NANOG 80
Hackathon Recap

Michael Costello (just one of a cast of tens)

Hackathon stats

* 11th Hackathon (first virtual)

« Participants worked from 13:00 EDT Saturday to
17:00 EDT Sunday

« Participants from the US, Canada, and
South Africa

TUNANOCG

Hackathon overview

* |n support of NANOG's educational mission
« Organized by the Program Committee
 Weekend before the general conference

« Participants work individually or self-organize
INto groups

« Participants choose their own projects

TUNANOG

Projects included

« Afrom-scratch BGP daemon

« Performance monitoring and notifications using
home control systems

* Simulate traffic and visualize streaming
telemetry data

« gnmi-gateway Kafka exporter and Netbox
target loader

« Amodern NNTP client library in Rust
TUNANOCG

Projects you'll see here today

« RIB compliance using Model Driven Telemetry
« A fully automated data center Proof of Concept

 Asimple, automated, and easy-to-deploy SDN
solution

TUNANOG

Hackathon for NANOG 81

« We're looking for participants, mentors, and
SpPONSOrs

« We'll be reviewing survey results ahead of
planning

 Seeyou in February

TUNANOG

Lawrence Bird Yordan Sutanto

https://github.com/TheBirdsNest/ https://github.com/yordangita2/
https://www.linkedin.com/in/lawrenceabird/ https://www.linkedin.com/in/yordan-sutanto-5bas487/

BGP RIB COMPLIANCE USING MDT

https://qgithub.com/petermoorey/NANOG-8o-Hackathon

NANOG-8o0 Hackathon

-

)

wy N
4
Peter Moorey VladimirYakovlev
https://github.com/petermoorey/ https://github.com/VladimirGHC/

https://www.linkedin.com/in/fpmoorey/ https://www.linkedin.com/in/vladimir-yakovlev-398basao/

https://github.com/petermoorey/NANOG-80-Hackathon/

GOAL

* Evaluate various technology stacks
* Evaluate network telemetry capabilities
* Develop a network capable of showcasing various routing scenarios

* Provide real-time evaluation of BGP routes to detect:
* Poorly configured route-maps
* Incorrect provider policies
* Route hijacking

TECHNOLOGY STACK

°
e CSR 1000V * Service Provisioning e InfluxDB * Policy Processing
« CML * Service Chaining * Telegraf * Notification Handling

* Chronograph * Websocket Manager

LAB SETUP

150.0.0.0/16

1332 %0 -6

* Challenges:

-

AS 13 I
150.0.0.0/16 |[___ hacker _—J~Gi3
10.200.49 13

* Are the regional route preferences
being honored for the default route?

* Is traffic to/from our providers being
hijacked?

1
10.7.8.0/24 £

|

3.7.0})/24
Gi2 JGi2
AT&T MPLS
As 13979

[___gquito |
10.200.49 6

Europe, Afrika,
& Asia

10.7.9.0/24 @ity
lGid — Gi2

— 192.168.9.0/24
(7}

192.168.10.0/24

templates > ¥ mdt_xmljinja2

data xmlns="http
{% for id, sub in data["subscriptions"].items
criptio
iption-id:

({ sub["sourcevrf™]
ncodingrencode-

5 if sub["pericd”] =

def main{grpc_host):

hosts = []

with open{"mdt_subscriptions.yml”, “r"} as f:
mdt_sub = safe_load(f)

with open{INVENTORY_FILE, "r") as f:
invento fe_load(f)

for router in inventory['routers®]:
if invento routers’ J[router]["'mdt_bgp']:
hosts.append(invento ‘routers’ J[router][ip'1}

for subscription im mdt_sub[‘subscriptions®]:
mdt_sub[*subscriptions ']J[subscription]['rx']['ip"] = grpc_|
j2_e Environment(Loader=Fil temLoader(), trim_blocks=True, autoescape=True)
template = get_template("templates/mdt_xml.jinja2")
new_config = template.render(doto=mdi_sub)

for host im ho

“host": h

“username”:

