that an effective way to teach about Internet operations-

Tobias Bühler ETH Zurich buehlert@ethz.ch

Laurent Vanbever ETH Zurich lvanbever@ethz.ch

operators: enabling Internet-wide connectivity, between any pair of IP prefixes, by transiting IP traffic across multiple student networks. As they quickly realize though, achieving this goal is challenging and requires a truly collective effort. We found this to be empowering. The fact that all networks need to work for the Internet as a whole to work really helps to bring together the entire classroom.

Over the years, the mini-Internet project has become a flagship piece of our networking lecture, one that the new students look forward to. Thus far, the feedback we received from the students has been extremely positive, with comments such as: "It really allows us to apply the theoretical concepts"; "I am quite confident about many things on the Internet now"; and "It is a unique project".

Besides gaining a *much* deeper understanding of the various Internet mechanisms, having students build and maintain their own Internet infrastructure enables them to quickly realize the pitfalls and shortcomings behind Internet operations. Students quickly realize: (*i*) how fragile the Internet infrastructure is and how dependent they are on their neighbors' connectivity; (ii) how hard it is to troubleshoot Internet-wide problems; and (iii) how difficult it is to coordinate with each other to fix remote problems. Each year, several groups of students come up with proposals (sometimes, even implementations!) to improve Internet operations. These proposals often directly relate to research topics active in our community (such as configuration verification/synthesis or active probing). Perhaps candidly, we believe that encountering operational problems early on in their networking curriculum can also help the next-generation of network designers avoid repeating the mistakes made in the past.

An open platform. Given the success of our project, we have open sourced the entire platform [8] and hope that other institutions will start using it. We built our platform with three key goals in mind.

First, we aimed at faithfully emulating the real Internet infrastructure. To do so, we rely on (open-source) switching and routing software implementing the most well-known protocols (e.g., STP,

Outline

1. The mini-Internet mimics the real one

2. The mini-Internet turns the students into network operators

3. The mini-Internet provides students with tools to ease operations

4. The mini-Internet provides isolation, scales and is flexible

Outline

1. The mini-Internet mimics the real one

2. The mini-Internet turns the students into network operators

3. The mini-Internet provides students with tools to ease operations

4. The mini-Internet provides isolation, scales and is flexible

The AS-level topology of the mini-Internet

There are 60 ASes, divided in six regions

There are Tier1 ()

There are Tier1 (), Stub (),

There are Tier1 (), Stub () and Transit () ASes

There are Tier1 (), Stub () and Transit () ASes

There are peer-2-peer (-----)

There are Tier1 (), Stub () and Transit () ASes

There are Tier1 (), Stub () and Transit () ASes

There are IXPs (IXP)

We build internal topologies with the technologies used in practice

We build internal topologies with the technologies used in practice

L2 switch

We build internal topologies with the technologies used in practice

We build internal topologies

We build realistic internal topologies that require students to solve real problems

We build realistic internal topologies that require students to solve real problems

We build realistic internal topologies that require students to solve real problems

---- submarine cable

Outline

1. The mini-Internet mimics the real one

2. The mini-Internet turns the students into network operators

3. The mini-Internet provides students with tools to ease operations

4. The mini-Internet provides isolation, scales and is flexible

We give one transit AS and one IP prefix to each group of students

We give one transit AS and one IP prefix to each group of students Goal: enabling Internet-wide connectivity

We give one transit AS and one IP prefix to each group of students Goal: enabling Internet-wide connectivity

Project start

Connectivity matrix

We give one transit AS and one IP prefix to each group of students Goal: enabling Internet-wide connectivity

Phase

Project start

Connectivity matrix

1. Establishing intra-domain connectivity

In the L2 network e.g., custom spanning tree and VLANs

In the L3 network e.g., load-balancing

In the L2 network e.g., custom spanning tree and VLANs

In the L3 network e.g., load-balancing

In the L2 network e.g., custom spanning tree and VLANs

In the L3 network e.g., load-balancing

We give one transit AS and one IP prefix to each group of students Goal: enabling Internet-wide connectivity

Phase

Project start

Connectivity matrix

1. Establishing intra-domain connectivity

We give one transit AS and one IP prefix to each group of students Goal: enabling Internet-wide connectivity

Phase

Project start

Connectivity matrix

1. Establishing intra-domain connectivity

2. Establishing inter-domain connectivity

We organise a Hackathon where students gather to configure BGP sessions

mini-Internet Hackathon, April 19, 2018

We give one transit AS and one IP prefix to each group of students Goal: enabling Internet-wide connectivity

