DNS Privacy in Practice - Measuring Deployment of DoT, DoH, and TFO

BY

Casey Deccio and Jacob Davis

NANOG 78

February 10, 2020, San Francisco, CA
Domain Name System (DNS) Review

- DNS typically runs over UDP (original standard)
- Recursive resolver follows answers from Authoritative servers

![Diagram of DNS resolution process]

Stub Resolver

Recursive Resolver

Root Auth. Server

Example.com Auth. Server

example.com?

93.184.216.34
DNS Dangers

• UDP has no security measures
• Vulnerable to eavesdropping, modifications, spoofing (DDoS), etc.
• Easy to use for filtering and logging
DNS Security Measures

Authenticity – Ensuring answer is correct
- DNSSEC

Confidentiality – Ensuring a connection is private
- DNS over TLS (DoT)
- DNS over HTTPS (DoH)
- DNS over DTLS
- DNS over QUIC
- DNSCrypt
DNS over TLS (2016)

- Transmit DNS queries over TLS
 - Optionally, verify server certificate is trusted
 - After handshake, everything is encrypted with shared session key
- Uses dedicated port 853
- Once handshake is complete, send queries like normal

Image from hpbn.co
DNS over HTTPS (2018)

- Send queries like normal web traffic (port 443)
 - Harder to block/detect as a result
 - Easier to implement for applications

- Use either GET or POST requests
 - POST: include wire format message in body
 - GET: include wire format message encoded in Base64url as a URL parameter

```plaintext
:method = POST
:scheme = https
:authority = dnsserver.example.net
:path = /dns-query
accept = application/dns-message
content-type = application/dns-message
content-length = 33

<33 bytes represented by the following hex encoding>
00 00 01 00 00 01 00 00 00 00 00 00 03 77 77 77
07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 00 01 00
01
```

```plaintext
:method = GET
:scheme = https
:authority = dnsserver.example.net
:path = /dns-query?
dns=AAABAAABAAAAAAA3d3d4eFtcGx1A2NvbQAAQAB
accept = application/dns-message
```

Examples from RFC in HTTP2 format
Comparison of DoT and DoH

DoT

• System-wide: can be used for all applications, i.e., with `getaddrinfo`
• Follows same paradigm as DNS over TCP
• Uses a dedicated port—853

DoH

• Easy to implement at application level
• Use standard OS HTTPS libraries
• Websites via Javascript
• Typically uses port 443
• Harder to block because it looks like normal Web/HTTPS traffic (i.e., same port)
Measuring Support at Resolvers

• Get a list of open recursive resolvers
 ◦ Query every IPv4 address and see if it behaves like a resolver (RA flag + RCODE of **NOERROR** or **NXDOMAIN**)
 ◦ **1,197,794** discovered
• Test discovered resolvers with TCP (pre-req for DoT/DoH)
• Send a query using DoT and DoH to those who responded

• Method excludes IPv6 and DoT or DoH resolvers that do not response over UDP
DoT and DoH Resolver Results

- **1,197,794** open resolvers
- **1,747** (0.15%) IPs responded to DoT
 - 1,529 of those from a single entity, CleanBrowsing
 - 87 unique autonomous systems
- **9** IPs responded over DoH
 - All owned by Quad9 or Cloudflare
 - More up-to-date sources list 35 public DoH resolvers
TLS Related Results

• 22 unique certificate signers were observed
 ◦ GoDaddy and Let’s Encrypt were most popular

• 11 certificates were self-signed (Issuer matched Subject)

• 79 (4.5%) IPs supported TLS 1.3
 ◦ Important for reduced RTT (2→1) and potential for 0–RTT

• 1,701 (97%) IPs supported TLS 1.2

• 80 IPs did not support TLS 1 or TLS 1.1
Measuring Support at Auth Servers

- Limit scope to nameservers for top 5,000 Alexa sites and all TLDs
- For each Alexa site, query for nameservers, then IPv4 and IPv6 addresses of those nameservers
- Repeat steps done for resolvers
DoT Authoritative Results

- Limited scope to nameservers for top 5K Alexa sites and all TLDS (1,530)
 - 6,817 unique IP addresses for TLDS
 - 10,214 unique IP addresses for Alexa Sites

- No TLD responded over DoT

- 12 Alexa IPs responded over DoT
 - All IPs that responded were owned by Facebook
 - Corroborates with Cloudflare blog experimenting with DoT to Facebook
TCP Fast Open Overview (2014)

- A major drawback of security is increased delay
- TFO fixes this in subsequent connections
 - Server gives client cookie in first connection
 - Client can reconnect with cookie + data in SYN
Measuring TFO support

- Enable client TFO support
- Send TCP SYN with TFO
 - Check if the SYN-ACK has TFO option
- Send two queries with TFO back-to-back
 - Second query should have valid cookie
 - Check that data in second SYN was
TFO Results for Authoritative Servers

- Like DoT work, used nameservers for top 5K Alexa sites and all TLDS (1,530)
 - 6,743 unique IP addresses for TLDS
 - 9,558 unique IP addresses for Alexa Sites

- 11 TLD IPs included TFO option
 - 10 of these were Google’s
- 5 ACKed data

- 726 (7.1%) Alexa IPs sent TFO option
- 18 (0.19%) ACKed data
TFO Client Results at Root Servers

• Analyzed 48 hours of queries sent to root server (minus g-root)
• **3,769,471** unique IPs queried roots
• **89** IPs included TFO option
• **32** included cookie, but didn’t send data in SYN

• Needs to be studied further
• Does not appear the root servers supported TFO
Conclusion

• Both DoT and DoH offer security to the DNS
• DoT adoption is limited, but includes most well-known resolvers
• DoH is newer, but will likely surpass DoT in adoption

• TFO can help reduce delay of DoT and DoH but support is very limited
• Many IPs are sending TFO option, but not ACKing data
Questions

Contact:
casey@byu.edu
jacdavi@sandia.gov