“password”: PWD,
"hostkey_verify”: False,
"allow_agent”: False,
"look_for_keys": False,
"device_params”: {"name”:

with manage ect(nnect_params) - as-conn:
print(f"NETCONF session connected: {host}")

i print
config resp = conn.edit_config(farget="running”, config=new_config)
if config_resp.ok:
print{+"Added ({len(mdt_sub[subscriptions'])}) subscriptions™)

print{f"NETCONF session disconnected: {host}

BGP RIB Compliance Policy file for demo lab

root_source: Cisco-I0S-XE-bgp-oper:bgp-state-data/bgp-route-vrfs/bgp-route-vrf
root_path: bgp_route_af/bgp_route_filter/bgp_route_entry/bgp_path_entry/
regions:
emea:
- 10.200.49.9
- 10.200.49.10
americas:
- 10.200.49.5
- 19.200.49.6
external:
- 10.200.49.4
- 10.200.49.8
policy:
9.0.0.8/0: t Match fault route
match: explicit Match ne is explicit. RIB prefix must match 8.8.
region: americas # Region to monitor for RIB updates on
attributes: # List of attributes to evaluate and expected values
community: 1€0:1 : value expected in RIB update
8.0.0.8/0: t Match default route
match: explicit # Match ty is explicit. RIB prefix must match @
region: emea ! n to monitor for RIB updates on
attributes: # List of attributes to evaluate and expected values
community: 10@:2 # Community value expected in RIB update
192.168.8.8/16:
match: any # any match will include any network prefix that is within the subnet, or the subnet itself
region: external
attributes:
origin: 168
community:

as_path: 13p79 13979
150.9.0.8/16:
match: any

region: external
attributes:
origin: 150

is_in policy(self, prefix: str) -» str:

try:

target_network = IPNetwork{prefix)

for

prefix, policy in self.policies.items():
parent_network = IPNetwork(prefix)

if policy[" match == "any’':
if target_network im parent_network:
print{f"{target_network} in {parent_network}"}
return str(parent_network)
elif policy['match’'] == 'explicit':
if target_network == parent_network:
print{f"{target_network} is {parent_network}")
return prefix
else:

except KeyError:
print("Malformed Policy™}

return Mone

evaluate(self) -» bool:

query =

'SELECT * FROM "{self.source}" WHERE time > now() - 155"

print{query}

results

= self.db.query(query)

result in results.get_points(self.source):

path = 'bgp_route_af/bgp_route_filter/bgp_route_entry/prefix
efix = result[prefix_path]

print(f"Prefix is {prefix} on source {result['source']1}")

if prefix:

compliance = {}
policy_prefix = self.is_in_poli
print{f"Policy prefix: {policy_|
print{+"evaluating prefix {prefix} in policy"}
if poli prefix:

po = self.policies[policy_prefix]

for key, value in policy['attributes"].items():
for attr in result:
if "bgp neighbor' mot in attr:
if re.search(f"/{key}$", attr):
if result[attr] == value:
compliance[F"{key}_compliance"] = @

VISUALIZATION

BGP Routing Compliance

Route » Prefix

R84-americas-dcv 150.0.0.2/32

Count of BGP events by Router Name

BGP Routing Compliance Dashboard
NANOG 80 Hackathon

Select a prefix

Origin - Count of Non-Compliant Events

prefix

Count of Non-Compliant BGP Events by Router

‘IMII

g 0

Local gm @ Variables

AS Path Compliance - Count of Non-Compliant Events

== 150.0.0.4/32

1 Annotations oS w © Past1h v =

+ Add Template Variable

NANOG 80
HACKATHON

» Aakash Rawal
» Hast Patel

* Mukesh Jaiswal
* Nikhil Gadre

» Swati Niture

QF University of Colorado
& Boulder

Proof of Concept for a fully automated Tier 2 ISP Data
Center — Deployment and Monitoring

What did we achieve ?

 Centralized control and monitoring of the network

» Cost-effectiveness (reduces OpEX)

* One-click configuration and deployment (saves time)
« Reduction in human errors

