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BGP hijacking is pervasive in the Internet
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BGP hijacking is pervasive in the Internet
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‣ The problem of BGP hijacking is still far from solved.



Hijack disclosure in mailing lists
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‣ Serial hijackers: ASes that repeatedly hijack over
long periods of time.

Hijack disclosure in mailing lists
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Bitcanal: an infamous serial hijacker

2014 2019

September 2014: 
Blog post

1.
January 2015: 

Blog post

2.
June 25, 2018: 

Email in NANOG

3.
July 10, 2018

Disconnection
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‣ It took 4 years to disconnect this serial hijacker.



Research goals

Find serial hijackers in the Internet

(i) Identify hijackers distinctive routing characteristics

(ii) Build a machine learning system to flag suspicious ASes

(iii) Evaluate our results

What can we learn about serial hijackers?
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Ground truth: serial hijackers

North America 4 Europe 16
Asia 2

Africa 1

ASN country and RIR registration

23 serial hijackers:

• 10+ hijacks

• Most have been active over a year

• Up to 30,000 originated prefixes
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Ground truth: legitimate ASes

230 Legitimate ASes:

• 191 MANRS ASes

• 26 ASes manually selected
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BGP dataset and processing

AS A

AS B

AS CAS F

BGP collector

AS G

AS E

BGP collector

AS D

10

• RIPE RIS and RouteViews collectors                         
(~40 col., ~1400+ col. peers)

• We process all BGP updates to                                  
reconstruct peer routing tables

• We extract (prefix, origin AS) pairs and 
the number of peers with each pair in 
their routing table (visibility)

• Data from Jan. 2014 to Dec. 2018

‣ (prefix, origin AS, visibility, timestamp) every 5 min. 



BGP origination behavior: legitimate vs. serial hijacker
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British Telecom (AS 5400) Bitcanal (AS 197426)

‣ Legitimate ASes mostly show 
stable BGP behavior.

‣ Serial hijackers BGP activity is 
visually different.



BGP origination behavior: legitimate vs. serial hijacker

‣ We need features that capture this behavioral difference.
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British Telecom (AS 5400) Bitcanal (AS 197426)



Variability of BGP behavior: serial hijackers
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Variability of BGP behavior: legitimate ASes
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Expected serial hijacker behavior

• Repeated AS absence from the global 
routing table. 

• Short prefix origination times.

• More multi-origin conflicts (MOAS).

• Volatile count of concurrently 
advertised prefixes.

• Broad geographical distribution of 
address space originated.
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Serial Hijacker ASComcast AS



Expected serial hijacker behavior

• Repeated AS absence from the global 
routing table. 

• Short prefix origination times.

• More multi-origin conflicts (MOAS).

• Volatile count of concurrently 
advertised prefixes.

• Broad geographical distribution of 
address space originated.
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Regional Internet Registries (RIRs)



Expected serial hijacker behavior

• Repeated AS absence from the global routing table. 

• Short prefix origination times.

• More multi-origin conflicts (MOAS).

• Volatile count of concurrently advertised prefixes.

• Broad geographical distribution of address space originated.
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‣ We derived 52 features to capture differences.



Challenges of applying ML to find more potential 
serial hijackers

• Heavy-tailed and skewed data:
Monthly prefix changes [0,2600], Gini in [0,0.8] 

• Very small ground truth:
240 AS for 19,000 ASes

• Class Imbalance:
23 serial hijacker vs. 217 legitimate networks
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Our ML approach

• Tree based classifier.

• Voting ensemble of extremely randomized forests.

• 3 over-sampling techniques.

• All 52 features with positive median drop column importance.

‣ 79% precision and 100% recall 
(in ground-truth using out-of-bag score)
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Putting our classifier to work

, 0, 0, 0, 0, 0
Unti
tled 
1, 0

Unti
tled 
2, 0

Unti
tled 
3, 0

Unti
tled 
4, 0

ASe
s, 

75,
261
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• Goal: Find ASes exhibiting similar BGP behavior to serial hijackers in our ground truth.



, 0, 0, 0, 0, 0, 0

10+ 
prefixe

s, 
19,103

Untitle
d 1, 0
Untitle
d 2, 0
Untitle
d 3, 0
Untitle
d 4, 0

Putting our classifier to work

ASes originating
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• Goal: Find ASes exhibiting similar BGP behavior to serial hijackers in our ground truth.



