

Why do we need TCP security?

MOTIVATION

- What are we protecting?
 - Long-lived TCP sessions
 - Examples
 - Routing protocols (BGP, LDP)
 - Long-lived TCP sessions between other applications
- What are we protecting against?
 - -Blind insertion attacks
 - Replay attacks

BLIND INSERTION ATTACK ON A BGP SESSION

- Router A maintains a BGP session with Router B
 - They exchange many routes over many hours
- Node C sends a few packets per second to Router B for many hours
 - IP source address: Router A (spoofed)
 - Payload: TCP
 - RST bit set
 - Destination ports: BGP (179)
 - Random sequence numbers
- B discards most packets, because their sequence numbers are invalid
- Sooner or later, C sends a packet with a valid sequence number
- BGP session resets

TCP MD5

LEGACY SOLUTION: TCP-MD5 [RFC 2385]

- Sending and receiving nodes are configured with a pre-shared key
- Sending node procedures
 - Calculate a Message Authentication Code (MAC) for each TCP segment
 - Use MD5 to calculate MAC
 - Calculate MAC over the TCP segment and the pre-shared key
 - Include an MD5 Signature Option in each segment
 - MD5 Signature Option includes MAC
- Receiving node procedures
 - Calculate a MAC for each received TCP segment
 - Discard the packet if the calculated MAC does not match the received MAC

TCP-MD5 IS DEPRECATED

- New requirements
 - Change pre-shared keys without resetting TCP session
 - Support multiple authentication algorithms
- Pre-shared key change
 - It is difficult to change TCP-MD5 pre-shared keys without resetting the TCP session
 - It is difficult to reset TCP sessions that support BGP
 - Therefore, TCP-MD5 pre-shared keys were rarely changed
- Authentication algorithm agility
 - MD5 has been replaced by stronger authentication algorithms
 - Even stronger authentication algorithms are expected in the future

Monday, June 5 2006 - NANOG 37

Ron Bonica - Authentication for TCP-based Routing and Management Protocols

• June 2010

RFC5925 published

• Tuesday, June 26 2018 - NANOG 73

Ignas Bagdonas - Lightning Talk: BGP Transport Security - Do You Care?

Monday, October 19 2020 - NANOG 80

Melchior Aelmans - It is time...to replace MD5

TCP Authentication Option

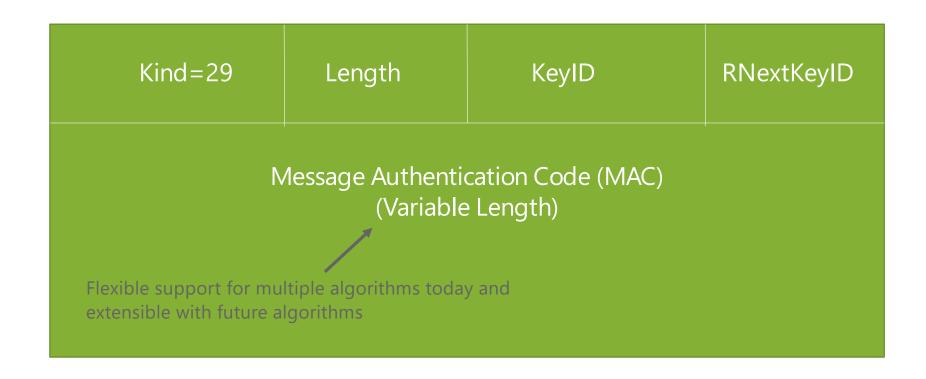
TCP-AO [RFC 5925] REPLACES TCP-MD5

- Supports
 - Pre-shared key change without resetting TCP session
 - Multiple authentication algorithms

Juniper Public

TCP-AO CONCEPTS

- Master Key Tuple (MKT)
 - One or more MKTs are configured on each node
 - Used to derive traffic keys
- Traffic key
 - Used to generate a MAC for each TCP segment
- TCP-Authentication Option
 - Used to authenticate TCP segments
 - Contains a MAC, KeyID and RNextKeyID
 - KeyID identifies MKT and traffic key that were used to generate MAC
 - RNextKey identifies MKT and traffic key that the receiving node should use when generating a MAC for the next segment it sends