QF University of Colorado
& Boulder

_ Cloud Storage <, -
Administrator

— e

I'\J_u"ul-.ul.l
tools
Froni End Interface <—— Python Scripts

Operations Team

Magmt NAN

F

» ' N/W devices

QF University of Colorado
& Boulder

AS10
Edge10-1 Edge10-2 Edge200
S

Site 2

VPNUser200

Admin

Customer

&&_

University of Colorado
Boulder

Make OSPF configuration v
LT -

B Push OSPF configuration . : -.' T, Lo
b Make BGP conﬁguratlon f

v cvé t_’,—

. ‘ . w
Make NAT conﬂguratlon ﬂ ..5 . m
So— i s

Push NAT conflguratlon
> = L T

¥ Push BGP Configuration

Network Monitoring

- -
N
Global_Router_Troubleshoot
- Nl A—

E —

S Bl ndividual_Router_

N

' IPsecconflg

QF University of Colorado
& Boulder

Web App
« Generate Configuration Files
« Push Configuration to Devices
« Monitor Individual Devices and Network
« Compare Running Config to Golden Config
» Backup Configuration to Cloud

QF University of Colorado
& Boulder

* Python
« Jinja2 Templates

 Modules
* Netmiko
* NAPALM
e Flask

 Multi-threadin

@"E University of Colorado
Boulder

]

for k in natinfo["Interfaceout"] %}

interface {{ k }}

ip
{%

%

nat outside
endfor %}

for k in natinfo["Interfacein"] %}

int {{ k }}

ip
(%

it

nat inside
endfor %}

for k in natinfo["accesslistl"] %}

access-list {{ k }}

%

{%
{%
ip
{%

ip

endfor %}

set count=namespace(value=1) %}
if natinfo["accesslistl"] | length == 1 %}
nat inside source list 1 interface {{natinfo["Interfaceout"]
else %}
{% for k in natinfo["Interfaceout"] %}
nat inside source list {{count.value}} interface {{k}} overl
{% set count.value=count.value +1 %}
{% endfor %}
endif %}

{% for k in ospfinfo["int"] %}

int {{ k }}

ip address {{ ospfinfo["int"][k] }}

no shut

exit

{% endfor %}

{% for j in range((ospfinfo["network"])|length) %}
router ospf {{ ospfinfo["pid"] }}

network {{ ospfinfo["network"][j] }} area {{ ospfinfo["area"] }
exit

{% endfor %}

? University of Colorado
=¥ Boulder

nat_info.txt - Notepad - [m] X
File Edit Format View Help File Edit Format View Help
It interface fal/l
ip nat outside
"R1": interface fa2/@
{"Interfaceout”:["fad/1"], "accesslistl"”: ["1 permit 198.51.0.0@ ip nat outside
©.0.255.255"], "Interfacein":["fa®@/1","fal/e","f0/0"]}, interface fa@/@
ip nat outside
"R2":
{"Interfaceout":["fa4/1"], "accesslistl": ["1 permit 198.51.0.0@ int fa4/1
@.0.255.255"], "Interfacein":["fa@/1","fal/e","fB/0"]}, ip nat inside
"R5": access-list 1 permit 205.0.0.0 ©.0.255.255
{"Interfaceout":["fal/1","fa2/@","fa@/0"], "accesslistl": ["1 permit access-list 2 permit 205.90.0.0 ©.0.255.255
205.9.0.0 0.0.255.255","2 permit 205.9.0.0 0.0.255.255","3 permit access-list 3 permit 205.0.0.0 ©.0.255.255
205.0.0.0 0.0.255.255"], "Interfacein":["fa4/1"]},
ip nat inside source list 1 interface fal/l overload
"R6": ip nat inside source list 2 interface fa2/@ overload
{"Interfaceout":["fal/1","fa2/@","fa0/0"], "accesslistl": ["1 permit ip nat inside source list 3 interface fa@/@ overload
205.0.0.0 ©.0.255.255","2 permit 205.0.0.0 ©.0.255.255","3 permit
205.9.0.0 0.0.255.255"], "Interfacein":["fa4/1"]}
}

University of Colorado

Boulder
- — a2 v = | T —
Boulder
' Network Management and Automation Station (NMAS) E
Version 1.0 .

OSPF config files are successfully created, the files are:

R1_ospfconf.txt

Al
-

R2_ospfconf.txt A

R3_ospfconf.txt

“n
- 7 P i

- R4 _ospfconf.txt
l R5_ospfconf.txt

R6_ospfconf.txt

h
E Bl

; press to return to home page.