Phase

Project start

Connectivity matrix

1. Establishing intra-domain connectivity

2. Establishing inter-domain connectivity

We give one transit AS and one IP prefix to each group of students Goal: enabling Internet-wide connectivity

Phase

Project start

Connectivity matrix

1. Establishing intra-domain connectivity

2. Establishing inter-domain connectivity

3. Configuring external routing policies

Following business agreements e.g., local-preference and exportation rules

Following preferences e.g., one provider is preferred

Following business agreements e.g., local-preference and exportation rules

Following preferences e.g., one provider is preferred

Following business agreements e.g., local-preference and exportation rules

Following preferences e.g., one provider is preferred

the inbound traffic coming from a provider

We give one transit AS and one IP prefix to each group of students Goal: enabling Internet-wide connectivity

Phase

Project start

Connectivity matrix

1. Establishing intra-domain connectivity

2. Establishing inter-domain connectivity

3. Configuring external routing policies

Last year, up to 96% of the ASes were connected to each other

Internet Project: Connectivity Matrix

This connectivity ma	trix indicates th	ne networks tha	it each group can () or
Reachable (10%)			
1 2 3 4 5 6 7 8 9	10 11 12 13 14 15	i 16 17 18 19 20 2	1 22 23 24 25 26 27 28 29 30
G1 G2			
G3			
G4			
G5		′ <u> </u>	
G6 G7			
G8			
G9			
G10 G11			
G12			
G13			
G14			
G15 G16			
G17			
G18			
G19			
G20 G21			
G22			
G23			
G24 G25			
G26			
G27			
G28			
G29 G30			
G31			
G32			
G33			
G34 G35			
G36			
G37			
G38			
G39 G40			
G41			
G42			
G43 G44			
G44			
G46			
G47			
G48 G49			
G50			
G51			
G52			
G53 G54			
G55			
G56			
G57			
G58 G59			
G60			
1 2 3 4 5 6 7 8 9	0 11 12 13 14 15	16 17 18 19 20 2	1 22 23 24 25 26 27 28 29 30

What the students learn goes beyond just configuring some protocols

What the students learn goes beyond just configuring some protocols

They realise that the Internet is the result of a collective effort Students often gather to configure the network together

They realise that the Internet is fragile A small mistake may affect the overall connectivity

They realise that the Internet can be configured more efficiently Students often come up with automation tools

Outline

1. The mini-Internet mimics the real one

2. The mini-Internet turns the students into network operators

3. The mini-Internet provides students with tools to ease operations

4. The mini-Internet provides isolation, scales and is flexible

Operating the mini-Internet is challenging and sometimes painful

Operating the mini-Internet is challenging and sometimes painful Fortunately, there are tools to help

We organise Q&A sessions every week where teaching assistants provide help

We organise Q&A sessions every week where teaching assistants provide help

We use a dedicated Slack channel where students can ask questions any time

We organise Q&A sessions every week where teaching assistants provide help

We use a dedicated Slack channel where students can ask questions any time

We organise Q&A sessions every week where teaching assistants provide help

We use a dedicated Slack channel where students can ask questions any time

Tobias Bühler (TA, head) il y a 10 mois No, line 3 represents the zuri interface on the LOND router. The first part of the name indicates the router/host, then interface and finally group.

We organise Q&A sessions every week where teaching assistants provide help

We use a dedicated Slack channel where students can ask questions any time

Monitoring and debugging a network is tricky

Monitoring and debugging a network is tricky We provide monitoring and debugging tools

Looking glass: the routing table of every router is available on a web interface

Active probing: the students can run ping and traceroute between any pair of ASes to test connectivity

DNS: the students can use domain names instead of IP addresses

Students are not familiar with routers and switches' CLI

Students are not familiar with routers and switches' CLI We provide a documentation tailored for the mini-Internet

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Spring 2018

Prof. L. Vanbever/T. Bühler, R. Birkner, T. Holterbach, R. Meier

Communication Networks Project 1: Build your own Internet

In this document, we first introduce in §1 a set of commands you may need to configure an Open vSwitch. We then show in §2 how to configure a Quagga router.