MKT CONTENTS

- A TCP connection identifier
 - Source address, destination address, source port, destination port
 - Wildcards allowed
- A TCP Options flag (determine which TCP options are covered by MAC)
- Identifiers
 - Sending: Used to generate KeyID on outbound segments
 - Receiving: Used to resolve KeyID on inbound segments
- An authentication algorithm
- Master key (i.e., keying material)
- A key derivation algorithm

TRAFFIC KEYS

- Four traffic keys are derived from each MKT
 - SEND_SYN
 - RECEIVE_SYN
 - SEND-OTHER
 - RECEIVE-OTHER

THE TCP AUTHENTICATION OPTION

PULLING IT ALL TOGETHER: KEYING

- Each node is each configured with one or more MKTs
- Each node derives four traffic keys from each MKT
- Each node independently determines which MKT is active
 - Method is beyond the scope of RFC 5925
 - Many implementations specify a start-time and an end-time for each MKT

PULLING IT ALL TOGETHER: AUTHENTICATION

- Sending node procedures
 - Calculate a Message Authentication Code (MAC) for each TCP segment
 - Use the appropriate authentication algorithm
 - Calculate MAC over the TCP segment and an active traffic key
 - Include a TCP-AO in each segment
 - MD5 Signature Option includes MAC, KeyID and RNextKeyID
- Receiving node procedures
 - Calculate a MAC for each received TCP segment
 - Use algorithm and traffic key associated with the received KeyID
 - Discard the packet if the calculated MAC does not match the received MAC

Juniper Public

IMPLEMENTATION STATUS AND FURTHER READING

Implementation status:

Nokia: SR OS 16.0.R15, 19.10.R7 and 20.5.R1 (interop tested with Juniper)

- Cisco: Stable since IOS XR 6.6.3 and 7.0.1

Juniper Networks: 20.3R1

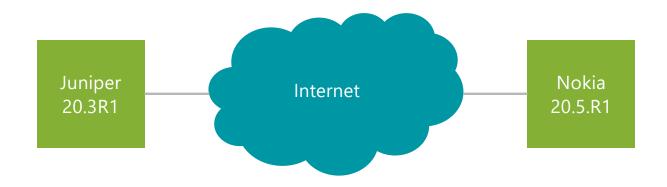
Huawei: targeted for Q2 2021

Further information:

- Nokia & Juniper interoperability test: https://github.com/TCP-AO/Interoperability-testing
- Configuration examples: https://github.com/TCP-AO/Configuration-examples
- Routing Table Podcast starring Ron Bonica and Greg Hankins:
 https://anchor.fm/routing-table/episodes/The-TCP-Authentication-Option--why-do-we-need-it-and-will-it-replace-MD5----Greg-Hankins-Nokia-and-Ron-Bonica-Juniper-Networks-ekemrp

Juniper Public

RELATIONSHIP WITH GTSM [RFC 5082]


- GTSM protects eBGP sessions
 - -Sender sets TTL to 255
 - -Receiver rejects packets containing eBGP if TTL is less than 254
- TCP-AO still needed to protect eBGP sessions from attackers that are one hop away
- TCP-AO still needed to protect iBGP sessions from internal attack
- > Security best practices implement many layers of protection, don't rely on just one mechanism!

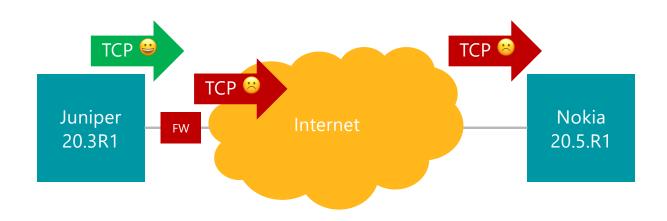
JUNIPEC.