QF University of Colorado
& Boulder

Netmiko, Napalm
* Interface Configs
« OSPF
* NAT
« BGP
* IPSec
* 6t04 Tunneling

@ University of Colorado
Boulder

Bl - W P S SRAEN" LSS SR LWE V. FL BB . oan ~ L VRN N i e SN = B, L DR L kT AN LTTNTIN T A il . T e S
%
i
3 Boulder F
Network Management and Automation Station (NMAS)
- ,
Version 1.0 i
-
1 !
gl
OSPF files are successfully loaded into routers, press to return to home page. :

University of Colorado

Boulder
- -t = i o e s 4 _ N . = BT T— T T T A B T
| E
"
.
! Boulder ,
. Local tunnel ep Remote tunnel ep No. of encrypted pkts No. of decrypted pkts Tunnel status -
70.70.70.1 60.0.0.2 8 8 ACTIVE "
-
* I
“ Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 2001::3, timeout is 2 seconds: Packet sent with a source address of 2001::1 !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 200/300/504 ms
N
L

=

QF University of Colorado
& Boulder

* Device Interfaces
* |P / Status

* OSPF Neighborship
« BGP Neighborship

* View Running Config
» Show Commands

@ University of Colorado
Boulder

I T L T T T v . B W . a s e - - r 4 AERE IS Em—— X = S T

Boulder

Network Management and Automation Station (NMAS)

¢ Version 1.0

Interfaces IPs
BGP data
OSPF data

Running
configs

press to return to home page.

“wn
- e ot

- .=

i

University of Colorado
Boulder

Version 1.0

Boulder

Network Management and Automation Station (NMAS)

[— + +

| Router | Interface | IP |

[— + +

| R1 | FastEthernet0/0 | 198.51.101.1 |

| R1 | FastEthernet0/1 | 198.51.103.1 |

| R1 | FastEthernet1/0 | 198.51.102.1 |

| R1 | FastEthernet1/1 | unassigned |

| R1 | FastEthernetd/0 | 192.168.100.1 |

| R1 | FastEthernetd/1 | 200.0.0.1 |

| R2 | FastEthernet0/0 | 198.51.101.2 |

| R2 | FastEthernet0/1 | 198.51.105.2 |

R2 | FastEthernetl/0 | 198.51.104.2

University of Colorado
Boulder

— v L S E=_T &

Boulder

Network Management and Automation Station (NMAS)

Version 1.0

Enter show command

khow ip bgp Submit

debug ip bgp

show ip interface brief
show ip bgp

show ip route

| show running-config

- kR

- 4 e i

University of Colorado
Boulder

. Boulder

Network Management and Automation Station (NMAS)

Version 1.0

T a Y

Enter show command

Enter host

192.168.100.1

Enter username

.
- 7 W

- .=

Enter password

.

3 Enter device-type i.e cisco_ios

cisco_ios Submit
e

i

R F B

P

QF University of Colorado
& Boulder

« Backup Running Config

« Compare
* Latest Backed Up Running Config
» Golden Config

 Show Difference

@ University of Colorado
Boulder

Boulder

|'Difference found for R1', 'Difference found for R2', 'Difference found for R3', 'Difference not found for R4', 'Difference found for RS', 'Difference found for R6', 'Difference not found for R12']

? University of Colorado
=¥ Boulder

BACKUP CONFIG FILES TO
. CLOUD

' ove rView m

‘ Q. Type a prefix and press Enter to search. Press ESC to clear

2 o

US West (N. California) &

Viewing 1 to 31

Name = Last modified = Size v Storage class ¥
B R12_2020-10-18-10-43-56.txt ggg;a' AN (HENAEE G Standard
B R12_ 2020-10-18-12-45-30 txt (?60888‘ 2020 12:4541PMGMT- 5\ g Standard
@) R1_2020-10-18-10-43-22.txt (?6?)01 8, 2020 10:44:18 AM GMT- ¢ Standard
@) R1_ 2020-10-18-12-45-00.txt Oct 18, 2020 12:45:40 PM GMT- o\ Standard

0600

Feedback English (US) ¥ 008 - 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved Privacy Policy Terms of Use

QF University of Colorado
& Boulder

« Zero Touch Provisioning (ZTP) — Management
Network

« Automated Device Backups — Cron Job

« Security
* Firewall
* Access-lists

« Redundancy
« For Default Gatewa

QF University of Colorado
& Boulder

A Simple, Automated and
Easy to Deploy SDN Solution

Roni Mukherjee
MS, Telecommunications 2019-21, CU Boulder

Why SDN?