Configuring Open vSwitch

Open vSwitch¹ [1] is one of the most popular software switches. It can typically be used in virtual environmements, for instance to connect two virtual machines. When an Open vSwitch is running, a set of commands are available to check its state and configure it. To print a brief overview of the switch state and its parameters, you can use the following command:

> ovs-vsctl show

This command also tells you the VLANs each port belongs to. One port has the name of the switch and has the type *internal*. This is a local port used by the host to communicate with the switch. You do **not** need to use this port. To get more precise information about the status of the ports, you can use the following command:

```
> ovs-ofctl show NAME
```


Deadline: May 3 2018 at 11.59pm

Students do not progress at the same speed

Students do not progress at the same speed We ensure minimal connectivity

We provide redundancy in the AS-level topology Each transit AS has two providers and two customers

We pre-configure Tier1 and Stub ASes as well as IXPs Enough for the students to answer most of the questions

Students must configure many virtual devices

Students must configure many virtual devices We provide tools to facilitate the remote access to the virtual devices

Two commands are enough to access a router

laptop> ssh -p 2001 root@server g1-proxy> ./goto.sh ZURI router

Outline

1. The mini-Internet mimics the real one

2. The mini-Internet turns the students into network operators

3. The mini-Internet provides students with tools to ease operations

4. The mini-Internet provides isolation, scales and is flexible

main host

Containers are connected with virtual links

Containers are connected with virtual links

Containers are connected with virtual links

Containers are connected with virtual links

We use the state of the art software suites for the switches and routers

The mini-Internet topology can easily be adapted using configuration files

The mini-Internet topology can easily be adapted using configuration files

2016

Inspired from the Internet2 topology

Inspired from the SWITCH topology

A single server with 24 cores and 256 GB of memory can handle a mini-Internet with 60 ASes

When idle, the mini-Internet uses 30% of the CPUs in average, and 58% of the memory

Under stress*, the mini-Internet uses 51% of the CPUs in average, and 65.2% of the memory

*150 iperf sessions or 15000 BGP routes

We are developing a visualisation framework

Internet
AS1

TOKY ROUTER

 \times

INTERFACES

ext_2_TOKY State: UP, MTU:1500 179.24.1.1/24

IO State: UP, Loopback, MTU:65536 1.207.0.1/24

matrix_1 State: UP, MTU:1500 1.0.198.1/24

port_ROMA State: UP, MTU:1500 1.0.9.2/24

port ZURI State: UP, MTU:1500 1.0.8.2/24

ssh State: UP, MTU:1500 158.1.16.1/16

visualization_1 State: UP, MTU:1500 159.1.97.2/24

15	- ·	
IP	Count	PING
	3	FING

127.0.0.1

Autonomous System 1

OSPF INFO	
Link is up	
Link is down	
OSPF cost	

LAUNCH

Framework developed by Lina Gehri, Marco Di Nard, Aedan Christie and Alexander Dietmuller

We plan to connect the real Internet to the mini-Internet

We plan to connect the real Internet to the mini-Internet

How to run your own mini-Internet?

- **1.** Pull from our GitHub page github.com/nsg-ethz/mini_internet_project
- 2. Follow the documentation
- 3. Define your topologies
- 4. Run it on your server

<> Code	() Issues 0	ា Pull requests	0 C Actions	Projects 0	🗐 Wik	i 🕕 Security	Insights	🔅 Sett	ings	
The official repository of the mini-Internet exercise.										
Ē 55	⑦ 55 commits ♀ 2 brance		🗇 O (oackages	♡ 0 releases		L contributor		ৰ্াুুঁ≊ GPL-3.0	
Branch: ma	ster 👻 New pu	II request				Create new file	Upload files	Find file	Clone or download -	
KTrel U	KTrel Update README.md									
2019_assignement_eth first commit, with the				e assignement po	If and source	e code			3 days ago	
platform Update README.md						14 hours ago				
LICENSE Create LICENSE							2 days ago			
README.md			Update README.md					2 days ago		
	IE.md								ľ	

O Unwatch - 9

🛨 Star

An Open Platform to Teach How the Internet Practically Works

This is the repository of the mini-Internet

Insg-ethz / mini_internet_project

The documentation as well as the source code of the mini-Internet is in the directory platform. In the directory 2019_assignement_eth you can see how we used the mini-Internet at ETH in the 2019 iteration of the project

Contacts

Thomas Holterbach thomahol@ethz.ch Tobias Bühler buehlert@ethz.ch Tino Rellstab tinor@student.ethz.ch Laurent Vanbever lvanbever@ethz.ch

How to run your own mini-Internet?

- **1.** Pull from our GitHub page github.com/nsg-ethz/mini_internet_project
- 2. Follow the documentation
- 3. Define your topologies
- 4. Run it on your server

Questions?

thomahol@ethz.ch