, 0, 0, 0
Flagged 

ASes, 934, 0, 0
Non-

flagged 
ASes, 
18,169

Untitled 1, 
0

Untitled 2, 
0

Untitled 3, 
0

Untitled 4, 
0

Putting our classifier to work
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• Goal: Find ASes exhibiting similar BGP behavior to serial hijackers in our ground truth.



, 0, 0, 0
Flagged 

ASes, 934, 0, 0
Non-

flagged 
ASes, 
18,169

Untitled 
1, 0

Untitled 
2, 0

Untitled 
3, 0

Untitled 
4, 0

• Goal: Find ASes exhibiting similar BGP behavior to serial hijackers in our ground truth.

‣ Flagged ASes are: 
- 4.9% of ASes originating 10+ prefixes
- 1.2% of all ASes.

Putting our classifier to work
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BGP behavior of flagged ASes
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What are ASes flagged by our classifier?

• Indication of malicious behavior

00000000000000000 934
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• Indication of malicious behavior

• Block listed ASNs:

00000000000000000 934

What are ASes flagged by our classifier?
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• Indication of malicious behavior

• Block listed ASNs: 84/290 ASes in Spamhaus ASN DROP list

Block listed 
ASNs:

84 

What are ASes flagged by our classifier?
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Flagged ASes are 10x more likely to be block listed



• Indication of malicious behavior

• Block listed ASNs: 84/290 ASes in Spamhaus ASN DROP list

• Spammer ASNs:

What are ASes flagged by our classifier?
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Block listed 
ASNs:

84 



• Indication of malicious behavior

• Block listed ASNs: 84/290 ASes in Spamhaus ASN DROP list

• Spammer ASNs: 33% ASes 

Spammer 
ASNs:
304

have a prefix in UCE-PROTECT level 2 spam blacklist

What are ASes flagged by our classifier?
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Block listed 
ASNs:

84 



• Indication of malicious behavior

• Indication of misconfigurations

What are ASes flagged by our classifier?
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Block listed 
ASNs:

84 

Spammer 
ASNs:
304



• Indication of malicious behavior

• Indication of misconfigurations

• Private ASNs      12%

Private
ASNs:
114

What are ASes flagged by our classifier?
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Block listed 
ASNs:

84 

Spammer 
ASNs:
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• Indication of malicious behavior

• Indication of misconfigurations

• Private ASNs      12%

• Fat-finger error ASNs      1%

Fat-finger
error ASNs:

9

What are ASes flagged by our classifier?
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Block listed 
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• Indication of malicious behavior

• Indication of misconfigurations

• Known false positives

What are ASes flagged by our classifier?
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Block listed 
ASNs:

84 

Spammer 
ASNs:
304

Fat-finger
error ASNs:

9

Private
ASNs:
114



DDoS 
protection
ASNs: 18

• Indication of malicious behavior

• Indication of misconfigurations

• Known false positives

• DDos protection ASNs      2%

What are ASes flagged by our classifier?
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Block listed 
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304

Fat-finger
error ASNs:

9

Private
ASNs:
114



• Indication of malicious behavior

• Indication of misconfigurations

• Known false positives

What are ASes flagged by our classifier?

441
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• Indication of malicious behavior

• Indication of misconfigurations

• Known false positives

What are ASes flagged by our classifier?

441

AS 134190
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• Indication of malicious behavior

• Indication of misconfigurations

• Known false positives

Block listed 
ASNs:

84

Spammer ASNs:
304

Private
ASNs:
114

Fat-finger
error ASNs:

9

DDoS protection
ASNs: 18

What are ASes flagged by our classifier?

441

‣ 53% of flagged ASes are in known categories.
‣ 53% of flagged ASes are in known categories.‣ Many interesting ASes are in the other 47%.
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What our classifier is not…

• A bulletproof identifier of malicious ASes.

• A system that exhaustively captures hijackers.
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Key takeaways

• First longitudinal analysis of serial hijacker ASes.

• Features offer state of affairs of AS-wide BGP behavior.

• Classifier outcome provides new data for network reputation scoring systems. 

• Effectively narrows the focus on suspicious networks, with much future work 
to be done.
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• First longitudinal analysis of serial hijacker ASes.
• Features offer state of affairs of AS-wide BGP behavior.
• Classifier outcome provides new data for network reputation scoring systems. 
• Effectively narrows the focus on suspicious networks, with much future work 

to be done.

Key takeaways

Legitimate AS Serial hijacker AS
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