Interoperability testing

JUNIPER AND NOKIA INTEROP TEST RESULTS

- Successful interop test using TCP-AO for BGP finished in June 2020
- Established multihop IPv4 and IPv6 BGP sessions over the Internet
- No need to meet or bring routers for testing in person
- Tested with HMAC-SHA-1-96 and AES-128-CMAC-96 algorithms

LESSONS LEARNED #1 – SEND AND RECEIVE ARE CONFIGURED FROM THE ROUTER'S PERSPECTIVE


Juniper

show security authentication-key-chains configure system security { keychain "interoptest-aes" { key-chain ao aes chain { key 0 { tcp-option-number { secret "\$9\$xk3NVYg.53/taZnCu1yrwYg4UHf5F/A0z3"; ## receive tcp-ao SECRET-DATA send tcp-ao start-time "2020-6-16.01:00:00 +0530"; algorithm ao; ao-attribute { send-id 9; recv-id 2; tcp-ao-option enabled; cryptographic-algorithm aes-128-cmac-96;

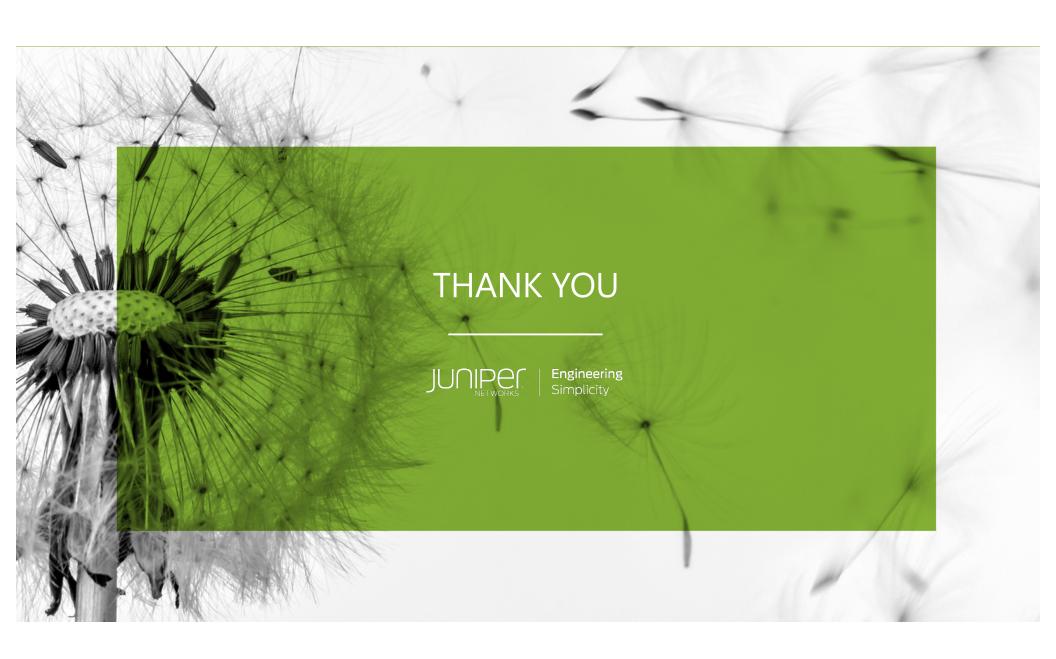
Nokia

- · Send and receive IDs must match each other
- TCP-AO supports multiple algorithms, make sure you are using are the same one

LESSONS LEARNED #2 – FIREWALLS MAY CHANGE TCP HEADERS

- The TCP MSS option was modified by a firewall in the path between the routers
- This caused the MAC calculation to fail on the receiver and the BGP session would not come up
- The TCP-AO option worked as expected to protect against modified packets!

22


CALL TO ACTION

Operators:

- Think about how TCP-AO fits into your overall routing security strategy
- Router vendor implementations are available now, start looking at them
- Ask for TCP-AO in RFPs/RFIs if it's missing

Developers:

- There is no ecosystem of open source implementations and tools yet
- Need kernel implementations: Linux and *BSD
- Need support in tools: tcpdump, Wireshark, etc.
- Need features in routing implementations: BIRD, FRR, goBGP, OpenBGPD, etc.
- Juniper and Nokia can provide implementations for testing!