* Reduced CapEx: Simple device — move control away
from devices

* Reduced OpEx: Simplified network monitoring —
automation

* Build your solution
* Faster troubleshooting

Hybrid Network

* Combination of SDN and Traditional Routing and
Switching Networks

* No need to change traditional network
* SDN network is spun up to join the network

* Based on the implementation, SDN Controller can be

anywhere in the network

* Only, IP connectivity is required to establish a TCP/TLS
connection between the SDN switch (s) and the controller (s)

Hybrid Network — Proof of Concept

SDN-Controller
Switch2

—_— i
— -]
@ e2 e0 el

Mininet-SDN-Network

O

e3

Ethernet 5

E I am the Network Administrator B-)

Roni'sPC

Automated SDN Deployment

* Mininet boots up, gets DHCP address, routing
enabled, controller configured — Automated

PS C:\MyCanvas\NANOG86_ hackathon\submission> python .\sdn_network_spinup.py
*¥***k***%* The IP leased to Mininet VM is: 192.168.100.2

***¥*xxk*¥*%* Routing enabled on: ios_ril
***k*xk*+%*% Routing enabled on: ios_r2
kkk*k%x* Routing enabled on: ios_r4

***kxx%*%* OpenFlow version changed to --> 1.3

****x%*%* Controller configured!
x** Controller connected!
PS C:\MyCanvas\NANOG8@_ hackathon\submission>

Advantages of the proposed solution

* Easy to deploy — Automated script (boot
up/routing/monitoring)

* SDN — Centralized control, global view, reduced CapEx and
OpEx

* APl — Use of APIs make it faster and human readable
* No need to change existing network

* Reuse SDN multipurpose simple devices

* GUI: Greatly increased troubleshooting efficiency

SDN GUI — Reusable/Extendable
Global View

* Purpose-built for the proposed network
* Web Application Console logs
* Web GUI

* Real-time graphical plots of the network (auto-refresh
every 5 seconds)

* Greatly reduced troubleshooting steps — match on 40
fields and create own flow

SDN Topology

m Controller

x Switch (S1)

H3
Web Server

SDN G

PS C:\MyCanvas\NANOG88_ hackathon\submission> python
Frkxk*k** SDN GUI running

* Serving Flask app "sdn_gui" (lazy loading)

* Environment: production

.\sdn_gui.py

Use a production WSGI server instead.
* Debug mode: on
* Restarting with stat
Fdrkxkdik SDN GUI running
* Debugger is active!
* Debugger PIN: 123-884-149
* i CTRL+C to guit)
umber of Packet_INs to controller in this iteration is: 3
umber of Rx packets of portl of switchl in this iteration is: 31
umber of Tx packets of portl of switchl in this iteration is: 31
umber of matched traffic pattern sourced from H1l and destined to H2 in this iteration is: @
umber of violation count for the block traffic flow rule to H4 in this iteration is: 1
Number of HTTP packets at switchl in this iteration i1s: 24
127.8.8.1 - - [17/0ct/2©20 23:15:10] "GET / HTTP/1.1" 200 -
127.0.0.1 - - [17/0ct/2020 23:15:10] "GET /static/img/1.jpg HTTP/1.1" 34 -
umber of Packet_INs to controller in this iteration is: 4
umber of Rx packets of portl of switchl in this iteration is: 33
umber of Tx packets of portl of switchl in this iteration is: 35
umber of matched traffic pattern sourced from H1l and destined to H2 in this iteration is:
umber of violation count for the block traffic flow rule to H4 in this iteration is: 3
T Z2g
127.8.8.1 - - [17/0ct/2©020 23:15:22] "GET / HTTP/1.1" 200 -
127.0.8.1 - - [17/Oct/2@20 23:15:22] "GET /static/img/1.jpg HTTP/1.1" 3e4 -

1

SDN GUI —Web GUI

Roni's_Awesome_SDN_GUI

C © © O 127.0.0.1:5000 | | Q search I @O &

OpenFlow Packet_In Montitor OpenFlow Switchl Portl Rx Montitor OpenFlow Switchl Portl Tx Montitor

Rx Packets Count
Tx Packets Count

.
<
=1
=]
o
=
o
ae
3
a

160 \ (o] 160 5 > (o] 160
Time(s) Time(s) Time(s)

Match-Action Traffic Pattern Between H1 and H2 Firewall Traffic Montitor - Block traffic to H4 Web Traffic Montitor

Matched Traffic Count
Violation Count
HTTP Packet Count

100 (o] 100 (o] 100
Time(s) Time(s) Time(s)

SDN GUI —Web GUI

Roni's_Awesome_SDN_GUI

& cC @ ©0 127 Open a new tab (Ctrl+T) - ©@ | QA search In @ &

OpenFlow Packet_In Montitor OpenFlow Switchl Portl Rx Montitor OpenFlow Switchl Portl Tx Montitor

Packet_In count

. .
= =
= 3
= =
o o
7y Iy
2 2
| D [
=~ k-3
3 3
3 o
a a
> >
o L=

75‘0 10‘00 1250 15‘00) 75‘0 10'00 12’50 1500 5 5 > 75’0 10‘00 12'50
Time(s) Time(s) Time(s)

Match-Action Traffic Pattern Between H1 and H2 Firewall Traffic Montitor - Block traffic to H4 Web Traffic Montitor

/

Matched Traffic Count
Violation Count
HTTP Packet Count

750 1000 1250 1500 1750 750 1000 1250 1500 750 1000 1250
Time(s) Time(s) Time(s)

SDN Web GUI — Switch Tx/Rx Monitor

* Tx/Rx traffic has a similar
pattern. |

* If there is a significant difference
between Tx/Rx traffic, captured
on graph and an email is sent to
the administrator for immediate
action.

* Graph is plotted against real-
time data and refreshed every 5
seconds.

OpenFlow Switch1 Portl Rx Montitor : OpenFlow Switch Portl Tx Montitor

100 150 200 ' 0 50 100 150 200 250 300
Time(s) Time(s)

SDN Web GUI — Firewall Monitor

e Custom firewall rule is created. Frewall Traffic Montitor - Block traffc to Ha

* If there is a significant increase
in violation count, captured on
graph and email is sent to
administrator for immediate
action.

* Graph is plotted against real-
time data and refreshed every
5 seconds.

SDN Web GUI — Web Traffic Monitor

One of the host is web server and P
serving HTTP requests. , Web Traffic Montitor
This is a critical service.

If there is a sighificant change in
traffic pattern, captured on graph
and an email is sent to the
administrator for immediate action.
Graph is plotted against real-time
data and refreshed every 5 seconds.

-
c
>
o
O
T
s
b
a.
E
o =

SDN Web GUI — Pattern Traffic Monitor

Custom match is created for traffic pattern, ‘
e.g. traffic sourced from MAC address of : Match-Action Traffc Patter Between H1 and H2
H1 and destined to MAC address of H2. '
This is considered as critical service.

If there is a significant change in traffic
pattern, captured on graph and an email is
sent to the administrator for immediate
action.

Graph is plotted against real-time data and
refreshed every 5 seconds.

N
o

-
w

-—
c
3
5]

O

=

&=
o

’—

o
@

<
b

-
T

=

=
o

w

SDN Web GUI - OpenFlow Packet In
Monitor

* Traffic from switch to controller. OpenFlow Packet_In Montitor
* This is the traffic that matches
table-miss.

* Graph is plotted against real-time
data and refreshed every 5
seconds.

SDN Web GUI — Violation email

Hey Admin inbox %

ronismitp97@gmail.com
HIGH VIOLATION COUNT!

ronismtp97@gmail.com
HIGH VIOLATION COUNT!

ronismitp97@gmail.com

to -

HIGH VIOLATION COUNT!!

Tools used

*GNS3

*Cisco IOS routers

* Mininet

*Ryu SDN controller
* Ubuntu VMs
*VirtualBox

* Flask

* HTML/CSS
*Netmiko
*NETCONF
* Python

* Wireshark

Conclusion

* Custom flow rules using any match criteria (from 40
different fields)

* Graphical representation — significantly increased
troubleshooting efficiency

* Hybrid Network
* Reduced CapEx: Simple device, reusability

e Reduced OpEx: Significantly improved network monitoring
and troubleshooting through automation

* Automated deployment of the Hybrid-SDN solution

GitHub

* https://github.com/rm-viable/NANOG80-hackathon

